PROPOSED RULEMAKING

ENVIRONMENTAL QUALITY BOARD

[25 PA. CODE CH. 250]

Administration of the Land Recycling Program

The Environmental Quality Board (Board) proposes to amend Chapter 250 (relating to administration of Land Recycling Program). This rulemaking is proposed under 25 Pa. Code § 250.11 (relating to periodic review of MSCs), which requires that the Department of Environmental Protection (Department) review new scientific information that relates to the basis of the Statewide health standard medium-specific concentrations (MSC) at least 36 months after the effective date of the most recently promulgated MSCs and to propose to the Board any changes to the MSCs as necessary. In addition to updating the existing MSCs, this proposed rulemaking would add MSCs for three new contaminants, namely Perfluorooctanoic Acid (PFOA), Perfluorooctane Sulfonate (PFOS) and Perfluorobutane Sulfonate (PFBS). These contaminants are within the Per-fluoroalkyl and Polyfluoroalkyl Acid (PFAS) family of compounds for which the United States Environmental Protection Agency (EPA) has published toxicological data. This proposed rulemaking would also clarify several other regulatory requirements.

This proposed rulemaking was adopted by the Board at its meeting on November 19, 2019.

A. Effective Date

This proposed rulemaking would go into effect upon final-form publication in the *Pennsylvania Bulletin*.

B. Contact Persons

For further information contact Michael Maddigan, Environmental Group Manager, Land Recycling Program, P.O. Box 8471, Rachel Carson State Office Building, Harrisburg, PA 17105-8471, (717) 772-3609; or Robert "Bo" Reiley, Acting Director, Bureau of Regulatory Counsel, Rachel Carson State Office Building, P.O. Box 8464, Harrisburg, PA 17105-8464, (717) 787-7060. Information regarding submitting comments on this proposed rulemaking appears in Section J of this preamble. Persons with a disability may use the Pennsylvania AT&T Relay Service by calling (800) 654-5988 (voice users). This proposed rulemaking is available on the Department's web site at www.dep.pa.gov (select "Public Participation," then "Environmental Quality Board").

C. Statutory Authority

This proposed rulemaking is authorized under sections 104(a) and 303(a) of the Land Recycling and Environmental Remediation Standards Act (Act 2) (35 P.S. §§ 6026.104(a) and 6026.303(a)), which direct the Board to adopt and amend periodically by regulation Statewide health standards for regulated substances for each environmental medium, including any health-based standards adopted by the Federal government by regulation or statute, and health advisory levels (HAL), and which direct the Board to promulgate appropriate mathematically valid statistical tests to define compliance with Act 2, and other regulations as necessary to implement the provisions of Act 2; and section 1920-A of The Administrative Code of 1929 (71 P.S. § 510-20), which authorizes the Board to formulate, adopt and promulgate rules and regulations that are necessary for the proper work of the Department.

D. Background and Purpose

Section 250.11 requires that the Department review new scientific information that is used to calculate MSCs under the Statewide health standard and propose appropriate changes at least every 36 months following the effective date of the most recently promulgated MSCs. The Board's most recently promulgated MSCs became effective upon publication in the *Pennsylvania Bulletin* at 46 Pa.B. 5655 (August 27, 2016). These proposed changes, based on new information, would provide the regulated community with clear information regarding the requirements of Act 2 and Chapter 250 related to the remediation of contaminated sites.

In addition to updating Chapter 250 MSCs, this proposed rulemaking would include changes that would add groundwater and soil MSCs for three compounds in the PFAS family—PFBS, PFOS and PFOA. The proposed standards for these three chemicals are based on data in toxicological studies published by the EPA. Under Act 2, the Department has directly incorporated the EPA's 2016 HALs regarding PFOS and PFOA as groundwater MSCs and has used the data developed by the EPA for those HALs to calculate soil MSCs for both compounds. With respect to PFBS, the Department is proposing soil and groundwater standards based on a 2014 EPA Provisional Peer-Reviewed Toxicity Value (PPRTV).

Finally, this proposed rulemaking would clarify a number of procedural issues related to the administrative requirements of Act 2. In particular, this proposed rulemaking would clarify requirements for remediators and municipalities regarding public participation and public involvement plans, update requirements for acceptable "practical quantitation limits" related to the precision of laboratory testing, update requirements for professional seals from professional geologists or engineers, provide resources to calculate MSCs, and clarify the proper submission of various reports related to the Act 2 Site-Specific Standard.

This proposed rulemaking would impact any person addressing a release of a regulated substance at a property, whether voluntarily or as a result of an order by the Department. This proposed rulemaking would not impact any particular category of person with additional or new regulatory obligations. Under Act 2, a remediator may select the standard to which to remediate. To complete a remediation, the remediator must then comply with all relevant remediation and administrative standards.

As noted previously, this proposed rulemaking will not singularly affect one specific industry or person. This proposed rulemaking will impact the owners and operators of storage tank facilities that have had a release of a petroleum or hazardous substance. There are approximately 12,000 storage facilities in this Commonwealth. Some of these facilities are owned or operated, or both, by small businesses. Because of the broad potential reach of this proposed rulemaking, it is not possible to identify specifics on the types and numbers of small businesses that could potentially be affected by property contamination. In addition, Act 2 and Chapter 250 are unique from other statutes and regulations because they do not create permitting or corrective action obligations. Instead, Act 2 and Chapter 250 provide remediators with options to address contamination and any associated liability that

arises under other statutes. For example, adding PFOS to the Chapter 250 Appendix does not create any liability or obligation related to PFOS. Instead, a person's liability arises under The Clean Streams Law (35 P.S. §§ 691.1—691.1001) while Act 2 and Chapter 250 provide that person the means to resolve their Clean Streams Law liability and to address the contamination. In this way, Act 2 and Chapter 250 do not create new obligations that will impact a particular category of person like a new permitting obligation or corrective action regulation would.

The soil numeric values represent a proposed decrease for approximately 83% of the values and an increase for 17% of the values. For groundwater, the proposed changes reflect a decrease for approximately 92% of the values and an increase in approximately 8% of the values. Lowering the values may indicate a more stringent cleanup is required at a site and increasing the values may indicate a less stringent cleanup is required at a site. These proposed changes reflect updated information related to exposure limitations to these substances and recognize that a higher or lower standard is better representative of those substances' exposure thresholds.

The number of completed remediations vary each year. On average, remediators apply the Act 2 remediation standard to approximately 800 contaminated properties across this Commonwealth. Generally, any cost related to a given site remediation depends in large part on which regulated substances are being remediated and what the specific soil and groundwater conditions are at the site.

The Department worked with the Cleanup Standards Scientific Advisory Board (CSSAB) during the development of this proposed rulemaking. The CSSAB, which was established by section 105 of Act 2 (35 P.S. § 6026.105), consists of persons representing a crosssection of experience, including engineering, biology, hydrogeology, statistics, medicine, chemistry, toxicology and other related fields. The purpose of the CSSAB is to assist the Department and the Board in developing Statewide health standards, determining the appropriate statistically and scientifically valid procedures and risk factors to be used, and providing other technical advice as needed to implement Act 2. During CSSAB meetings on August 1, 2018, February 13, 2019, June 12, 2019, and October 29, 2019, CSSAB members were given the opportunity to review and provide feedback on draft regulatory amendments to Chapter 250. The Department worked with the CSSAB to resolve concerns and agreed to evaluate additional suggestions during the next review cycle for this proposed rulemaking. Following these presentations and discussions, the CSSAB issued a letter related to the proposed regulatory amendments included in this proposed rulemaking. Specifically, the CSSAB noted concern related to the MSCs for vanadium.

A listing of CSSAB members and minutes of CSSAB meetings are available on the Department's web site at www.dep.pa.gov (select "Public Participation," then "Advisory Committees," then "Cleanup and Brownfields Advisory Committees," then "Cleanup Standards Scientific Advisory Board").

E. Summary of Regulatory Requirements § 250.1. Definitions

This proposed rulemaking would add a definition for the term "MDL—Method detection limit" because both "method detection limit" and "MDL" are used in Chapter 250 but are not defined. The proposed definition is consistent with the EPA's definition in (U.S. EPA Office of Water Publication EPA 821-R-16-006, 2016). This proposed rulemaking would amend the definition of "volatile compound" to match the description in Section IV, Appendix IV-A.1 of the Department's Land Recycling Program Technical Guidance Manual (TGM) and to match the EPA's definition in their OSWER (Office of Solid Waste and Emergency Response) Technical Guide for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Vapor Sources to Indoor Air (OSWER Publication 9200.2-154, 2015). The current definition excludes naphthalene as well as several other semi-volatiles that are considered volatiles in the vapor intrusion section of the TGM. The Department's TGM is available at https://www.dep.pa.gov/Business/Land/LandRecycling/Standards-Guidance-Procedures/Guidance-Technical-Tools/Pages/Technical-Guidance-Manual.aspx.

§ 250.4. Limits related to PQLs

Proposed amendments to this section would update the references and procedures for determining the practical quantitation limit (PQL) and would remove confusing and outdated language. Improvements in laboratory instrument technology and the removal of PQLs and estimated quantitation limits (EQL) from revised laboratory methods resulted in the need to update this section.

§ 250.6. Public participation

The proposed amendments to § 250.6(c) would clarify that if a public involvement plan (PIP) has been initiated, the public has a right to be involved in the development and review of the remedial investigation report, risk assessment report, cleanup plan and final report consistent with section 304(o) of Act 2 (35 P.S. § 6026.304(o)), regarding community involvement, and outlines the necessary measures to involve the public.

The proposed amendments to § 250.6(d) would help to ensure that the Department and the municipality requesting the PIP are notified of the submission of the PIP and receive copies of the PIP. These proposed amendments necessitate the removal of § 250.6(d)(1) and (2) because it no longer makes sense to include them in subsection (d). These subsections were also removed because they are already discussed in Chapter 250 in the final report requirements section for the site-specific standard in § 250.411(e) (relating to final report) and remediation requirements section for special industrial area (SIA) sites in § 250.503(f) (relating to remediation requirements). Finally, these two subsections were removed because the current Chapter 250 regulations require that the public involvement plan be submitted with the remedial investigation report or baseline environmental report. The proposed change is necessary because the Department needs notice of PIPs in advance of receipt of those reports.

§ 250.10. Measurement of regulated substances in media

The proposed amendments to § 250.10(d) would change the references from the Groundwater Monitoring Guidance Manual to reference the most current version of Appendix A of the TGM or an alternative method that appropriately measures regulated substances in groundwater.

§ 250.12. Professional seal

This proposed new section mirrors language from § 245.314 (relating to professional seals) of the storage tank regulations, requiring that reports submitted to the Department which include professional geologic or engineering work be sealed by a professional geologist or engineer.

§ 250.304. MSCs for groundwater

Under subsection (c), the EPA publication number has been revised.

Under subsection (g), this proposed rulemaking would list additional sources of aqueous solubility information to support the new compounds proposed to be added to the MSC tables in this proposed rulemaking. The following aqueous solubility sources are proposed be added to subsection (g):

- 19. ATSDR (Agency for Toxic Substances and Disease Registry). 2015. *Toxicological Profile for Perfluoroalkyls. Draft for Public Comment*. Agency for Toxic Substances and Disease Registry, Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA. Accessed May 2016. http://www.atsdr.cdc.gov/ToxProfiles/tp200.pdf.
- 20. Hekster, F.M., R.W. Laane, and P. de Voogt. 2003. Environmental and toxicity effects of perfluoroalkylated substances. Reviews of Environmental Contamination and Toxicology 179:99—121.
- 21. HSDB (Hazardous Substances Data Bank). 2012. U.S. National Library of Medicine, Bethesda, MD. Accessed May 2016. http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB.
- 22. Kauck, E.A., and A.R. Diesslin. 1951. Some properties of perfluorocarboxylic acids. Industrial & Engineering Chemistry Research 43(10):2332—2334.
- 23. SRC (Syracuse Research Corporation). 2016. PHYSPROP Database. Accessed May 2016. http://www.srcinc.com/what-we-do/environmental/scientific-databases.html.
- 24. OECD (Organisation for Economic Co-operation and Development). 2002. Hazard Assessment of Perfluorooctane Sulfonate (PFOS) and its Salts. ENV/JM/RD (2002) 17/FINAL. Report of the Environment Directorate, Joint Meeting of the Chemicals Committee and the Working Party on Chemicals, Pesticides and Biotechnology, Co-operation on Existing Chemicals, Paris, November 21, 2002.
- § 250.305. MSCs for soil

Under subsection (c), a minor correction to a cross-reference is proposed.

The proposed amendments to § 250.305(g) would alleviate confusion as to the need to evaluate the soil-togroundwater pathway for compounds that have secondary maximum contaminant levels (SMCL) and either a primary Maximum Containment Level (MCL) or a HAL. These proposed changes would also allow for the determination of soil MSC values for substances with SMCLs but no toxicological information in Appendix A, Table 5B, of Chapter 250. This determination would be based on the physical capacity of the soil to contain a regulated substance as described in § 250.305(b). This proposed change, along with other proposed changes to subsection (g), would result in the ability of remediators to determine soil MSCs for chloride and sulfate that also incorporate impacts to ecological receptors as described in § 250.311(a)—(f) (relating to evaluation of ecological receptors).

§ 250.306. Ingestion numeric values

Due to new information published by the EPA in Exposure Factors Handbook 2011 Edition, EPA/600/R-090/052F, the residential groundwater ingestion rate would increase from 2 liters a day (L/day) to 2.4 L/day. This proposed amendment would result in additional changes

to other exposure factors listed in the table and footnotes in § 250.306(d). Formatting errors in the table footnotes in this section would also be corrected. Some of the equations in the footnotes contain brackets that should not be confused with brackets used to delineate changes proposed in the proposed rulemaking. Bolded text within bolded brackets represents text to be deleted while unbolded brackets encompass existing text not proposed for removal.

Proposed amendments to § 250.306(e) would update the models used to calculate blood lead levels that are applied to the corresponding lead numeric value calculations. The new model references would also be updated in this subsection.

§ 250.307. Inhalation numeric values

A proposed amendment to the equation in $\S 250.307(g)(1)$ would add a "x 24 hr/day" multiplier to the numerator. This component was inadvertently omitted from this equation in the previous rulemaking.

§ 250.308. Soil to groundwater pathway numeric values

In section § 250.308(a)(2)(ii), the word "standard" would be replaced with "generic numeric value" to avoid the implication that the 1/10th value is always the soil MSC for saturated soil and to avoid the implication that the comparison process should be bypassed.

§ 250.311. Evaluation of ecological receptors

Amendments to § 250.311(b) are proposed to directly reference the proposed changes to § 250.305(g) and to reference the physical capacity of the soil to contain a regulated substance as described in § 250.305(b).

§ 250.402. Human health and environmental protection goals

Proposed amendments to $\S 250.402(d)$ would resolve confusion and ensure the correct application of $\S 250.311(e)$ to protect ecological receptors under the site-specific standard.

A proposed amendment to § 250.402(d)(3) would correct and replace the reference to § 230.311(f) with § 250.311(f).

§ 250.404. Pathway identification and elimination

Under subsection (a), proposing to add the words "Department or" to allow for the use of Department guidance in identifying exposure pathways.

§ 250.409. Risk assessment report

Proposed amendments to § 250.409(1) would clarify that an approved remedial investigation report is needed in advance of submitting an approvable risk assessment report when the reports are submitted separately. This proposed amendment is part of a clarification regarding the appropriate sequence of reports submitted under Subchapter D (relating to the site-specific standard), including a proposed new section for "combined reports," in § 250.412 (relating to combined reports), described as follows.

§ 250.410. Cleanup plan

A new proposed subsection (d) would remove any ambiguity regarding the need for a cleanup plan in situations in which a remedy is already present. The current language in subsection (d) would be moved into a newly created subsection (e).

§ 250.412. Combined reports

This newly proposed section would explain that prior approval of a remedial investigation report is not neces-

sary when combined with either a risk assessment report or a cleanup plan. This proposed section is necessary as a result of the changes made to § 250.410 (relating to cleanup plan).

§ 250.503. Remediation requirements

The proposed amendments to § 250.503(e) would clarify that a revised baseline environmental report, not just a new remediation plan, may need to be submitted when land use changes from nonresidential to residential at a SIA site.

§ 250.603. Exposure factors for site-specific standards

The proposed amendment to § 250.603(a) would update the citation of the 1992 version of the EPA's Final Guidelines for Exposure Assessment to EPA's 2011 Exposure Factors Handbook.

§ 250.605. Sources of toxicity information

The proposed updates to § 250.605(a)(3) would add the EPA's Office of Pesticide Programs Human Health Benchmarks for Pesticides and the EPA's PPRTV Appendix databases to the toxicity value source hierarchy.

§ 250.707. Statistical tests

The term "Statewide health standard" would be changed to "MSC" in the proposed amendment to § 250.707(b)(1)(ii) for clarification.

A new clause (D) would be added to § 250.707(b)(1)(iii) clarifying when or whether a vapor intrusion analysis is necessary for sites with small petroleum releases where full site characterization is not performed.

Appendix A, Tables 1—7

Proposed amendments to the "Medium-Specific Concentrations" tables would update the MSCs for certain regulated substances. Updates to footnotes would be necessary to help explain some of the changes to the MSCs. Numeric values would be calculated for several new substances, including PFOS, PFOA and PFBS in groundwater and soil, and total polychlorinated biphenyls in soil. Ingestion-based numeric values would all decrease slightly due to the proposed increase in water ingestion rate under § 250.306(d) from 2 L/day to 2.4 L/day. Other proposed numeric value changes would mostly be attributed to updates in toxicity values in Tables 5A and 5B. However, proposed corrections to the numeric value calculation process would also cause some numeric values to change.

The proposed update to the definition of a "volatile compound" would cause some of the values to change because the new definition would include the consideration of Henry's law constant and molecular weight. Additionally, some of the numeric values changes would be due to rounding adjustments. When the Department calculates the numeric MSC values for inclusion in Chapter 250, some values are rounded during one of the early calculation steps instead of at the end of the calculation. To be consistent, the rounding procedure would now be changed so that all rounding occurs at the final value calculation step. Elimination of the rounding of transfer factors would also cause changes to the numeric values. Transfer factors used for the calculation of inhalation numeric values from soil are calculated and listed in Table 5A. The transfer factors currently in Table 5A were rounded inconsistently. To be consistent with the other proposed rounding corrections, these values would no longer be rounded because they are calculated and used in the early stages of the numeric value calculation process.

In the proposed amendments, information would be updated on the "Threshold of Regulation Compounds" table (Table 6) by the removal of compounds that would have numeric values calculated on other tables.

Proposed amendments to the "Default Values for Calculating MSCs for Lead" table (Table 7) would update the input parameters for use in the Integrated Exposure Uptake Biokinetic (IEUBK) Model for Lead in Children for residential exposure. Proposed amendments for non-residential exposure would update the model input parameters for the Adult Lead Model. References for both models would also be updated. These proposed amendments would result in updates to the lead residential and nonresidential direct contact values provided in Table 4A.

F. Benefits, Costs and Compliance

Benefits

In enacting Act 2, the General Assembly found and declared among its policy goals that "[p]ublic health and environmental hazards cannot be eliminated without clear, predictable environmental remediation standards and a process for developing those standards," that "[a]ny remediation standards adopted by this Commonwealth must provide for the protection of public health and the environment," and that "[c]leanup plans should be based on actual risk that contamination on the site may pose to public health and the environment, taking into account its current and future use and the degree to which contamination can spread offsite and expose the public or the environment to risk." See 35 P.S. § 6026.102 regarding declaration of policy.

To effectuate this, the General Assembly authorized the Board and the Department to develop standards and methods to effectuate those goals. 35 P.S. §§ 6026.104 and 6026.303. The Department's regulatory structure, as authorized under Act 2 and as implemented by Chapter 250, provides those important benefits articulated in the General Assembly's declaration of policy.

The amendments to the MSCs in this proposed rule-making would serve both the public and the regulated community because they would provide MSCs based on the most up-to-date health and scientific information for substances that cause cancer or have other toxic effects on human health. The Board first published Chapter 250 regulations in 1997 at 27 Pa.B. 4181 (August 16, 1997). The General Assembly recognized, in section 104(a) of Act 2 (35 P.S. § 6026.104(a)), that these standards must be updated over time as better science becomes available and as the need for clarification or enhancement of the program becomes apparent.

Potential contamination of soil and groundwater from accidental spills and unlawful disposal can impact almost any resident of this Commonwealth. Many of the chemical substances addressed in this proposed rulemaking are systemic toxicants or carcinogens as defined under Act 2 and, in some cases, are widespread in use. Examples of substances that contain toxic or carcinogenic properties include gasoline and other petroleum products, solvents, elements used in the manufacture of metals and allovs. pesticides, and some dielectric fluids previously contained in transformers and capacitors. Releases of regulated substances not only pose a threat to the environment, but also could affect the health of the general public if inhaled or ingested. New research on many of these substances is ongoing and provides the basis for protection of the residents of this Commonwealth through site cleanup requirements.

Although most of the changes to soil numeric values in this proposed rulemaking would decrease the numeric values, 17% of the values would increase. Increases in values reflect updated information related to exposure limitations to the substances and acknowledge that a higher standard is better representative of those substances' exposure threshold.

An additional benefit of this proposed rulemaking would be the promulgation of soil and groundwater MSCs for PFOS, PFOA and PFBS. Establishing these MSCs would allow remediators to address groundwater and soil contamination and thereby lessen public exposure to the contaminants. This will also benefit remediators wishing to remediate contaminated sites, who tend to be owners, operators or purchasers—or their contractors—of properties and facilities including, or at or near, military bases, municipalities and other locations that used or stored fire-fighting foam. The EPA reports that contamination from these chemicals has also been associated with manufacturing textiles, food packaging, personal care products, and other materials such as cookware that are resistant to water, grease and stains. See Fact Sheet, EPA, PFOA & PFOS Drinking Water Health Advisories (November 2016) (available at https://www.epa.gov/sites/ production/files/2016-06/documents/drinkingwaterhealth advisories_pfoa_pfos_updated_5.31.16.pdf).

Finally, remediators would benefit from the proposed amendments that clarify many of the administrative elements of Act 2, making for a more efficient and streamlined Act 2 remediation process.

The benefits of this proposed rulemaking are difficult to quantify because, unlike other statutory or permitting schemes, Act 2 does not prevent contamination but instead provides remediators with a variety of options to address sites that have already been contaminated. In that sense, this proposed rulemaking, consistent with Act 2, benefits the public because it can lead to more efficient and more expedient remediation and reuse of contaminated areas.

Compliance costs

Financially and economically, the Department believes that any potential impact to the regulated community would be insignificant. Under this proposal, the MSC values for many regulated substances are being amended for a variety of reasons. The two most common reasons for amendments are Federal agency (including the EPA and United States Department of Health Agency for Toxic Substances and Disease Registry) changes in toxicity values that are used in calculating MSC and a change in the EPA's underlying assumption of a person's average daily consumption of water from 2 L/day to 2.4 L/day. The soil numeric values represent a decrease for approximately 83% of the values and an increase for 17% of the values. For groundwater, the proposed changes reflect a decrease for approximately 92% of the values and an increase in approximately 8% of the values. Lowering the values may indicate a more stringent cleanup is required at a site and increasing the values may indicate a less stringent cleanup is required at a site. The number of completed remediations vary each year. On average, remediators apply the Act 2 remediation standard to approximately 800 contaminated properties across this Commonwealth. The Department does not expect that the proposed amendments would impact the number of remediations voluntarily completed or the number that must be completed as a result of Department enforcement actions.

The proposed amendments to Statewide health standard MSCs would not affect the cleanup options available to remediators under other cleanup standards. Persons conducting remediation under Act 2 may choose from three different cleanup standards: background, Statewide health or site-specific.

The Department does not expect that this proposed rulemaking, as it relates to new MSCs for PFOA, PFOS and PFBS, would create any additional costs. Act 2 does not create liability for, or the obligation to, address contamination for these and other chemicals. Instead, that obligation comes from other environmental statutes, including The Clean Streams Law (35 P.S. §§ 691.1—691.1001) and the Solid Waste Management Act (35 P.S. §§ 6018.101—6018.1003). Act 2 provides remediators with options to remediate contamination. Having these new MSCs would allow remediators to address PFOS, PFOA and PFBS groundwater and soil contamination. This would benefit the public by lessening public exposure to these contaminants.

Compliance assistance plan

The Land Recycling Program would disseminate information concerning these updates using the Department web site and e-mails to environmental consultants involved in the program.

Paperwork requirements

This proposed rulemaking would not result in any additional forms or reports, beyond those that are already required by Act 2 and Chapter 250.

G. Pollution Prevention

The Federal Pollution Prevention Act of 1990 (42 U.S.C.A. §§ 13101—13109) established a National policy that promotes pollution prevention as the preferred means for achieving state environmental protection goals. The Department encourages pollution prevention, which is the reduction or elimination of pollution at its source, through the substitution of environmentally friendly materials, more efficient use of raw materials and the incorporation of energy efficiency strategies. Pollution prevention practices can provide greater environmental protection with greater efficiency because they can result in significant cost savings to facilities that permanently achieve or move beyond compliance.

Act 2 encourages cleanup plans that have as a goal remedies which treat, destroy or remove regulated substances whenever technically and economically feasible. This proposed rulemaking would provide the necessary Statewide health standard MSCs for remediators to remove contamination or eliminate exposure, where appropriate. This proposed rulemaking reflects the most up-to-date science, especially as it relates to the characterization and removal of contamination that exceeds Act 2 MSCs. During the remediation of a contaminated site, potential sources of pollution are often removed to attain the Act 2 standards, eliminating or minimizing the potential for continued migration of the sources of pollution to other areas.

H. Sunset Review

The Board is not establishing a sunset date for this proposed rulemaking because it is needed for the Department to carry out its statutory authority.

I. Regulatory Review

Under Section 5(a) of the Regulatory Review Act (71 P.S. § 745.5(a)), on January 27, 2020, the Department submitted a copy of these proposed amendments to the

Independent Regulatory Review Commission (IRRC) and the Chairpersons of the House and Senate Environmental Resources and Energy Committees. In addition to submitting the proposed amendments, the Department has provided IRRC and the Committees with a copy of a detailed regulatory analysis form prepared by the Department. A copy of this material is available to the public upon request.

Under section 5(g) of the Regulatory Review Act, IRRC may convey any comments, recommendations or objections to the proposed regulations within 30 days of the close of the public comment period. The comments, recommendations or objections shall specify the regulatory review criteria that have not been met. The Act specifies detailed procedures for review of these issues by the Department, the General Assembly and the Governor prior to final publication of the regulations.

J. Public Comments

Interested persons are invited to submit written comments, suggestions, support or objections regarding this proposed rulemaking to the Board. Comments, suggestions, support or objections must be received by the Board by April 14, 2020.

Comments may be submitted to the Board online, by e-mail, by mail or express mail as follows. Comments submitted by facsimile will not be accepted.

Comments may be submitted to the Board by accessing eComment at http://www.ahs.dep.pa.gov/eComment.

Comments may be submitted to the Board by e-mail at RegComments@pa.gov. A subject heading of this proposed rulemaking and a return name and address must be included in each transmission.

If an acknowledgement of comments submitted online or by e-mail is not received by the sender within 2 working days, the comments should be retransmitted to the Board to ensure receipt.

Written comments should be mailed to the Environmental Quality Board, P.O. Box 8477, Harrisburg, PA 17105-8477. Express mail should be sent to the Environmental Quality Board, Rachel Carson State Office Building, 16th Floor, 400 Market Street, Harrisburg, PA 17101-2301.

K. Public Hearings

The Board will hold 3 public hearings for the purpose of accepting comments on this proposed rulemaking. The hearings will be held at 6 p.m. on the following dates:

March 17, 2020 Department of Environmental Protec-

tion
Southcentral Regional Office
Susquehanna Conference Rooms A & B
909 Elmerton Avenue
Harrisburg, PA 17110

March 18, 2020 Department of Environmental Protec-

Southwest Regional Office
Waterfront Conference Rooms A & B
400 Waterfront Drive
Pittsburgh, PA 15222

March 25, 2020 Warminster Township Library 1076 Emma Lane

Warminster, PA 18974

Persons wishing to present testimony at a hearing are requested to contact the Environmental Quality Board, P.O. Box 8477, Harrisburg, PA 17105-8477, (717) 787-4526 at least 1 week in advance of the hearing to reserve

a time to present testimony. Oral testimony is limited to 5 minutes for each witness. Witnesses are requested to submit three written copies of their oral testimony to the hearing chairperson at the hearing. Organizations are limited to designating one witness to present testimony on their behalf at each hearing.

Persons in need of accommodations as provided for in the Americans with Disabilities Act of 1990 should contact the Board at (717) 787-4526 or through the Pennsylvania AT&T Relay Service at (800) 654-5984 (TDD) or (800) 654-5988 (voice users) to discuss how the Board may accommodate their needs

 $\begin{array}{c} {\rm PATRICK~McDONNELL},\\ {\it Chairperson} \end{array}$

Fiscal Note: 7-552. No fiscal impact; (8) recommends adoption.

Annex A

TITLE 25. ENVIRONMENTAL PROTECTION PART I. DEPARTMENT OF ENVIRONMENTAL PROTECTION

Subpart D. ENVIRONMENTAL HEALTH AND SAFETY

ARTICLE VI. GENERAL HEALTH AND SAFETY CHAPTER 250. ADMINISTRATION OF LAND RECYCLING PROGRAM

Subchapter A. GENERAL PROVISIONS

§ 250.1. Definitions.

* * * * *

MCL—Maximum contaminant level.

MDI—Method detection limit—The

MDL—Method detection limit—The instrumentspecific minimum measured concentration of a substance that can be reported with 99% confidence to be distinguishable from the method blank result.

MSC—Medium-specific concentration.

* * * *

TF—Transfer factor.

Volatile compound—A chemical compound with either a boiling point less than 200° centigrade at 1 atmosphere or a Henry's law constant greater than or equal to 1×10^{-5} atm-m³/mol and a molecular weight less than 200 g/mol, where:

 $\frac{atm = standard \ atmosphere}{m^3 = cubic \ meter} \\ \frac{mol = mole}{g = gram} \\ g/mol = molar \ mass$

§ 250.4. Limits related to PQLs.

(a) The PQLs shall be selected from the PQLs or EQLs specified by the EPA [as EQLs] in the most current version of [the EPA RCRA Manual SW-846 (U.S. EPA, 1990. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. Third Edition. Office of Solid Waste and Emergency Response) for soil listed as "low level soil" and for groundwater listed as "groundwater" in accordance with the following:] EPA's drinking water or solid waste analytical methods.

[(1) For inorganic compounds, the PQLs under this chapter shall be the values listed for methods associated with analysis by Inductively Coupled Plasma (ICP) with the following exceptions:

- (i) For lead, cadmium, arsenic and selenium, values listed for the atomic absorption graphite furnace methods for water shall be used.
- (ii) Mercury shall be the value listed for the cold vapor method.
- (2) For organic compounds, the PQLs shall be the EQLs listed for the GC/Mass spec methods—for example, Method 8240 for volatile organic compounds.
- (b) If the PQL selected under subsection (a) is higher than the MCL or HAL for an organic regulated substance in groundwater, the PQLs shall be derived from the analytical methodologies published under the drinking water program in the most current version of Methods for the Determination of Organic Compounds in Drinking Water (U.S. EPA, 1988, Environmental Monitoring Systems Laboratory, EPA/600/4-88/039) If a PQL determined under this subsection is not below a HAL, the methodologies in subsection (c)(1) or (2) shall be used unless those quantitation limits are higher than the PQL determined under this subsection.
- (c)] (b) For regulated substances when PQLs or EQLs set by the EPA exceed an MCL or HAL or have a health risk that is greater (less protective) than the risk levels set in sections 303(c) and 304(b) and (c) of the act (35 P.S. §§ 6026.303(c) and 6026.304(b) and (c)) [or] and for substances when no EQL has been established by the EPA, the [limits related to the] PQL shall be [the quantitation limits] established by the methodologies in paragraph (1) or (2).
- (1) A level set by multiplying 3.18 by the published method detection limit (MDL) of the most recently approved EPA methodology.
- (2) A level [representing the lowest calibration point that can consistently be determined to have a percent relative standard deviation (%RSD) of less than 30% or correlation coefficient of greater than 0.995 using reagent water] set by multiplying 3.18 by the instrument-specific MDL. If multiple instruments are used, then the PQL is set by averaging the instrument-specific MDLs and multiplying that value by 3.18.
- [(d)] (c) For regulated substances which have no limits related to PQLs identified in subsection [(c)(1)] (b)(1) or (2), a person shall demonstrate attainment under the site-specific standard or the background standard.
- [(e)] (d) When a minimum threshold MSC is used as a Statewide health standard, the minimum threshold MSC is the Statewide health standard regardless of whether it is higher or lower than a quantitation limit established by this section.
- [(f)] (e) Nothing in this section restricts the selection of valid and generally accepted methods to be used to analyze samples of environmental media.

§ 250.6. Public participation.

* * * * *

(c) If a public involvement plan has been initiated, the person proposing remediation shall, at a minimum, [provide] include the following three measures in the plan to involve the public in the development and

- review of the remedial investigation report, risk assessment report, cleanup plan and final report:
- (1) [Public] Provide public access at convenient locations for document review.
- (2) [**Designation of**] **Designate** a single contact person to address questions from the community.
- (3) [A] <u>Use a</u> location near the remediation site for any public hearings and meetings that may be part of the public involvement plan.
- (d) If a public involvement plan has been requested, [it shall be submitted with one of the following:] the person proposing the remediation shall notify the Department and submit the plan to the municipality and the Department prior to its implementation.
- [(1) A remedial investigation report under a sitespecific remediation.
- (2) A baseline environmental report under an SIA cleanup.]
- § 250.10. Measurement of regulated substances in media.

* * * * *

(d) For groundwater where monitoring is being performed at a drinking water well, samples for metals analysis shall be field acidified and unfiltered in accordance with the most current version of [Groundwater Monitoring Guidance Manual] Land Recycling Program Technical Guidance Manual, Appendix A: Groundwater Monitoring Guidance, Department of Environmental Protection, [3610-BK-DEP1973] document number 261-0300-101, or in accordance with an alternative sampling method that accurately measures regulated substances in groundwater.

* * * * *

(Editor's Note: The following rule is proposed to be added and printed in regular type to enhance readability.)

§ 250.12. Professional seal.

Reports submitted to satisfy this subchapter containing information or analysis that constitutes professional geologic or engineering work as defined by the Engineer, Land Surveyor and Geologist Registration Law (63 P.S. §§ 148—158.2) must be sealed by a professional geologist or engineer who is in compliance with that statute.

Subchapter C. STATEWIDE HEALTH STANDARDS § 250.304. MSCs for groundwater.

* * * * *

(c) The MSCs for regulated substances contained in groundwater in aquifers used or currently planned to be used for drinking water or for agricultural purposes are the MCLs as established by the Department or the EPA in § 109.202 (relating to State MCLs, MRDLs and treatment technique requirements). For regulated substances where no MCL has been established, the MSCs are the Lifetime Health Advisory Levels (HAL) set forth in Drinking Water Standards and Health Advisories (DWSHA), EPA Office of Water Publication No. EPA [822-S-12-001 (April 2012 or as revised)] 822-F-18-001 (March 2018 or as revised), except for substances designated in the DWSHA with cancer descriptor (L) "Likely to be carcinogenic above a specific dose but not likely to be carcinogenic below that dose because a key event in

tumor formation does not occur below that dose." New or revised MCLs or HALs promulgated by the Department or the EPA shall become effective immediately for any demonstration of attainment completed after the date the new or revised MCLs or HALs become effective.

* *

- (g) The references referred to in subsection (f) are:
- (1) Lide, D. R., ed. 1996. CRC Handbook of Chemistry and Physics, 77th Edition. CRC Press.

- (18) Riddick, J. A., et al. 1986. Organic Solvents; Physical Properties & Methods of Purification. Techniques of Chemistry. 11th Edition. New York, NY: Wiley-Interscience.
- (19) ATSDR (Agency for Toxic Substances and Disease Registry). 2015. Toxicological Profile for Perfluoroalkyls. Draft for Public Comment. Agency for Toxic Substances and Disease Registry, Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA. Accessed May 2016. http://www.atsdr.cdc.gov/ToxProfiles/tp200.pdf
- (20) Hekster, F.M., R.W. Laane, and P. de Voogt. 2003. Environmental and toxicity effects of perfluoroalkylated substances. Reviews of Environmental Contamination and Toxicology 179:99—121.
- (21) HSDB (Hazardous Substances Data Bank). 2012. U.S. National Library of Medicine, Bethesda, MD. Accessed May 2016. http://toxnet.nlm.nih.gov/ cgi-bin/sis/htmlgen?HSDB.
- (22) Kauck, E.A., and A.R. Diesslin. 1951. Some properties of perfluorocarboxylic acids. Industrial & Engineering Chemistry Research 43(10):2332—2334.
- (23) SRC (Syracuse Research Corporation). 2016. PHYSPROP Database. Accessed May 2016. http:// www.srcinc.com/what-we-do/environmental/scientificdatabases.html.

(24) OECD (Organisation for Economic Cooperation and Development). 2002. Hazard Assessment of Perfluorooctane Sulfonate (PFOS) and its Salts. ENV/JM/RD (2002) 17/FINAL. Report of the Environment Directorate, Joint Meeting of the Chemicals Committee and the Working Party on Chemicals, Pesticides and Biotechnology, Co-operation on Existing Chemicals, Paris, November 21, 2002.

§ 250.305. MSCs for soil.

- (c) For the residential standard, the MSC for regulated substances contained in soil is one of the following:
 - (1) The lowest of the following:
- (i) The ingestion numeric value throughout the soil column to a depth of up to 15 feet from the existing ground surface as determined by the methodology in § 250.306 (relating to ingestion numeric values), using the appropriate default residential exposure assumptions contained in [§ 250.306(e)] § 250.306(d).

*

* * (g) A person conducting a remediation of soils contaminated with [a substance] one or more substances having a secondary MCL, but no toxicological properties listed in Appendix A, Table 5B, will not be required to comply with either the direct contact pathway or the soil-to-groundwater pathway requirements for those substances to protect groundwater in aquifers for drinking water J. The substances shall be subject to the requirements of § 250.311(a) through (f) (relating to evaluation of ecological receptors) with respect to evaluation of ecological receptors.

§ 250.306. Ingestion numeric values.

*

(d) The default exposure assumptions used to calculate the ingestion numeric values are as follows:

		Reside	ential	
	Term	Systemic ¹	Carcinogens ^{2,6}	Nonresidential (Onsite Worker)
THQ	Target Hazard Quotient	1	N/A	1
RfD _o	Oral Reference Dose (mg/kg-day)	Chemical-specific	N/A	Chemical-specific
BW	Body Weight (kg) Soil Groundwater	15 80	N/A	80 80
AT_{nc}	Averaging Time for systemic toxicants (yr) Soil Groundwater	6 30	N/A N/A	25 25
Abs	Absorption (unitless) ³	1	1	1
EF	Exposure Frequency (d/yr) Soil Groundwater	250 350	250 350	180 250
ED	Exposure Duration (yr) Soil Groundwater	6 30	N/A N/A	25 25
IngR	Ingestion Rate Soil (mg/day) GW (L/day)	100 [2] 2.4	N/A N/A	50 [1]1.2

		Resi	dential	
	Term	$Systemic^1$	Carcinogens ^{2,6}	Nonresidential (Onsite Worker)
CF	Conversion Factor Soil (kg/mg) GW (unitless)	1 × 10 ⁻⁶	1 × 10 ⁻⁶	1 × 10 ⁻⁶
TR	Target Risk	N/A	1×10^{-5}	1 × 10 ⁻⁵
CSF _o	Oral Cancer Slope Factor (mg/kg-day)-1	N/A	Chemical-specific	Chemical-specific
AT_c	Averaging Time for carcinogens (yr)	N/A	70	70
IFadj ⁴	Ingestion Factor Soil (mg-yr/kg-day) GW (L-yr/kg day)	N/A	55 [1] <u>1.2</u>	15.6 [0.3] 0.38
AIFadj ⁵	Combined Age-Dependent Adjustment Factor and Ingestion Factor Soil (mg-yr/kg-day) GW (L-yr/kg-day)	N/A	241 [3.23] <u>3.45</u>	N/A
$\mathrm{CSFo_k}$	TCE oral cancer slope factor for kidney cancer (mg/kg/day) ⁻¹		9.3 × 10 ⁻³	
CSFo ₁	TCE oral cancer slope factor for non-Hodgkin lymphoma and liver cancer (mg/kg/day) ⁻¹		3.7×10^{-2}	

Notes:

* * * * *

⁴ The Ingestion Factor for the residential scenario is calculated using the equation $If_{[adj]}\underline{adj} = ED_c \times IR_c/BW_c + ED_a \times IR_a/B[\mathbf{w}]\underline{W}_a$, where $ED_c = 6$ yr, $IR_c = 100$ mg/day for soils and 1 L/day for groundwater, $BW_c = 15$ kg, $ED_a = 24$ yr, $IR_a = 50$ mg/day for soils and $[\mathbf{2}]\underline{2.4}$ L/day for groundwater, and $BW_a = 80$ kg. The ingestion factor for the nonresidential scenario is calculated using the equation $If_{[adj]}\underline{adj} = ED \times IR/BW$, where ED = 25 yr, IR = 50 mg/day for soils and $[\mathbf{1}]$ 1.2 L/day for groundwater, and BW = 80 kg.

 5 The Combined Age-Dependent Adjustment Factor and Ingestion Factor (AIFadj) for the residential scenario is calculated using the equation AIFadj = [(ADAF_{<2} \times ED_{<2}) + (ADAF_{2-6} \times ED_{2-6})] \times IR[\mathbf{c}]_{\mathbf{c}} / BW[\mathbf{c}]_{\mathbf{c}} + [(ADAF_{|\mathbf{c}|\mathbf{c}|\mathbf{c}} \times ED_{|\mathbf{c}|\mathbf{c}|\mathbf{c}|\mathbf{c}} \times ED_{|\mathbf{c}|\mathbf{c}|\mathbf{c}|\mathbf{c}} + (ADAF_{|\mathbf{c}|\mathbf{c}|\mathbf{c}|\mathbf{c}|\mathbf{c}} \times ED_{|\mathbf{c}|\mathbf{c}|\mathbf{c}|\mathbf{c}} + (ADAF_{|\mathbf{c}|\mathbf{c}|\mathbf{c}|\mathbf{c}} \times ED_{|\mathbf{c}|\mathbf{c}|\mathbf{c}|\mathbf{c}})] \times IR[\mathbf{a}]_{\mathbf{a}} / BW[\mathbf{a}]_{\mathbf{a}}, \text{ where } ADAF_{<2} = 10, ED_{<2} = 2 \text{ yr, } ADAF_{2-6} = 3, ED_{2-6} = 4 \text{ yr, } IR[\mathbf{c}]_{\mathbf{c}} = 100 \text{mg/day for soils and } 1 \text{ L/day for groundwater, } BW[\mathbf{c}]_{\mathbf{c}} = 15 \text{ kg, } ADAF_{|\mathbf{c}|\mathbf{c}|\mathbf{c}|\mathbf{c}} = 3, ED_{|\mathbf{c}|\mathbf{c}|\mathbf{c}|\mathbf{c}} = 10 \text{ yr, } ADAF_{|\mathbf{c}|\mathbf{c}|\mathbf{c}|\mathbf{c}} = 14 \text{ yr, } IR[\mathbf{a}]_{\mathbf{a}} = 50 \text{ mg/day for soils and } [\mathbf{2}]_{\mathbf{c}} = 12 \text{ L/day for groundwater, } BW[\mathbf{c}]_{\mathbf{c}} = 10 \text{ mg/day for soils and } BW[\mathbf{c}]_{\mathbf{c}} = 10 \text{ mg/day for groundwater, } BW[\mathbf{c}]_{\mathbf{c}

(e) The residential ingestion numeric value for lead in soil was developed using the [Uptake Biokinetic

(UBK) Model for Lead (version 0.4)] Integrated Exposure Uptake Biokinetic (IEUBK) Model for Lead in Children, Windows® version (IEUBKwin v1.1 build 11) 32-bit version developed by the EPA (U.S. Environmental Protection Agency. ([1990] February 2010) | Uptake Biokinetic (UBK) Model for Lead (version 0.4). U.S. EPA/ECAO. August 1990,] in lieu of the algorithms presented in subsections (a) and (b). Default input values are identified in Appendix A, Table 7. Because the **UBK** J IEUBK model is applicable only to children, the nonresidential ingestion numeric value was calculated according to the method developed by the Society for Environmental Geochemistry and Health (Wixson, B. G. (1991)). The Society for Environmental Geochemistry and Health (SEGH) Task Force Approach to the Assessment of Lead in Soil. Trace Substances in Environmental Health. (11-20),

using the following equations:

$$S = \frac{1000 \left[\left(\frac{T}{G^n} \right) - B \right]}{\delta}$$

using EPA's Adult Lead Methodology (ALM) in accordance with the guidance, exposure factors, equations, and spreadsheets provided in EPA's Recommendations of the Technical Review Workgroup for Lead for an Approach to Assessing Risks Associated with Adult Exposures to Lead in Soil (EPA-540-R-03-001, OSWER Dir # 9285.7-54, January 2003), OLEM Directive 9285.6-56 "Update to the Adult Lead Methodology's Default Baseline Blood Lead Concentration and Geometric Standard Deviation Parameters" (May 2017) and the associated June 14, 2017, version of the Calculations of Preliminary Remediation Goals (PRGs) for Soil in Nonresidential Areas U.S. EPA Technical Review Workgroup for Lead, Adult Lead Committee spreadsheets. Table 7 identi-

fies each of the variables [in this equation] used to calculate the nonresidential ingestion numeric value for lead.

§ 250.307. Inhalation numeric values.

* * * * *

- (g) For a regulated substance which is a carcinogen and is a volatile compound, the numeric value for the inhalation of volatiles from groundwater shall be calculated by using the appropriate residential or nonresidential exposure assumptions from subsection (h) according to the following equations:
- (1) For regulated substances not identified as a mutagen in § 250.301(b):

$$MSC = \frac{TR \times AT_c \times 365 \text{ days/year } \times 24 \text{ hr/day}}{IUR \times ET \times EF \times ED \times TF \times CF}$$

§ 250.308. Soil to groundwater pathway numeric values.

(a) A person may use the soil-to-groundwater pathway numeric values listed in Appendix A, Tables 3B and 4B, as developed using the methods contained in paragraph (1), (2) or (4), may use a concentration in soil at the site which does not produce a leachate in excess of the MSC for groundwater contained in Appendix A, Tables 1 and 2, when subjected to the Synthetic Precipitation Leaching Procedure (Method 1312 of SW-846, Test Methods for Evaluating Solid Waste, promulgated by the U.S. EPA), or may use the soil-to-groundwater pathway soil buffer criteria in subsection (b) or may use the soil-to-groundwater pathway equivalency demonstration in subsection (d).

* * * * *

- (2) For organic compounds, a generic value determined not to produce a concentration in groundwater in the aquifer in excess of the MSC for groundwater as calculated by the equation in paragraph (3).
- (i) For soil not in the zone of groundwater saturation, the generic value shall be calculated by the equation in paragraph (3).
- (ii) For soil in the zone of groundwater saturation, the **[standard] generic numeric value** is 1/10th of the generic value calculated by the equation in paragraph (3).

§ 250.311. Evaluation of ecological receptors.

* * * * *

(b) For purposes of determining impacts on ecological receptors, no additional evaluation is required if the remediation attains a level equal to 1/10th of the value in Appendix A, Tables 3 and 4 or, for substances identified in § 250.305(g), 1/10th of the physical limitation identified in § 250.305(b), except for constituents of potential ecological concern identified in Table 8, or if the criteria in paragraph (1), (2) or (3) are met. Information that supports a determination that no additional evaluation is required shall be documented in the final report.

Subchapter D. SITE-SPECIFIC STANDARD

§ 250.402. Human health and environmental protection goals.

* * * * *

(d) If a person is using the site-specific standard to protect ecological receptors under this subchapter or [in accordance with § 250.311(e)] as a result of selecting § 250.311(e)(4) when ecological receptors cannot be evaluated under the Statewide health standard, the following shall be performed:

* * * * *

(3) Implementation of the selected remedy, which may include mitigation measures under § [230.311(f)] 250.311(f), that is protective of the ecological receptors.

§ 250.404. Pathway identification and elimination.

(a) The person shall use **Department or** Department-approved EPA or ASTM guidance to identify any potential current and future exposure pathways for both human receptors and environmental receptors identified in § 250.402 (relating to human health and environmental protection goals).

* * * * *

§ 250.409. Risk assessment report.

The risk assessment report shall conform to this subchapter and Subchapter F (relating to exposure and risk determinations), and shall include the following unless not required under § 250.405 (relating to when to perform a risk assessment):

(1) [A] Except when submitted in combination with a remedial investigation report, a risk assessment report that [describes] uses site characterization information from an approved remedial investigation report to describe the potential adverse effects, including the evaluation of ecological receptors, under both current and planned future conditions caused by the presence of regulated substances in the absence of any further control, remediation or mitigation measures.

§ 250.410. Cleanup plan.

* * * * *

- (c) When a person proposes a remedy that relies on access to properties owned by third parties, for remediation or monitoring, documentation of cooperation or agreement shall be submitted as part of the cleanup plan.
- (d) A cleanup plan is required when an institutional or engineering control is used as a remedy to address current and future exposure pathways or exposure pathways that existed prior to submitting an NIR.
- (e) A cleanup plan is not required and no remedy is required to be proposed or completed if no current or future exposure pathways exist.

(*Editor's Note*: The following rule is proposed to be added and printed in regular type to enhance readability.)

§ 250.412. Combined reports.

A person does not need prior Department approval of a remedial investigation report if the remedial investigation report is submitted together with either a risk assessment report or a cleanup plan.

Subchapter E. SIA STANDARDS

§ 250.503. Remediation requirements.

* * * * *

(e) A person that changes the use of the property from nonresidential to residential, or changes the use of the property to create substantial changes in exposure conditions to contamination that existed prior to the person's reuse shall notify the Department of the changes and may be required to **amend the baseline environmental report and** implement a remediation plan to address any new imminent, direct or immediate threats to human health and the environment resulting from the changes.

* * * * *

Subchapter F. EXPOSURE AND RISK DETERMINATIONS

§ 250.603. Exposure factors for site-specific standards.

(a) A risk assessment for the site-specific standard shall use site-specific exposure factors under the EPA's [Final Guidelines for Exposure Assessment, 1992 (57 FR 22888—22938)] Exposure Factors Handbook: 2011 Edition, 2011 (EPA/600/R-090/052F) or exposure factors used in the development of the Statewide health standards identified in Subchapter C (relating to Statewide health standards).

* * * * *

§ 250.605. Sources of toxicity information.

- (a) For site-specific standards, the person shall use appropriate reference doses, reference concentrations, cancer slope factors and unit risk factors identified in Subchapter C (relating to Statewide health standards), unless the person can demonstrate that published data, available from one of the following sources, provides more current reference doses, reference concentrations, cancer slope factors or unit risk factors:
 - (1) Integrated Risk Information System (IRIS).
- (2) United States Environmental Protection Agency, National Center for Environmental Assessment (NCEA) Provisional Peer-Reviewed Toxicity Values (PPRTV).
 - (3) Other sources:
- $\begin{array}{cccc} (i) \ Health & Effects & Assessment & Summary & Tables \\ (HEAST) & & \end{array}$
- (ii) Agency for Toxic Substances and Disease Registry (ATSDR) Toxicological Profiles.
- (iii) California EPA, California Cancer Potency Factors and Chronic Reference Exposure Levels.
- (iv) EPA criteria documents, including drinking water criteria documents, drinking water health advisory summaries, ambient water quality criteria documents and air quality criteria documents.

(v) EPA Human Health Benchmarks for Pesticides (HHBP)

(vi) EPA PPRTV Appendix

(b) If no toxicity values are available from sources identified in subsection (a), the person may use the background standard or meet one of the following:

Subchapter G. DEMONSTRATION OF ATTAINMENT

§ 250.707. Statistical tests.

* * * * *

(b) The following statistical tests may be accepted by the Department to demonstrate attainment of the Statewide health standard. The statistical test for soil shall apply to each distinct area of contamination. The statistical test for groundwater will apply to each compliance monitoring well. Testing shall be performed individually for each regulated substance identified in the final report site investigation as being present at the site for which a person wants relief from liability under the act. The application of a statistical method must meet the criteria in subsection (d).

(1) For soil attainment determination at each distinct area of contamination, subparagraph (i), (ii) or (iii) shall be met in addition to the attainment requirements in §§ 250.702 and 250.703 (relating to attainment requirements; and general attainment requirements for soil).

* * * * *

- (ii) As applied in accordance with EPA approved methods on statistical analysis of environmental data, as identified in subsection (e), the 95% UCL of the arithmetic mean shall be at or below the [Statewide health standard] MSC.
- (iii) For sites with a petroleum release where full site characterization, as defined in § 250.204(b) (relating to final report), has not been done in association with an excavation remediation, attainment of the Statewide health standard shall be demonstrated using the following procedure:
- (A) For sites regulated under Chapter 245 (relating to administration of the storage tank and spill prevention program) where there is localized contamination as defined in the document "Closure Requirements for Underground Storage Tank Systems" (DEP technical document 2530-BK-DEP2008), samples shall be taken in accordance with that document.
- (B) For sites not covered by clause (A), including all sites being remediated under an NIR under this chapter, samples shall be taken from the bottom and sidewalls of the excavation in a biased fashion that concentrates on areas where any remaining contamination above the Statewide health standard would most likely be found. The samples shall be taken from these suspect areas based on visual observation and the use of field instruments. If a sufficient number of samples has been collected from all suspect locations and the minimum number of samples has not been collected, or if there are no suspect areas, the locations to meet the minimum number of samples shall be based on a random procedure. The number of sample points required shall be determined in the following way:
- (I) For 250 cubic yards or less of excavated contaminated soil, five samples shall be collected.
- (II) For each additional 100 cubic yards of excavated contaminated soil, one sample shall be collected.
- (III) For excavations involving more than 1,000 cubic yards of contaminated soil, the remediator shall identify the number and locations of samples in a confirmatory sampling plan submitted to the Department. The remediator shall obtain the Department's approval of the confirmatory sampling plan prior to conducting attainment sampling.
- (IV) Where water is encountered in the excavation and no obvious contamination is observed or indicated, soil samples collected just above the soil/water interface shall be equal to or less than the applicable Statewide health MSC determined by § 250.308(a)(2)(ii) (relating to soil to groundwater pathway numeric values).
- (V) Where water is encountered in the excavation and no obvious contamination is observed or indicated, a minimum of two samples shall be collected from the water surface in the excavation.

- (VI) For sites where there is a release to surface soils resulting in excavation of 50 cubic yards or less of contaminated soil, samples shall be collected as described in this clause, except that two samples shall be collected.
- (C) All sample results shall be equal to or less than the applicable Statewide health MSC as determined using Tables 1—4 and 6 in Appendix A.
- (D) A vapor intrusion analysis is not necessary if the requirements of § 250.707(b)(1)(iii) are met in addition to the following:
- (I) At least one soil sample is collected on the sidewall nearest an inhabited building within the appropriate proximity distance to a potential vapor intrusion source and there are not substantially higher field instrument readings elsewhere.
- (II) Observations of obvious contamination and the use of appropriate field screening instruments verify that contamination has not contacted or penetrated the foundation of an inhabited building.
- (III) Groundwater contamination has not been identified as a potential vapor intrusion concern.
- (2) For groundwater attainment determination at each compliance monitoring well, subparagraph (i) or (ii) shall be met in addition to the attainment requirements in § 250.702 and § 250.704 (relating to general attainment requirements for groundwater).

* * * * *

Table 1 - Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater Appendix A

			Used A	Used Aquifers		2	3
Regulated Substance	CASRN	TDS ≤ 2	TDS ≤ 2500 mg/L	TDS > 2	TDS > 2500 mg/L	Nonuse Aquirers	Aquirers
		æ	NR	ĸ	NR	ď	NR
ACENAPHTHENE	83-32-9	[2,500] G 2,100	S 008'E	S 008'E	3,800 S	3'800 S	3,800 S
ACENAPHTHYLENE	208-96-8	[2,500] G 2,100	[7,000] G 5,800	16,000 S	16,000 S	16,000 S	16,000 S
АСЕРНАТЕ	30560-19-1	[84] <u>42</u> G	[390] <u>120</u> G	[8,400] G 4,200	[39,000] G 12,000	[84] <u>42</u> G	[390] <u>120</u> G
ACETALDEHYDE	75-07-0	N 61	N 62	1,900 N	N 006,7	N 61	N 62
ACETONE	67-64-1	[38,000] G 31,000	[110,000] G 88,000	[3,800,000 G] 3,100,000	[11,000,00 G 0] 8,800,000	[380,000] G 310,000	1,100,000] 880,000
ACETONITRILE	75-05-8	130 N	230 N	13,000 N	53,000 N	1,300 N	5,300 N
ACETOPHENONE	98-86-2	[4,200] G 3,500	[12,000] G <u>9,700</u>	[420,000] G 350,000	[1,200,000 G] 970,000	[4,200] G 3,500	[12,000] G 9,700
ACETYLAMINOFLUORENE, 2- (2AAF)	53-96-3	[0.19] <u>0.17</u> G	[0.89] <u>0.72</u> G	[19] <u>17</u> G	[89] <u>72</u> G	[190] <u>170</u> G	[890] <u>720</u> G
ACROLEIN	107-02-8	0.042 N	0.18 N	4.2 N	18 N	0.42 N	1.8 N
ACRYLAMIDE	79-06-1	0.19 N	2.5 N	N 61	250 N	N 61.0	2.5 N
ACRYLIC ACID	79-10-2	2.1 N	N 8.8	210 N	880 N	210 N	N 088
ACRYLONITRILE	107-13-1	0.72 N	3.7 N	72 N	370 N	72 N	370 N
ALACHLOR	15972-60-8	2 M	2 M	M 200	200 M	2 M	2 M
ALDICARB	116-06-3	3 M	3 M	300 M	300 M	3,000 M	3,000 M
ALDICARB SULFONE	1646-88-4	2 M	2 M	M 200	200 M	2 M	2 M
ALDICARB SULFOXIDE	1646-87-3	4 M	4 M	M 004	400 M	M 4	4 M
ALDRIN	309-00-2	[0.043] G 0.038	[0.2] <u>0.16</u> G	[4.3] <u>3.8</u> G	[20] <u>16</u> G	20 S	20 S
ALLYL ALCOHOL	107-18-6	0.21 N	N 88.0	21 N	N 88	21 N	N 88
AMETRYN	834-12-8	H 09	H 09	H 000'9	Н 000'9	H 09	H 09
AMINOBIPHENYL, 4-	92-67-1	[0.035] G 0.031	[0.16] 0.13 G	[3.5] <u>3.1</u> G	[16] <u>13</u> G	[32] <u>34</u> G	[160] <u>130</u> G
AMITROLE	61-82-5	ව <u>69.0</u> [87.0]	[3.6] <u>2.9</u> G	5 69 [84]	[3 60] 500	5 069 [084]	[3,600] G 2,900
AMMONIA	7664-41-7	30,000 H	30,000 H	3,000,000 H	3,000,000 H	30,000 H	30,000 H
AMMONIUM SULFAMATE	7773-06-0	2,000 H	2,000 H	200,000 H	200,000 H	2,000 H	2,000 H
ANILINE	62-53-3	2.1 N	8.8 N	210 N	880 N	2.1 N	8.8 N
ANTHRACENE	120-12-7	S 99	S 99	S 99	S 99	S 99	S 99

All concentrations in µg/L
R = Residential
R = Residential
N = Inhalation
R = Residential
N = Inhalation
S = Aqueous so
NR = Non-Residential
G = Ingestion
THMs – The values listed for trihalomethanes (THMs) are the total for all THMs combined.
HAAs – The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.

PFOA and PFOS values listed are for individual or total combined.

Table 1 - Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater Appendix A

			Used A	Used Aquifers		2	3
Regulated Substance	CASRN	z ≥ sat	2500 mg/L	TDS > 2	TDS > 2500 mg/L	Nonuse Aquilers	aduners
		~	NR	ĸ	NR	~	NR
ATRAZINE	1912-24-9	3 M	3 M	300 M	300 M	3 M	3 M
AZINPHOS-METHYL (GUTHION)	86-50-0	[130] <u>52</u> G	[350] <u>150</u> G	[13,000] G <u>5,200</u>	[32,000] [S 15,000] G	[130] <u>52</u> G	[350] <u>150</u> G
BAYGON (PROPOXUR)	114-26-1	3 H	3 H	300 H	300 H	3,000 H	3,000 H
BENOMYL	17804-35-2	[2,000] [S 270] G	[2,000] [S 1,100] G	2,000 S	2,000 S	[2,000] [S 270] G	[2,000] [S 1,100] G
BENTAZON	25057-89-0	200 H	200 H	20,000 H	20,000 H	200 H	200 H
BENZENE	71-43-2	2 M	2 W	200 M	200 M	200 M	200 M
BENZIDINE	92-87-5	[0.00098] G 0.00092	[0.015] G 0.012	[0.098] G 0.092	[1.5] <u>1.2</u> G	[0.98] 0.92 G	[15] <u>12</u> G
BENZO[A]ANTHRACENE	56-55-3	[0.32] <u>0.3</u> G	[4.9] 3.9 G	11 S	11 S	11 S	11 S
BENZO[A]PYRENE	50-32-8	0.2 M	0.2 M	3.8 S	3.8 S	3.8 S	3.8 S
BENZO[B]FLUORANTHENE	205-99-2	[0.19] <u>0.18</u> G	1.2 S	1.2 S	1.2 S	1.2 S	1.2 S
BENZO[GHI]PERYLENE	191-24-2	0.26 S	0.26 S	0.26 S	0.26 S	0.26 S	0.26 S
BENZO[K]FLUORANTHENE	207-08-9	[0.19] 0.18 G	S 25.0	0.55 S	0.55 S	S 55.0	0.55 S
BENZOIC ACID	65-85-0	[170,000] G 140,000	[470,000] G 390,000	2,700,000 S	2,700,000 S	[170,000] G 140,000	[470,000] G 390,000
BENZOTRICHLORIDE	2-20-86	[0.056] G 0.05	[0.26] <u>0.21</u> G	[5.6] <u>5</u> G	[26] <u>21</u> G	5 5 [95]	[260] <u>21</u> G
BENZYL ALCOHOL	100-51-6	[4,200] G 3,500	[12,000] G 9,700	[420,000] G 350,000	[1,200,000 G 1 970,000	[4,200] G 3,500	[12,000] G 9,700
BENZYL CHLORIDE	100-44-7	L N	5.1 N	100 N	510 N	100 N	510 N
BETA PROPIOLACTONE	57-57-8	0.012 N	0.063 N	1.2 N	6.3 N	0.12 N	0.63 N
BHC, ALPHA-	319-84-6	[0.12] <u>0.1</u> G	[0.54] <u>0.43</u> G	[12] <u>10</u> G	[54] <u>43</u> G	[120] <u>100</u> G	[540] <u>430</u> G
BHC, BETA-	319-85-7	[0.41] <u>0.36</u> G	[1.9] <u>1.5</u> G	[41] <u>36</u> G	100 S	S 001	100 S
BHC, GAMMA (LINDANE)	6-68-89	0.2 M	0.2 M	20 M	20 M	M 002	200 M
BIPHENYL, 1,1-	92-52-4	[91] <u>0.84</u> [G] I	[430] <u>3.5</u> [G]] N	[7,200] <u>84</u> [S] N	[7,200] [S 350] N	[7,200] <u>84</u> [S]	[7,200] [S 350] N
BIS(2-CHLOROETHOXY)METHANE	111-91-1	[130] <u>100</u> G	9 <u>067</u> [098]	[13,000] G 10,000	[35,000] G 29,000	[130] <u>100</u> G	[350] <u>290</u> G
BIS(2-CHLOROETHYL)ETHER	111-44-4	0.15 N	N 92.0	15 N	N 92	15 N	V 92
BIS(2-CHLORO-ISOPROPYL)ETHER	108-60-1	Н 008	H 00E	30,000 H	30,000 H	30,000 H	30,000 H

N = Inhalation S = Aqueous solubility cap M = Maximum Contaminant Level H = Lifetime health advisory level G = Ingestion All concentrations in µg/L R = Residential

NR = Non-Residential G = Ingestion
THMs – The values listed for trihalomethanes (THMs) are the total for all THMs combined.
HAAs – The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.

PFOA and PFOS values listed are for individual or total combined.

Table 1 - Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater Appendix A

			Used A	Used Aquifers		;	
Regulated Substance	CASRN	TDS ≤ 2	≤ 2500 mg/L	TDS > 2	TDS > 2500 mg/L	Nonuse Aquiters	Aquifers
		œ	NR	R	NR	æ	NR
BIS(CHLOROMETHYL)ETHER	542-88-1	N 62000.0	0.004 N	N 620.0	0.4 N	N 620.0	N 4.0
BIS[2-ETHYLHEXYL] PHTHALATE	117-81-7	W 9	W 9	290 S	290 S	290 S	290 S
BISPHENOL A	80-05-7	[2,100] G 1,700	[5,800] G 4,900	120,000 S	120,000 S	120,000 S	120,000 S
BROMACIL	314-40-9	H 02	H 02	7,000 H	7,000 H	H 02	H 02
BROMOBENZENE	108-86-1	0.06 H	0.00 H	9I	H 91	0.06 H	0.06 H
BROMOCHLOROMETHANE	74-97-5	H 06	H 06	H 000'6	H 000'6	H 06	H 06
BROMODICHLOROMETHANE (THM)	75-27-4	80 M	80 M	8,000 M	8,000 M	80 M	80 M
BROMOMETHANE	74-83-9	10 H	10 H	1,000 H	1,000 H	1,000 H	1,000 H
BROMOXYNIL	1689-84-5	[830] <u>6.3</u> G	[2,300] <u>26</u> G	[83,000] G	[130,000] [S 2,600] G	[830] <u>6.3</u> G	[2,300] <u>26</u> G
BROMOXYNIL OCTANOATE	1689-99-2	[80] <u>6.3</u> [S	[80] <u>26</u> [S	80 S	S 08	S 08	80 S
		. O	. O				
BUTADIENE, 1,3-	106-99-0	[0.21] <u>1.1</u> G	[1] <u>4.5</u> G	[21] <u>110</u> G	[100] <u>450</u> G	[21] <u>110</u> G	[100] <u>450</u> G
BUTYL ALCOHOL, N-	71-36-3	[4,200] G 3,500	[12,000] G <u>9,700</u>	[420,000] G 350,000	[1,200,000 G] <u>970,000</u>	[42,000] G 35,000	[120,000] G <u>97,000</u>
BUTYLATE	2008-41-5	400 H	400 H	40,000 H	40,000 H	400 H	400 H
BUTYLBENZENE, N-	104-51-8	[2,100] G 1,700	[5,800] G 4,900	15,000 S	15,000 S	[2,100] G 1,700	[5,800] G 4,900
BUTYLBENZENE, SEC-	135-98-8	[4,200] G 3,500	[12,000] G 9,700	17,000 S	17,000 S	[4,200] G 3,500	[12,000] G 9,700
BUTYLBENZENE, TERT-	9-90-86	[4,200] G 3,500	[12,000] G 9,700	30,000	30°00°	[4,200] G 3,500	[12,000] G 9,700
BUTYLBENZYL PHTHALATE	2-89-58	[380] <u>340</u> G	[1,800] G 1,400	2,700 S	2,700 S	2,700 S	2,700 S
CAPTAN	133-06-2	[320] 280 G	S 009	S 009	S 009	S 009	S 009
CARBARYL	63-25-2	[4,200] G 3,500	[12,000] G 9,700	120,000 S	120,000 S	120,000 S	120,000 S
CARBAZOLE	86-74-8	[37] <u>33</u> G	[170] <u>140</u> G	1,200 S	1,200 S	[37] <u>33</u> [S] <u>G</u>	[170] <u>140</u> [S]
CARBOFURAN	1563-66-2	40 M	40 M	4,000 M	4,000 M	40 M	40 M
CARBON DISULFIDE	75-15-0	1,500 N	6,200 N	150,000 N	620,000 N	1,500 N	6,200 N

All concentrations in µg/L
R = Residential
R = Residential
N = Inhalation
R = Residential
N = Inhalation
S = Aqueous so
NR = Non-Residential
G = Ingestion
THMs – The values listed for trihalomethanes (THMs) are the total for all THMs combined.
HAAs – The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.

PFOA and PFOS values listed are for individual or total combined.

Table 1 - Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater Appendix A

			/ ped /	Used Aquifers		2	
Regulated Substance	CASRN	TDS ≤ 2	≤ 2500 mg/L	TDS > 2	TDS > 2500 mg/L	Nonuse Aquirers	Aquirers
		2	NR	ĸ	NR	ď	NR
CARBON TETRACHLORIDE	56-23-5	2 M	2 M	200 M	200 M	20 M	20 M
CARBOXIN	5234-68-4	H 002	700 H	70,000 H	70,000 H	H 002	H 002
CHLORAMBEN	133-90-4	100 H	100 H	10,000 H	10,000 H	100 H	100 H
CHLORDANE	57-74-9	2 M	2 M	S 99	S 99	S 99	S 99
CHLORO-1,1-DIFLUOROETHANE, 1-	75-68-3	110,000 N	440,000 N	1,400,000 S	1,400,000 S	110,000 N	440,000 N
CHLORO-1-PROPENE, 3- (ALLYL CHLORIDE)	107-05-1	2.1 N	8.8 N	N 012	N 088	210 N	N 088
CHLOROACETALDEHYDE	107-20-0	2.4 G	[11] <u>10</u> G	240 G	[1,100] G 1,000	2.4 G	[11] <u>10</u> G
[CHLOROACETOPHENONE, 2-]	[532-27-4]	[1.3] [G]	[3.5] [G	[130] [G]	[350] [G	[1,300] [G 1	[3,500] [G 1
CHLOROANILINE, P-	106-47-8	[3.7] <u>3.3</u> G	[17] <u>14</u> G	[370] <u>330</u> G	[1,700] G 1,400	[3.7] <u>3.3</u> G	[17] <u>14</u> G
CHLOROBENZENE	108-90-7	100 M	100 M	10,000 M	10,000 M	10,000 M	10,000 M
CHLOROBENZILATE	510-15-6	[6.6] <u>5.9</u> G	[31] <u>25</u> G	<u> </u>	[3,100] G 2,500	[6,600] G 5,900	13,000 S
CHLOROBUTANE, 1-	109-69-3	[1,700] G 1,400	[4,700] G 3,900	[170,000] G 140,000	[470,000] G 390,000	[1,700] G 1,400	[4,700] G 3,900
CHLORODIBROMOMETHANE (THM)	124-48-1	80 M	80 M	8,000 M	8,000 M	8,000 M	8,000 M
CHLORODIFLUOROMETHANE	75-45-6	110,000 N	440,000 N	2,900,000 S	2,900,000 S	110,000 N	440,000 N
CHLOROETHANE	75-00-3	[250] [G <u>21,000</u>]	[1,200] [G <u>88,000</u>]	[25,000] [G <u>2,100,000</u>]	[20,000] [G <u>5,700,000</u>]	[25,000] [2,100,000 G	[120,000] [5,700,000 G
		ZI	ZI	N	SI	_ Z	_ si
CHLOROFORM (THM)	62-99-29	80 M	80 M	8,000 M	8,000 M	800 M	800 M
CHLORONAPHTHALENE, 2-	91-58-7	[3,300] G 2,800	[9,300] G	12,000 S	12,000 S	[3,300] G 2,800	[9,300] G 7,800
CHLORONITROBENZENE, P.	100-00-5	[42] <u>4.2</u> [G]	[120] <u>18</u> [G] <u>N</u>	[4,200] [G <u>420</u>] <u>N</u>	[12,000] [G <u>1,800</u>] <u>N</u>	[42] <u>4.2</u> [G]	[120] <u>18</u> [G] I N
CHLOROPHENOL, 2-	92-22-8	40 H	40 H	4,000 H	4,000 H	40 H	40 H
CHLOROPRENE	126-99-8	0.16 N	0.83 N	N 91	N E8	16 N	83 N
CHLOROPROPANE, 2-	75-29-6	210 N	N 088	21,000 N	N 000'88	210 N	880 N

N = Inhalation S = Aqueous solubility cap All concentrations in µg/L
R = Residential
R = Residential
N = Inhalation
R = Residential
N = Inhalation
S = Aqueous so
NR = Non-Residential
G = Ingestion
THMs – The values listed for trihalomethanes (THMs) are the total for all THMs combined.
HAAs – The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.

PFOA and PFOS values listed are for individual or total combined.

Table 1 - Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater Appendix A

			Used A	Used Aquifers		1	
Regulated Substance	CASRN	TDS ≤ 2	2500 mg/L	TDS > 2	TDS > 2500 mg/L	Nonuse Aquilers	aduners
		ď	NR	œ	NR	œ	NR R
CHLOROTHALONIL	1897-45-6	[240] <u>38</u> G	[600] <u>160</u> [S	S 009	S 009	[240] <u>38</u> G	[600] 160 [S
			¬ Ø				_ (J)
CHLOROTOLUENE, O-	95-49-8	100 H	100 H	10,000 H	10,000 H	100 H	100 H
CHLOROTOLUENE, P-	106-43-4	100 H	100 H	10,000 H	10,000 H	100 H	100 H
CHLORPYRIFOS	2921-88-2	2 H	2 H	200 H	200 H	2 H	2 H
CHLORSULFURON	64902-72-3	[2,100] G 690	[5,800] G 1,900	[190,000] [S 69,000]	190,000 [S	[2,100] G 690	[5,800] G 1,900
CHLORTHAL-DIMETHYL (DACTHAL) (DCPA)	1861-32-1	H 02	70 H	200 S	200 S	200 S	S 009
CHRYSENE	218-01-9	[1.9] <u>1.8</u> G	1.9 S	1.9 S	1.9 S	1.9 S	1.9 S
CRESOL(S)	1319-77-3	1,300 N	5,300 N	130,000 N	530,000 N	130,000 N	530,000 N
CRESOL, DINITRO-0-,4,6-	534-52-1	[3.3] <u>2.8</u> G	[9.3] <u>7.8</u> G	[330] <u>280</u> G	5 <u>082</u> [066]	[3,300] G 280	[9,300] G 780
CRESOL, O- (METHYLPHENOL, 2-)	95-48-7	[2,100] G 1,700	[5,800] G 4,900	[210,000] G 170,000	[580,000] G 490,000	[210,000] G 170,000	[580,000] G 490,000
CRESOL, M (METHYLPHENOL, 3-)	108-39-4	[2,100] G	[5,800] G	[210,000] G	[580,000] G	[2,100,000 G	2,500,000 S
		1,700	4,300	170,000	430,000	1,700,000	
CRESOL, P (METHYLPHENOL, 4-)	106-44-5	[210] <u>170</u> G	[580] <u>490</u> G	[21,000] G 17,000	[58,000] G 49,000	[210,000] G 170,000	[580,000] G 490,000
CRESOL, P-CHLORO-M-	29-20-2	[4,200] G 3,500	[12,000] G 9,700	[420,000] G 350,000	[1,200,000 G] 970,000	[4,200] G 3,500	[12,000] G 9,700
CROTONALDEHYDE	4170-30-3	[0.38] <u>0.34</u> G	[1.8] <u>1.4</u> G	[38] <u>34</u> G	[180] <u>140</u> G	[38] <u>34</u> G	[180] 140 G
CROTONALDEHYDE, TRANS-	123-73-9	[0.38] <u>0.34</u> G	[1.8] <u>1.4</u> G	[38] <u>34</u> G	[180] <u>140</u> G	[38] <u>34</u> G	[180] <u>140</u> G
CUMENE (ISOPROPYL BENZENE)	98-82-8	840 N	3,500 N	20,000 S	20,000 S	20,000 S	20,000 S
CYANAZINE	21725-46-2	1 H	1 H	100 H	100 H	1 H	1 H
CYCLOHEXANE	110-82-7	13,000 N	53,000 N	55,000 S	25,000 S	13,000 N	53,000 N
CYCLOHEXANONE	108-94-1	1,500 N	6,200 N	150,000 N	620,000 N	1,500 N	6,200 N
CYFLUTHRIN	68359-37-5	1 S	1 S	1 S	1 S	1 S	1 S
CYROMAZINE	66215-27-8	[310] G 17,000	[880] G 49,000	[31,000] G 1,700,000	[88,000] G 4,900,000	[310] G 17,000	[880] G 49,000
DDD, 4,4'-	72-54-8	[3] <u>2.7</u> G	[14] <u>11</u> G	160 S	160 S	160 S	160 S
DDE, 4,4'-	72-55-9	[2.1] 1.9 G	[10] <u>8</u> G	40 S	40 S	40 S	40 S
DDT, 4,4'-	50-29-3	[2.1] <u>1.9</u> G	5.5 S	5.5 S	5.5 S	5.5 S	5.5 S

M = Maximum Contaminant Level H = Lifetime health advisory level G = Ingestion All concentrations in µg/L R = Residential

N = Inhalation S = Aqueous solubility cap

NR = Non-Residential G = Ingestion
THMs – The values listed for trihalomethanes (THMs) are the total for all THMs combined.
HAAs – The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.

PFOA and PFOS values listed are for individual or total combined.

Table 1 - Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater Appendix A

			Used A	Used Aquifers		:	:
Regulated Substance	CASRN	TDS ≤ 2	≤ 2500 mg/L	TDS > 2500 mg/L	:00 mg/L	Nonuse Aquiters	Aquifers
,		2	NR	2	NR	ď	NR
DI(2-ETHYLHEXYL)ADIPATE	103-23-1	400 M	400 M	40,000 M	40,000 M	200,000 S	200,000 S
DIALLATE	2303-16-4	[12] <u>11</u> G	[56] <u>45</u> G	[1,200] G 1,100	[5,600] G 4,500	[12,000] G 11,000	40,000 S
DIAMINOTOLUENE, 2,4-	2-08-56	[0.18] <u>0.16</u> G	[0.85] <u>0.68</u> G	[18] <u>16</u> G	[85] <u>68</u> G	[180] <u>160</u> G	[850] 680 G
DIAZINON	333-41-5	1 H	1 H	100 H	100 H	т Т	T T
DIBENZO[A,H]ANTHRACENE	53-70-3	[0.055] G 0.052	S 9'0	S 9:0	S 9:0	S 9:0	S 9:0
DIBENZOFURAN	132-64-9	[42] <u>35</u> G	[120] <u>97</u> G	[4,200] G 3,500	4,500 S	[4,500] [S 3,500] G	4,500 S
DIBROMO-3-CHLOROPROPANE, 1,2-	96-12-8	0.2 M	0.2 M	20 M	20 M	20 M	20 M
DIBROMOBENZENE, 1,4-	106-37-6	[420] <u>350</u> G	01,200] 9 <u>70</u>	20,000 S	20,000 S	[420] <u>350</u> G	[1,200] G 970
DIBROMOETHANE, 1,2- (ETHYLENE DIBROMIDE)	106-93-4	0.05 M	M 50.0	M 5	2 M	W 5	2 M
DIBROMOMETHANE	74-95-3	8.4 N	N 98	N 048	3,500 N	N 048	3,500 N
DIBUTYL PHTHALATE, N-	84-74-2	[4,200] G <u>3,500</u>	[12,000] G <u>9,700</u>	[400,000] [S 350,000] <u>6</u>	400,000 S	400,000 S	400,000 S
DICAMBA	1918-00-9	4,000 H	4,000 H	400,000 H	400,000 H	4,000 H	4,000 H
DICHLOROACETIC ACID (HAA)	7 [6]9 -43-6	60 M	M 09	M 000'9	6,000 M	M 09	W 09
DICHLORO-2-BUTENE, 1,4-	764-41-0	0.012 N	N 90.0	1.2 N	N 9	0.012 N	0.06 N
DICHLORO-2-BUTENE, TRANS-1,4-	110-57-6	0.012 N	N 90.0	1.2 N	0 N	0.012 N	0.06 N
DICHLOROBENZENE, 1,2-	95-50-1	600 M		60,000 M	60,000 M	60,000 M	60,000 M
DICHLOROBENZENE, 1,3-	541-73-1	600 H	Н 009	Н 000'09	60,000 H	H 000'09	H 000'09
DICHLOROBENZENE, P-	106-46-7	75 M	M 52	N 005,7	7,500 M	7,500 M	7,500 M
DICHLOROBENZIDINE, 3,3'-	91-94-1	[1.6] <u>1.4</u> G	5 9[9 :2]	[160] <u>140</u> G	5 <u>009</u> [094]	[1,600] G 1,400	3,100 S
DICHLORODIFLUOROMETHANE (FREON 12)	75-71-8	1,000 H	1,000 H	100,000 H	100,000 H	100,000 H	100,000 H
DICHLOROETHANE, 1,1-	75-34-3	31 N	N 091	3,100 N	16,000 N	310 N	1,600 N
DICHLOROETHANE, 1,2-	107-06-2	5 M	2 M	200 M	500 M	20 M	20 M
DICHLOROETHYLENE, 1,1-	75-35-4	7 M	7 M	700 M	700 M	70 M	70 M
DICHLOROETHYLENE, CIS-1,2-	156-59-2	70 M	M 02	7,000 M	7,000 M	M 002	700 M
DICHLOROETHYLENE, TRANS-1,2-	156-60-5	100 M	100 M	10,000 M	10,000 M	1,000 M	1,000 M
DICHLOROMETHANE (METHYLENE CHLORIDE)	75-09-2	5 M	5 M	500 M	500 M	500 M	200 M

All concentrations in µg/L
R = Residential
R = Residential
N = Lifetime health advisory level
S = Aqueous so
NR = Non-Residential
G = Ingestion
THMs — The values listed for trihalomethanes (THMs) are the total for all THMs combined.
HAAs — The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.

PFOA and PFOS values listed are for individual or total combined.

Table 1 - Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater Appendix A

			Used A	Used Aquifers		:	
Regulated Substance	CASRN	TDS ≤ 2	≤ 2500 mg/L	TDS > 2	TDS > 2500 mg/L	Nonuse	Nonuse Aquiters
		2	NR	2	NR	œ	NR
DICHLOROPHENOL, 2,4-	120-83-2	20 H	20 H	2,000 H	2,000 H	20,000 H	20,000 H
DICHLOROPHENOXYACETIC ACID, 2,4- (2,4-D)	2-52-46	M 02	M 02	7,000 M	M 000,7	M 000,07	70,000 M
DICHLOROPROPANE, 1,2-	78-87-5	2 M	5 M	200 M	200 M	20 M	20 M
DICHLOROPROPENE, 1,3-	542-75-6	[7.3] <u>6.5</u> G	[34] <u>27</u> G	[730] <u>650</u> G	[3,400] G 2,700	[730] <u>650</u> G	[3,400] G 2,700
DICHLOROPROPIONIC ACID, 2,2- (DALAPON)	0-66-52	200 M	200 M	20,000 M	20,000 M	20,000 M	20,000 M
DICHLORVOS	62-73-7	[2.5] <u>2.2</u> G	[12] <u>9.4</u> G	[250] <u>220</u> G	[1,200] G <u>940</u>	[2.5] <u>2.2</u> G	[12] <u>9.4</u> G
DICYCLOPENTADIENE	9-62-77	0.63 N	2.6 N	N 69	N 09Z	N E9.0	2.6 N
DIELDRIN	60-57-1	[0.046] G 0.041	[0.21] <u>0.17</u> G	[4.6] <u>4.1</u> G	[21] <u>17</u> G	[46] <u>41</u> G	170 <u>S</u>
DIETHYL PHTHALATE	84-66-2	[33,000] G 28,000	[93,000] G 78,000	1,100,000 S	1,100,000 S	1,100,000 S	1,100,000 S
DIFLUBENZURON	35367-38-5	200 S	200 S	200 S	S 00Z	200 S	200 S
DIISOPROPYL METHYLPHOSPHONATE	1445-75-6	H 009	H 009	60,000 H	H 000'09	Н 009	H 009
DIMETHOATE	60-51-5	[8.3] <u>76</u> G	[23] <u>210</u> G	[830] G 7,600	[2,300] G 21,000	[8,300] G 76,000	[23,000] G 210,000
DIMETHOXYBENZIDINE, 3,3-	119-90-4	[0.46] <u>0.41</u> G	[2] <u>1.7</u> G	[46] <u>41</u> G	[210] <u>170</u> G	[460] <u>410</u> G	[2,100] G 1,700
DIMETHRIN	70-38-2	36 S	36 S	S 98	S 98	S 98	36 S
DIMETHYLAMINOAZOBENZENE, P-	60-11-7	[0.16] <u>0.14</u> G	[0.74] <u>0.59</u> G	[16] <u>14</u> G	[74] <u>59</u> G	[160] <u>140</u> G	[740] <u>590</u> G
DIMETHYLANILINE, N,N-	121-69-7	[83] <u>24</u> G	[230] <u>100</u> G	[8,300] G <u>2,400</u>	[23,000] G 10,000	[8,300] G <u>2,400</u>	[23,000] G 10,000
DIMETHYLBENZIDINE, 3,3-	119-93-7	[0.066] G 0.059	[0.31] <u>0.25</u> G	[6.6] <u>5.9</u>	[31] <u>25</u> G	5 <u>65</u> [99]	[310] <u>250</u> G
DIMETHYL METHYLPHOSPHONATE	9-62-952	100 H	100 H	10,000 H	10,000 H	100 H	100 H
DIMETHYLPHENOL, 2,4-	105-67-9	ල <u>මෙම</u> [830]	[2,300] G 1,900	[83,000] © <u>69,000</u>	[230,000] G 190,000	[830,000] 690,000	[2,300,000 G] 1.900.000
DINITROBENZENE, 1,3-	0-9-62-0	т Т	T -	100 H	100 H	1,000 H	1,000 H
DINITROPHENOL, 2,4-	51-28-5	5 <u>69</u> [83]	[230] <u>190</u> G	[8,300] G 6,900	[23,000] G 19,000	000'69 5 (000'69	[230,000] G 190,000
DINITROTOLUENE, 2,4-	121-14-2	[2.4] <u>2.1</u> G	[11] <u>8.8</u> G	[240] <u>210</u> G	[1,100] G <u>880</u>	[2,400] G <u>2,100</u>	[11,000] G <u>8,800</u>

All concentrations in µg/L
R = Residential
R = Residential
N = Inhalation
R = Residential
N = Inhalation
S = Aqueous so
NR = Non-Residential
G = Ingestion
THMs – The values listed for trihalomethanes (THMs) are the total for all THMs combined.
HAAs – The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.

PFOA and PFOS values listed are for individual or total combined.

Table 1 - Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater Appendix A

			Used A	Used Aquifers		2	
Regulated Substance	CASRN	TDS ≤ 2	≤ 2500 mg/L	TDS > 2	TDS > 2500 mg/L	Nonuse Aquirers	Aquirers
		~	NR	~	NR	æ	NR
DINITROTOLUENE, 2,6- (2,6-DNT)	606-20-2	[0.49] <u>0.43</u> G	[2] <u>1.8</u> G	[49] <u>43</u> G	[230] <u>180</u> G	[490] <u>430</u> G	[2,300] G 1,800
DINOSEB	2-98-88	W 2	7 M	M 002	M 002	7,000 M	7,000 M
DIOXANE, 1,4-	123-91-1	[6.4] <u>6.5</u> [N]	[32] <u>27</u> [N]] G	[640] <u>650</u> [N]] <u>G</u>	[3,200] [N <u>2,700</u>] G	[64] <u>65</u> [N] G	[320] <u>270</u> [N]] G
DIPHENAMID	957-51-7	200 H	200 H	20,000 H	20,000 H	200 H	200 H
DIPHENYLAMINE	122-39-4	[1,000] G 3,500	[2,900] G 9,700	[100,000] [G 300,000] S	[290,000] [G 300,000] [S	300'00E	300,000
DIPHENYLHYDRAZINE, 1,2-	122-66-7	[0.91] <u>0.22</u> [G]] N	[4.3] <u>1.1</u> [G] N	[91] <u>22</u> [G] I N	[250] <u>110</u> [S] N	[250] <u>22</u> [S]] N	[250] <u>110</u> [S] N
DIQUAT	2-00-58	20 M	20 M	2,000 M	2,000 M	20 M	20 M
DISULFOTON	298-04-4	H 2.0	0.7 H	H 02	H 02	H 002	700 H
DITHIANE, 1,4-	505-29-3	H 08	H 08	H 000'8	Н 000'8	H 08	H 08
DIURON	330-54-1	5 69 [88]	[230] <u>190</u> G	006'9 (900'9	[23,000] G 19,000	5 <u>69</u> [83]	[230] <u>190</u> G
ENDOSULFAN	115-29-7	[250] <u>210</u> G	480 S	480 S	480 S	480 S	480 S
ENDOSULFAN I (APLHA)	8-86-656				S 009	[250] <u>210</u> G	
ENDOSULFAN II (BETA)	33213-65-9		450 S	450 S	450 S		
ENDOSULFAN SULFATE	1031-07-8	120 S	120 S	120 S	120 S	120 S	
ENDOTHALL	145-73-3		100 M	- 1	10,000 M	100 M	100 M
ENDRIN	72-20-8	2 M	2 M		200 M		
EPICHLOROHYDRIN	106-89-8	2.1 N	8.8 N	210 N	880 N	210 N	880 N
ЕТНЕРНОИ	16672-87-0	[210] <u>170</u> G	[580] <u>490</u> G	[21,000] G <u>17,000</u>	[58,000] G <u>49,000</u>	[210] <u>170</u> G	[580] 490 G
ETHION	563-12-2	[21] <u>17</u> G			850 S	- 1	[58] <u>49</u> G
ETHOXYETHANOL, 2- (EGEE)	110-80-5	420 N	1,800 N	42,000 N	180,000 N	42,000 N	180,000 N
ЕТНҮL АСЕТАТЕ	141-78-6	150 [G	620 [G	[150,000] [G	62,000 [G	[150,000] [15,000 G]]	62,000 r

All concentrations in µg/L
R = Residential
R = Residential
N = Inhalation
R = Residential
N = Inhalation
S = Aqueous so
NR = Non-Residential
G = Ingestion
THMs – The values listed for trihalomethanes (THMs) are the total for all THMs combined.
HAAs – The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.

PFOA and PFOS values listed are for individual or total combined.

Table 1 - Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater Appendix A

			Used A	Used Aquifers			
Regulated Substance	CASRN	TDS ≤ 2	2500 mg/L		TDS > 2500 mg/L	Nonuse Aquifers	Aquifers
		ď	NR	ĸ	NR	~	N.
ETHYL ACRYLATE	140-88-5	[15] <u>14</u> G	[70] <u>57</u> [N]] G	[1,500] G <u>1,400</u>	[7,000] [N 5,700] S	[1,500] G <u>1,400</u>	[7,000] [N 5,700] G
ETHYL BENZENE	100-41-4	M 007	700 M	70,000 M	70,000 M	70,000 M	70,000 M
ETHYL DIPROPYLTHIOCARBAMATE, S- (EPTC)	759-94-4	[1,000] G 1,700	[2,900] G 4,900	[100,000] G 170,000	[290,000] [G 370,000] S	[1,000] G 1,700	[2,900] G 4,900
ЕТНҮL ЕТНЕR	60-29-7	[8,300] © 6,900	[23,000] G 19,000	[830,000] © 690,000	[2,300,000 G] 1,900,000	[8,300] © 6,900	[23,000] G 19,000
ETHYL METHACRYLATE	97-63-2	030 N	2,600 N	83,000 N	260,000 N	N 089	2,600 N
ETHYLENE CHLORHYDRIN	107-07-3	[830] <u>690</u> G	[2,300] G 1,900	[83,000] © 69,000	[230,000] G 190,000	[830] <u>690</u> G	[2,300] G 1,900
ETHYLENE GLYCOL	107-21-1	14,000 H	14,000 H	1,400,000 H	1,400,000 H	1,400,000 H	1,400,000 H
ETHYLENE THIOUREA (ETU)	96-45-7	[3.3] <u>2.8</u> G	[9.3] <u>7.8</u> G	[330] <u>280</u> G	5 <u>082</u> [086]	[3,300] G 2,800	[9,300] G 7,800
ETHYLP-NITROPHENYL PHENYLPHOSPHOROTHIOATE	2104-64-5	[0.42] <u>0.35</u> G	[1] <u>0.97</u> G	[42] <u>35</u> G	[120] <u>97</u> G	[0.42] <u>0.35</u> G	[1.2] <u>0.97</u> G
FENAMIPHOS	22224-92-6	H 2.0	0.7 H	H 02	H 02	H 2.0	0.7 H
FENVALERATE (PYDRIN)	51630-58-1	S 28	S 28	S 28	S 58	S 28	85 S
FLUOMETURON	2164-17-2	H 06	H 06	H 000'6	H 000'6	H 06	H 06
FLUORANTHENE	206-44-0	260 S	260 S	260 S	S 09Z	S 09Z	Z60 S
FLUORENE	86-73-7	[1,700] G 1,400	1,900 S	1,900 S	1,900 S	1,900 S	1,900 S
FLUOROTRICHLOROMETHANE (FREON 11)	75-69-4	2,000 H	2,000 H	200,000 H	200,000 H	200,000 H	200,000 H
FONOFOS	944-22-9	10 H	10 H	1,000 H	1,000 H	10 H	10 H
FORMALDEHYDE	20-00-0	1,000 H	1,000 H	100,000 H	100,000 H	100,000 H	100,000 H
FORMIC ACID	64-18-6	0.63 N	2.6 N	93 N	N 09Z	N E.9	26 N
FOSETYL-AL	39148-24-8	[130,000] G 87,000	[350,000] G 240,000	[13,000,00 G 0]	[35,000,00 G 0]	[130,000] G 87,000	[350,000] G 240,000
				8,700,000	<u>24,000,00</u> <u>0</u>		
FURAN	110-00-9	[42] <u>35</u> G	[120] <u>97</u> G	[4,200] G <u>3,500</u>	[12,000] G <u>9,700</u>	[4,200] G 3,500	[12,000] G <u>9,700</u>

M = Maximum Contaminant Level H = Lifetime health advisory level G = Ingestion

N = Inhalation S = Aqueous solubility cap

All concentrations in µg/L

R = Residential

R = Residential

N = Inhalation

R = Residential

G = Ingestion

NR = Non-Residential

G = Ingestion

THMs – The values listed for trihalomethanes (THMs) are the total for all THMs combined.

HAAs – The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.

PFOA and PFOS values listed are for individual or total combined.

Table 1 - Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater Appendix A

			Vsed A	Used Aquifers			٠. ٠٠٠ ٠٠٠ ٠٠٠ ٠٠٠ ٠٠٠ ٠٠٠ ٠٠٠ ٠٠٠ ٠٠٠
Regulated Substance	CASRN	TDS ≤ 2	2500 mg/L	TDS > 2	TDS > 2500 mg/L	Nonuse Aquilers	Adullers
		R	NR	Я	NR	R	NR
FURFURAL	98-01-1	[110] <u>19</u> [N] G	9 <u>87</u> [098]	[11,000] [N 1,900] G	[35,000] G 7,800	[110] <u>19</u> [N] G	[320] <u>78</u> G
GLYPHOSATE	1071-83-6	700 M	M 007	70,000 M	70,000 M	M 007	M 007
HEPTACHLOR	76-44-8	0.4 M	0.4 M	40 M	40 M	180 S	180 S
HEPTACHLOR EPOXIDE	1024-57-3	0.2 M	M 2.0	20 M	20 M	200 M	Z00 M
HEXACHLOROBENZENE	118-74-1	1 M	1 M	S 9	S 9	S 9	S 9
HEXACHLOROBUTADIENE	82-89-3	[9.4] 8.4 G	[44] <u>35</u> G	[940] 840 G	2,900 S	2,900 S	2,900 S
HEXACHLOROCYCLOPENTADIENE	77-47-4	50 M	20 M	1,800 S	1,800 S	1,800 S	1,800 S
HEXACHLOROETHANE	67-72-1	1 H	1 H	100 H	100 H	100 H	100 H
HEXANE	110-54-3	1,500 N	[6,200] [N <u>5,800</u>] <u>G</u>	S 005'6	8 005'6	1,500 N	[6,200] [N <u>5,800</u>] <u>G</u>
HEXAZINONE	51235-04-2	400 H	400 H	40,000 H	40,000 H	400 H	400 H
HEXYTHIAZOX (SAVEY)	0-90-28982	S 009	S 009	S 009	S 009	S 009	S 009
HMX	2691-41-0	400 H	H 004	2,000 S	2,000 S	400 H	400 H
HYDRAZINE/HYDRAZINE SULFATE	302-01-2	0.01 N	N 150.0	L	5.1 N	0.1 N	0.51 N
HYDROQUINONE	123-31-9	[12] <u>11</u> G	9 <u>77</u> [23]	[1,200] G <u>1,100</u>	[5,700] G <u>4,500</u>	[12,000] G 11,000	[57,000] G 45,000
INDENO[1,2,3-CD]PYRENE	193-39-5	[0.19] <u>0.18</u> G	[2.8] <u>2.3</u> G	[19] <u>18</u> G	62 S	62 S	62 S
IPRODIONE	36734-19-7	[1,700] <u>15</u> G	[4,700] <u>62</u> G	[13,000] [S <u>1,500</u>] <u>G</u>	[13,000] [S <u>6,200</u>] <u>G</u>	[1,700] <u>15</u> G	[4,700] <u>62</u> G
ISOBUTYL ALCOHOL	78-83-1	[13,000] G 10,000	[35,000] © 29,000	[1,300,000 G] 1,000,000	[3,500,000 G] 2,900,000	[1,300,000 G] 1,000,000	[3,500,000 G] 2,900,000
ISOPHORONE	78-59-1	100 H	100 H	10,000 H	10,000 H	100,000 H	100,000 H
ISOPROPYL METHYLPHOSPHONATE	1832-54-8	H 002	H 002	H 000'02	H 000'02	H 002	H 002
KEPONE	143-50-0	[0.073] G 0.065	[0.34] <u>0.27</u> G	[7.3] <u>6.5</u> G	[34] <u>27</u> G	[73] <u>65</u> G	[340] <u>270</u> G
MALATHION	121-75-5	500 H	H 009	50,000 H	50,000 H	140,000 S	140,000 S
MALEIC HYDRAZIDE	123-33-1	4,000 H	4,000 H	400,000 H	400,000 H	4,000 H	4,000 H
MANEB	12427-38-2	[210] <u>11</u> G	[580] <u>45</u> G	[21,000] G 1,100	[23,000] [S <u>4,500</u>] G	[210] <u>11</u> G	[580] <u>45</u> G
]:)		

N = Inhalation S = Aqueous solubility cap M = Maximum Contaminant Level H = Lifetime health advisory level G = Ingestion All concentrations in µg/L R = Residential

NR = Non-Residential G = Ingestion
THMs – The values listed for trihalomethanes (THMs) are the total for all THMs combined.
HAAs – The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.

PFOA and PFOS values listed are for individual or total combined.

Table 1 - Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater Appendix A

			Used A	Used Aquifers		2	
Regulated Substance	CASRN	TDS ≤ 2	≤ 2500 mg/L	TDS > 2	TDS > 2500 mg/L	Nonuse	Nonuse Aquirers
		æ	NR	ĸ	NR	æ	NR
MERPHOS OXIDE	78-48-8	[1.3] <u>35</u> G	[3.5] <u>97</u> G	[130] [G <u>2,300</u>] <u>S</u>	[350] [G 2,300] S	[1.3] <u>35</u> G	[3.5] <u>97</u> G
METHACRYLONITRILE	126-98-7	[4.2] <u>3.5</u> G	[12] <u>9.7</u> G	[420] <u>350</u> G	[1,200] G 970	[4.2] <u>3.5</u> G	[12] <u>9.7</u> G
METHAMIDOPHOS	10265-92-6	[2.1] <u>1.7</u> G	[5.8] <u>4.9</u> G	[210] <u>170</u> G	[580] <u>490</u> G	[2.1] <u>1.7</u> G	[5.8] <u>4.9</u> G
METHANOL	67-56-1	[8,400] N 42,000	[35,000] N 180,000	[840,000] N 4,200,000	[3,500,000 N 18,000,00 0	[840,000] N 4,200,000	[3,500,000 N 18,000,00 0
METHOMYL	16752-77-5	200 H	200 H	20,000 H	20,000 H	200 H	200 H
METHOXYCHLOR	72-43-5	40 M	40 M	45 S	45 S	45 S	45 S
METHOXYETHANOL, 2-	109-86-4	42 N	180 N	4,200 N	18,000 N	[42] <u>420</u> N	[180] N 1,800
METHYL ACETATE	79-20-9	[42,000] G	[120,000] G	[4,200,000 G	[12,000,00 G	[42,000] G	[120,000] G
		900	80,	3,500,000	9,700,000	200	00,16
METHYL ACRYLATE	8-88-39	42 N	180 N	4,200 N	18,000 N	4,200 N	18,000 N
METHYL CHLORIDE	74-87-3	30 H	30 H	3,000 H	3,000 H	3,000 H	3,000 H
METHYL ETHYL KETONE	78-93-3	4,000 H	4,000 H	400,000 H	400,000 H	400,000 H	400,000 H
METHYL HYDRAZINE	60-34-4	0.042 N	0.18 N	4.2 N	N 81	0.42 N	1.8 N
METHYL ISOBUTYL KETONE	108-10-1	[3,300] G 2,800	[9,300] © 7,800	[330,000] G 280,000	[930,000] © 780,000	[330,000] G 280,000	[930,000] G 780,000
METHYL ISOCYANATE	624-83-9	2.1 N	8.8 N	210 N	N 088	2.1 N	N 8.8
METHYL N-BUTYL KETONE	591-78-6	93 N	260 N	00E'9	26,000 N	63 N	260 N
METHYL METHACRYLATE	80-62-6	1,500 N	6,200 N	150,000 N	N 000'0Z9	150,000 N	620,000 N
METHYL METHANESULFONATE	66-27-3	[7.4] <u>6.6</u> G	[34] <u>27</u> G	[740] <u>660</u> G	[3,400] G 2,700	[7.4] <u>6.6</u> G	[34] <u>27</u> G
METHYL PARATHION	298-00-0	1 H	1 H	100 H	100 H	1,000 H	1,000 H
METHYL STYRENE (MIXED ISOMERS)	25013-15-4	84 N	350 N	8,400 N	35,000 N	84 N	350 N
METHYL TERT-BUTYL ETHER (MTBE)	1634-04-4	20	20	2,000	2,000	200	200
METHYLCHLOROPHENOXYACETIC ACID (MCPA)	94-74-6	30 H	30 H	3,000 H	3,000 H	30,000 H	30,000 H
METHYLENE BIS(2-CHLOROANILINE), 4,4'-	101-14-4	[2.3] <u>2.1</u> G	[34] <u>27</u> G	[230] <u>210</u> G	[3,400] G 2,700	[2.3] <u>2.1</u> G	[34] <u>27</u> G

N = Inhalation S = Aqueous solubility cap M = Maximum Contaminant Level H = Lifetime health advisory level G = Ingestion

All concentrations in µg/L

R = Residential

R = Residential

N = Inhalation

R = Residential

G = Ingestion

NR = Non-Residential

G = Ingestion

THMs – The values listed for trihalomethanes (THMs) are the total for all THMs combined.

HAAs – The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.

PFOA and PFOS values listed are for individual or total combined.

Table 1 - Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater Appendix A

			Used A	Used Aquifers		4	9:
Regulated Substance	CASRN	TDS ≤ 2	2500 mg/L	TDS > 2500 mg/L	00 mg/L	Nonuse Aquilers	vduners
		R	NR	R	NR	R	NR
METHYLNAPHTHALENE, 2-	91-57-6	[170] <u>6.3</u> [G]	[470] <u>26</u> [G]	[17,000] [G <u>630</u>] <u>N</u>	[25,000] [S 2,600] N	[170] <u>6.3</u> [G J	[470] <u>26</u> [G J
METHYLSTYRENE, ALPHA	98-83-9	[2,900] G 2,400	[8,200] G 6,800	[290,000] G 240,000	560,000 S	[2,900] G 2.400	[8,200] G 6.800
METOLACHLOR	51218-45-2	H 002	H 002	70,000 H	70,000 H	Н 002	H 002
METRIBUZIN	21087-64-9	H 02	H 02	7,000 H	7,000 H	H 02	H 02
MEVINPHOS	7786-34-7	0.87 G	2.4 G	<u>87</u> G	240 G	0.87 G	2.4 G
MONOCHLOROACETIC ACID (HAA)	79-11-8	H 09	H 09	Н 000'9	H 000'9	H 09	H 09
NAPHTHALENE	91-20-3	100 H	100 Н	10,000 H	10,000 H	[30,000] [S 10,000] H	[30,000] [S 10,000] H
NAPHTHYLAMINE, 1-	134-32-7	[0.41] <u>0.36</u> G	[1.9] <u>1.5</u> G	[41] <u>36</u> G	[190] <u>150</u> G	[410] <u>36</u> G	[1,900] G 150
NAPHTHYLAMINE, 2-	91-59-8	[0.41] <u>0.36</u> G	[1.9] <u>1.5</u> G	[41] <u>36</u> G	[190] <u>150</u> G	[410] <u>360</u> G	[1,900] G 1,500
NAPROPAMIDE	15299-99-7	4,200 G	12,000 G	S 000'02	S 000'02	4,200 G	12,000 G
NITROANILINE, O-	88-74-4	[420] <u>0.11</u> [G]	[1,200] 0.44] N	[42,000] [G 11] N	[120,000] [G 44] N	[420] 0.11 [G J N	[1,200] 0.44 G 1 N
NITROANILINE, P-	100-01-6	[37] <u>33</u> G	[170] <u>140</u> G	[3,700] G 3,300	[17,000] G 14,000	[37] <u>33</u> G	[170] <u>140</u> G
NITROBENZENE	98-95-3	[83] <u>1.2</u> [G]	[230] <u>6.3</u> [G]	[8,300] [G 120]	[23,000] [G 630] N	[83,000] [120 G 1 J 1	[230,000] [630 G 1 1 N
NITROGUANIDINE	2-88-959	H 002	H 002	H 000'02	70,000 H	H 002	H 002
NITROPHENOL, 2-	88-75-5	[330] <u>280</u> G	[930] <u>780</u> G	[33,000] G 28,000	[93,000] G 78,000	[330,000] G 28,000	[930,000] G 78,000
NITROPHENOL, 4-	100-02-7	Н 09	Н 09	H 000'9	9 (000 Н	[60,000] H	[60,000] H [60,000]
NITROPROPANE, 2-	79-46-9	0.018 N	N E60.0	1.8 N	9.3 N	0.18 N	0.93 N
NITROSODIETHYLAMINE, N-	55-18-5	0.00045 N	0.0058 N	0.045 N	0.58 N	0.0045 N	0.058 N
NITROSODIMETHYLAMINE, N-	65-72-9	0.0014 N	0.018 N	0.14 N	1.8 N	0.014 N	0.18 N
All concentrations in µg/L M = Maximum Contaminant Level R = Residential H = Lifetime health advisory level		N = Inhalation S = Aqueous solubility cap	ity cap				

N = Inhalation S = Aqueous solubility cap M = Maximum Contaminant Level H = Lifetime health advisory level G = Ingestion

NR = Non-Residential G = Ingestion
THMs – The values listed for trihalomethanes (THMs) are the total for all THMs combined.
HAAs – The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.

PFOA and PFOS values listed are for individual or total combined.

Table 1 - Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater Appendix A

			/ Dsed	Used Aquifers		, doi: do	,
Regulated Substance	CASRN	TDS ≤ 2	≤ 2500 mg/L	TDS > 2500 mg/L	500 mg/L	Notinse Adullers	Adullers
		æ	NR	~	NR	æ	NR
NITROSO-DI-N-BUTYLAMINE, N-	924-16-3	[0.14] [G 0.031]	[0.63] <u>0.16</u> [G] <u>N</u>	[14] <u>3.1</u> [G] <u>N</u>	[63] <u>16</u> [G]	[140] <u>3.1</u> [G J N	[630] <u>16</u> [G] N
NITROSODI-N-PROPYLAMINE, N-	621-64-7	[0.1] 0.025 [G]	[0.49] <u>0.13</u> [G]	[10] <u>2.5</u> [G] N	[49] 13 [G	[100] <u>0.25</u> [G]	[490] 1.3 [G
NITROSODIPHENYLAMINE, N-	86-30-6	[150] <u>19</u> [G] N	[690] <u>96</u> [6]] N	[15,000] [G 1,900] N	[35,000] [S 9,600] N	[35,000] [S 1,900] N	[35,000] [S 9,600] N
NITROSO-N-ETHYLUREA, N-	759-73-9	[0.0084] G 0.0079	[0.13] <u>0.1</u> G	[0.84] <u>0.79</u> G	[13] <u>10</u> G	[8.4] 7.9 G	[130] <u>100</u> G
OCTYL PHTHALATE, DI-N-	117-84-0	[420] <u>350</u> G	[1,200] G <u>970</u>	3,000 S	3,000 S	3,000 S	3,000 S
OXAMYL (VYDATE)	23135-22-0	200 M	200 M	20,000 M	20,000 M	200 M	200 M
PARAQUAT	1910-42-5	30 H	30 H	3,000 H	3,000 H	30 H	30 H
PARATHION	56-38-2	[250] <u>1</u> G	[700] <u>2.9</u> G	[20,000] [S 100] <u>100</u>]	[20,000] [S 290] <u>6</u>	[250] 1 G	[700] <u>2.9</u> G
PCBS, TOTAL (POLYCHLORINATED BIPHENYLS) (AROCLORS)	1336-36-3	0.5 M	0.5 M	<u>20</u> <u>M</u>	<u>20</u> M	0.5 M	0.5 M
PCB-1016 (AROCLOR)	12674-11-2	[0.37] <u>2.4</u> G	[1.7] <u>6.8</u> G	[37] <u>240</u> G	[170] <u>250</u> [G]	[0.37] <u>2.4</u> G	[1.7] <u>6.8</u> G
PCB-1221 (AROCLOR)	11104-28-2	[0.37] <u>0.33</u> G	[1.7] <u>1.4</u> G	[37] <u>33</u> G	[170] <u>140</u> G	[0.37] 0.33 G	[1.7] <u>1.4</u> G
PCB-1232 (AROCLOR)	11141-16-5	[0.37] <u>0.33</u> G	[1.7] <u>1.4</u> G	[37] <u>33</u> G	[170] <u>140</u> G	[0.37] 0.33 G	[1.7] <u>1.4</u> G
PCB-1242 (AROCLOR)	53469-21-9	[0.37] <u>0.33</u> G	[1.7] <u>1.4</u> G	[37] <u>33</u> G	100 S	[0.37] <u>0.33</u> G	[1.7] <u>1.4</u> G
PCB-1248 (AROCLOR)	12672-29-6	- 1	[1.7] <u>1.4</u> G	[37] <u>33</u> G			[1.7] <u>1.4</u> G
PCB-1254 (AROCLOR)	11097-69-1	[0.37] <u>0.69</u> G	[1.7] <u>1.9</u> G	[37] <u>57</u> [G]] S	57 S	[0.37] <u>0.69</u> G	[1.7] <u>1.9</u> G
PCB-1260 (AROCLOR)	11096-82-5	[0.37] <u>0.33</u> G	[1.7] <u>1.4</u> G	[37] <u>33</u> G	S 08	[0.37] 0.33 G	[1.7] <u>1.4</u> G
PEBULATE	1114-71-2	[2,100] G <u>1,700</u>	[5,800] G <u>4,900</u>	92,000 S	92,000 S	[2,100] G 1,700	[5,800] G <u>4,900</u>
PENTACHLOROBENZENE	608-93-5	[33] <u>28</u> G	[93] <u>78</u> G	740 S	740 S	740 S	740 S

N = Inhalation S = Aqueous solubility cap M = Maximum Contaminant Level H = Lifetime health advisory level G = Ingestion All concentrations in µg/L R = Residential

NR = Non-Residential G = Ingestion
THMs – The values listed for trihalomethanes (THMs) are the total for all THMs combined.
HAAs – The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.

PFOA and PFOS values listed are for individual or total combined.

Table 1 - Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater Appendix A

			Used A	Used Aquifers		2	
Regulated Substance	CASRN	TDS < 2	2500 mg/L	TDS > 2	TDS > 2500 mg/L	Nonuse Aquilers	aquilers
		œ	NR	œ	NR	œ	NR
PENTACHLOROETHANE	76-01-7	[8.1] <u>7.2</u> G	[38] <u>30</u> G	[810] <u>720</u> G	[3,800] G 3,000	[8.1] <u>7.2</u> G	[38] <u>30</u> G
PENTACHLORONITROBENZENE	82-68-8	[2.8] <u>2.5</u> G	[13] <u>10</u> G	[280] <u>250</u> G	440 S	440 S	440 S
PENTACHLOROPHENOL	87-86-5	1 M	1 M	100 M	100 M	1,000 M	1,000 M
PERFLUOROBUTANE SULFONATE (PFBS)	375-73-5	5 069	1,900 G	<u>5</u> 000'69	190,000 G	<u>5</u> 069	1,900 G
PERFLUOROOCTANE SULFONATE (PFOS)	1763-23-1	H 70.0	0.07 H	7 H	H 7	H 70.0	0.07 H
PERFLUOROOCTANOIC ACID (PFOA)	335-67-1	H 20.0	0.07 H	7 H	H 7	H 20.0	0.07 H
PHENACETIN	62-44-2	[330] <u>300</u> G	[1,500] G 1,200	[33,000] G 30,000	[150,000] G 120,000	[330,000] G 300,000	Ze0,000 S
PHENANTHRENE	85-01-8	1,100 S	1,100 S	1,100 S	1,100 S	1,100 S	1,100 S
PHENOL	108-95-2	2,000 H	2,000 H	200,000 H	200,000 H	200,000 H	200,000 H
PHENYL MERCAPTAN	108-98-5	[42] <u>35</u> G	[120] <u>97</u> G	[4,200] G 3,500	[12,000] G 9,700	[42] <u>35</u> G	[120] <u>97</u> G
PHENYLENEDIAMINE, M-	108-45-2	[250] <u>210</u> G	[700] <u>580</u> G	[25,000] G 21,000	[70,000] G 58,000	[250,000] G 210,000	[700,000] G 580,000
PHENYLPHENOL, 2-	90-43-7	[380] <u>340</u> G	[1,800] G 1,400	[38,000] G 34,000	[180,000] G 140,000	[380,000] G 340,000	S 000'002
PHORATE	298-02-2	[8.3] <u>6.9</u> G	[23] <u>19</u> G	5 <u>069</u> [088]	[2,300] G 1,900	[8.3] <u>6.9</u> G	[23] <u>19</u> G
PHTHALIC ANHYDRIDE	85-44-9	[83,000] [G	[230,000] [G 180]	[6,200,000 [S] 4,200]	[6,200,000 [S]	[6,200,000 [S] 4,200]	[6,200,000 [S]
WYGO	1010 02 1	Z 2	Z 2	2 2	VI 2	Z 2	ZIZ OG
PICLORAM TO DIMATE DIDITING ADDOL	1910-02-1	- 1		M 000,00	M 000,0c		M 1000
[POLYCHLOKINA IED BIPHENYLS (PCBS)]	[1336-36-3]	10.5] [M]	[0.5] M]	[50] M 	I [06]	l (c.0] M [I (c.0]
PROMETON	1610-18-0	400 H	400 H	40,000 H	40,000 H	400 H	400 H
PRONAMIDE	23950-58-5	[3,100] G 2,600	[8,800] G	15,000 S	15,000 S	[3,100] G 2,600	[8,800] G 7,300
<u>PROPACHLOR</u>	1918-16-7	0.1 H	0.1 H	10 H	10 H	10 H	10 H
PROPANIL	709-98-8	[210] <u>170</u> G	[580] <u>490</u> G	[21,000] G <u>17,000</u>	[58,000] G <u>49,000</u>	[210] <u>170</u> G	[580] <u>490</u> G
PROPANOL, 2- (ISOPROPYL ALCOHOL)	67-63-0	420 N	1,800 N	42,000 N	180,000 N	420 N	1,800 N
PROPAZINE	139-40-2	10 H	10 H	1,000 H	1,000 H	10 H	
PROPHAM	122-42-9	100 H	100 H	10,000 H	10,000 H	100 H	100 H

All concentrations in µg/L
R = Residential
R = Residential
N = Inhalation
R = Residential
N = Inhalation
S = Aqueous so
NR = Non-Residential
G = Ingestion
THMs – The values listed for trihalomethanes (THMs) are the total for all THMs combined.
HAAs – The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.

PFOA and PFOS values listed are for individual or total combined.

Table 1 - Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater Appendix A

Regulated Substance CASRN PROPYLBENZENE, N-PROPYLENE OXIDE 103-65-1 2 PYRENE 129-00-0 13 PYRENE 100-86-1 142 PYRETHRUM 8003-34-7 140-86-1 PYRIDINE 110-86-1 142 QUINOLINE 91-22-5 10.24] RDX 121-82-4 183,4 RDX 121-82-4 183,4 RDX 108-46-3 183,4 RDX 108-46-3 183,4 RESORCINOL 108-46-3 12,4 SIMAZINE 122-34-9 13,2 STRYCHNINE 57-24-9 173	> S0				A comment	
PYLBENZENE, N- 103-65-1 PYLENE OXIDE 75-56-9 ENE 129-00-0 ETHRUM 8003-34-7 DINE 110-86-1 JOLINE 91-22-5 ALOFOP (ASSURE) 76578-14-8 ORCINOL 108-46-3 NEL 299-84-3 ZINE 122-34-9 YCHNINE 57-24-9		2500 mg/L	TDS > 2	TDS > 2500 mg/L	Nonuse Aquirers	rquirers
PYLENE OXIDE PYLENE OXIDE ENE	¥	NR	ĸ	NR	ď	NR
PYLENE OXIDE 75-56-9 ENE 129-00-0 ETHRUM 8003-34-7 IDINE 110-86-1 IDINE 110-90-00 IDIN	2,100 N	8,800 N	52,000 S	52,000 S	2,100 N	8,800 N
ETHRUM ETHRUM DINE DINE JOLINE JALOFOP (ASSURE) ORCINOL NEL ZINE JOLINE 110-86-1 110-86-1 110-86-1 111-82-5 121-82-4 108-46-3 INSTANTINE ZINE ZI	[3] <u>2.7</u> G	[14] <u>11</u> G	[300] <u>270</u> G	[1,400] G 1,100	[3] <u>2.7</u> G	[14] <u>11</u> G
100 100	130 S	130 S	130 S	130 S	130 S	130 S
110-86-1 110-86-1	320 S	320 S	320 S	320 S	320 S	320 S
122-5 10.2	[42] 35	[120] <u>97</u> G	[4,200] G 3,500	[12,000] G 9,700	[420] <u>350</u> G	[1,200] G <u>970</u>
ALOFOP (ASSURE) 76578-14-8 ORCINOL 108-46-3 [NEL 299-84-3	5 [0.24] <u>0.22</u> G	[1.1] <u>0.91</u> G	[24] <u>22</u> G	[110] <u>91</u> G	[240] <u>220</u> G	[1,100] G 910
121-82-4 108-46-3 1 108-46-3 1 1 1 1 1 1 1 1 1	300 S	300 S	300 S	300 S	300 S	300 S
108-46-3 [299-84-3 [122-34-9		2 H	200 H	200 H	2 H	2 H
E 122-34-9 NINE 57-24-9	83,000] G	[230,000] G 190,000	[8,300,000 G]	[23,000,00 G 0]	[83,000] G 69,000	[230,000] G 190,000
E 122-34-9 NINE 57-24-9			000'006'9	19,000,00 0		
122-34-9	3 [2,100] G 1,700	[5,800] G 4,900	40,000 S	40,000 S	[2,100] G 1,700	[5,800] G 4,900
57-24-9	4 M	4 M	400 M	400 M	4 M	4 M
	[13] <u>10</u> G	[35] <u>29</u> G	[1,300] G 1,000	[3,500] G 2,900	[13,000] G 10,000	[35,000] G 29,000
STYRENE 100-42-5	100 M	100 M	10,000 M	10,000 M	10,000 M	10,000 M
TEBUTHIURON 34014-18-1	200 H	200 H	50,000 H	50,000 H	H 009	200 H
TERBACIL 5902-51-2	H 06	H 06	H 000'6	H 000'6	H 06	90 H
TERBUFOS 13071-79-9	0.4 H	0.4 H	40 H	40 H	0.4 H	0.4 H
95-94-3	3 [13] <u>10</u> G	[35] <u>29</u> G	280 S	S 089	S 089	580 S
IN, 2,3,7,8- (TCDD) 1746-01-6	0.00003 M	0.00003 M	0.003 M	0.003 M	0.019 S	0.019 S
TETRACHLOROETHANE, 1,1,1,2-	70 H	70 H	7,000 H	7,000 H	7,000 H	7,000 H
TETRACHLOROETHANE, 1,1,2,2-	0.84 N	4.3 N	84 N	430 N	84 N	430 N
TETRACHLOROETHYLENE (PCE) 127-18-4	1 2 M	2 M	200 M	200 M	M 05	50 M
TETRACHLOROPHENOL, 2,3,4,6- 58-90-2 [1,	2 [1,300] G 1,000	[3,500] G 2,900	[130,000] G 100,000	180,000 S	180,000 S	180,000 S
TETRAETHYL LEAD 78-00-2 [0.0] 0.0 0.0	[0.0042] G 0.0035	[0.012] G 0.0097	[0.42] <u>0.35</u> G	[1] <u>0.97</u> G	[4.2] <u>3.5</u> G	[12] <u>9.7</u> G
TETRAETHYLDITHIOPYROPHOSPHATE 3689-24-5 [2 1	5 [21] <u>17</u> G	[58] <u>49</u> G	[2,100] G 1,700	[5,800] G 4,900	[24] <u>17</u> G	[58] <u>49</u> G

All concentrations in µg/L
R = Residential
R = Residential
N = Lifetime health advisory level
S = Aqueous so
NR = Non-Residential
G = Ingestion
THMs — The values listed for trihalomethanes (THMs) are the total for all THMs combined.
HAAs — The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.

PFOA and PFOS values listed are for individual or total combined.

Table 1 - Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater Appendix A

			Vsed A	Used Aquifers		4	9
Regulated Substance	CASRN	z ≥ sat	2500 mg/L	TDS > 2	TDS > 2500 mg/L	esnuon	Nonuse Aquilers
		R	NR	R	NR	R	NR
TETRAHYDROFURAN	109-99-9	[26] <u>25</u> N	130 N	[2,600] N 2,500	13,000 N	[26] <u>25</u> N	130 N
THIOFANOX	39196-18-4	[13] <u>10</u> G	[35] <u>29</u> G	[1,300] G 1,000	[3,500] G 2,900	5 <u>01</u> [81]	[35] <u>29</u> G
THIRAM	137-26-8	[210] <u>520</u> G	[580] G 1,500	[21,000] [G 30,000] S	30°00°	[210] <u>520</u> G	[580] G 1,500
TOLUENE	108-88-3	1,000 M	1,000 M	100,000 M	100,000 M	100,000 M	100,000 M
TOLUIDINE, M-	108-44-1	[46] <u>41</u> G	[210] <u>170</u> G	[4,600] G 4,100	[21,000] G 17,000	[46] <u>41</u> G	[210] <u>170</u> G
TOLUIDINE, O	95-53-4	[46] <u>41</u> G	[210] <u>170</u> G	[4,600] G 4,100	[21,000] G 17,000	[46,000] G 41,000	[210,000] G 170,000
TOLUIDINE, P.	106-49-0	[24] <u>22</u> G	[110] <u>91</u> G	[2,400] G 2,200	[11,000] G 9,100	[24] <u>22</u> G	[110] <u>91</u> G
TOXAPHENE	8001-35-2	3 M	3 M	300 M	300 M	3 M	3 M
TRIALLATE	2303-17-5[[540] <u>0.91</u> G	[1,500] <u>3.8</u> G	[4,000] <u>91</u> [S]] <u>G</u>	[4,000] [S <u>380</u>] <u>G</u>	[540] <u>0.91</u> G	[1,500] <u>3.8</u> G
TRIBROMOMETHANE (BROMOFORM) (THM)	75-25-2	80 M	80 M	8,000 M	8,000 M	8,000 M	8,000 M
TRICHLORO-1,2,2-TRIFLUOROETHANE, 1,1,2-	76-13-1	[63,000] N 11,000	[170,000] [S 44,000] N	170,000 S	170,000 S	170,000 S	170,000 S
TRICHLOROACETIC ACID (HAA)	76-03-9	E 09	₩ 09	(H) 000'9 ■	⋈ (H) 000'9	W [H] 09	⊠ 09
TRICHLOROBENZENE, 1,2,4-	120-82-1	M 02	70 M	7,000 M	7,000 M	[44,000] [S 7,000] M	[44,000] [S 7,000] M
TRICHLOROBENZENE, 1,3,5-	108-70-3	40 H	40 H	4,000 H	4,000 H	40 H	40 H
TRICHLOROETHANE, 1,1,1-	71-55-6	200 M	200 M	20,000 M	20,000 M	2,000 M	2,000 M
TRICHLOROETHANE, 1,1,2-	79-00-5	2 M	2 M	200 M	200 M		20 M
TRICHLOROETHYLENE (TCE)	79-01-6	2 M	2 M	200 M		20 M	20 M
TRICHLOROPHENOL, 2,4,5-	95-95-4	[4,200] G 3,500	[12,000] G <u>9,700</u>	[420,000] G 350,000	[1,000,000 [S] <u>970,000</u>] <u>G</u>	1,000,000 S	1,000,000 S

All concentrations in µg/L
R = Residential
R = Residential
N = Inhalation
R = Residential
N = Inhalation
S = Aqueous so
NR = Non-Residential
G = Ingestion
THMs – The values listed for trihalomethanes (THMs) are the total for all THMs combined.
HAAs – The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.

PFOA and PFOS values listed are for individual or total combined.

N = Inhalation S = Aqueous solubility cap

Table 1 - Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater Appendix A

			Used A	Used Aquifers			3
Regulated Substance	CASRN	TDS < 2	2500 mg/L	TDS > 2	TDS > 2500 mg/L	Nonuse Aquirers	Aquirers
		R	NR	R	NR	R	NR
TRICHLOROPHENOL, 2,4,6-	88-06-2	[42] <u>35</u> G	[120] <u>97</u> G	[4,200] G 3,500	[12,000] G <u>9,700</u>	[42,000] G 35,000	[120,000] G 97,000
TRICHLOROPHENOXYACETIC ACID, 2,4,5- (2,4,5-T)	93-76-5	H 02	H 02	H 000'2	H 000'2	H 000'02	70,000 H
TRICHLOROPHENOXYPROPIONIC ACID, 2,4,5- (2,4,5-TP)	93-72-1	20 M	50 M	5,000 M	5,000 M	50 M	50 M
TRICHLOROPROPANE, 1,1,2-	598-77-6	[210] <u>170</u> G	[580] <u>490</u> G	[21,000] G 17,000	[58,000] G 49,000	[210] <u>170</u> G	[580] <u>490</u> G
TRICHLOROPROPANE, 1,2,3-	96-18-4	40 H	40 H	4,000 H	4,000 H	4,000 H	4,000 H
TRICHLOROPROPENE, 1,2,3-	96-19-5	0.63 N	2.6 N	N 63	260 N	0.63 N	2.6 N
TRIETHYLAMINE	121-44-8	15 N	62 N	1,500 N	6,200 N	15 N	62 N
TRIETHYLENE GLYCOL	112-27-6	[83,000] ©	[230,000] G 190,000	[8,300,000 ©] 000,000,00	[23,000,00 G 0] 19,000,00	[83,000] ©	[230,000] G 190,000
TRIFLURALIN	1582-09-8	10 H	10 H	1,000 H	1,000 H	10 H	10 H
TRIMETHYLBENZENE, 1,3,4- (TRIMETHYLBENZENE, 1,2,4-)	92-63-6	[15] <u>130</u> N	[62] <u>530</u> N	[1,500] N 13,000	[6,200] N 53,000	[1,500] N 13,000	[6,200] N 53,000
TRIMETHYLBENZENE, 1,3,5-	108-67-8	[420] 130 [G] N	[1,200] [G 530] N	[42,000] [G 13,000] <u>N</u>	49,000 S	[420] 130 [G J N	[1,200] [530 G 1 N
TRINITROGLYCEROL (NITROGLYCERIN)	55-63-0	2 H	2 H	H 009	H 009	H 200 H	H 200 H
TRINITROTOLUENE, 2,4,6-	118-96-7	2 H	2 H	200 H	200 H	2 H	2 H
VINYL ACETATE	108-05-4	420 N	1,800 N	42,000 N	180,000 N	420 N	1,800 N
VINYL BROMIDE (BROMOETHENE)	593-60-2	1.5 N	7.8 N	150 N	N 082	15 N	78 N
VINYL CHLORIDE	75-01-4	2 M	2 M	M 002	M 002	20 M	20 M
WARFARIN	81-81-2	[13] <u>10</u> G	[35] <u>29</u> G	[1,300] G 1,000	[3,500] G 2,900	[13,000] G 10,000	17,000 S
XYLENES (TOTAL)	1330-20-7	10,000 M	10,000 M	180,000 S	180,000 S	180,000 S	180,000 S
ZINEB	12122-67-7	[2,100] G 1,700	[5,800] G 4,900	10,000 S	10,000 S	[2,100] G 1,700	[5,800] G 4,900

All concentrations in µg/L
R = Residential
R = Residential
N = Inhalation
R = Residential
N = Inhalation
S = Aqueous so
NR = Non-Residential
G = Ingestion
THMs – The values listed for trihalomethanes (THMs) are the total for all THMs combined.
HAAs – The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.

PFOA and PFOS values listed are for individual or total combined.

N = Inhalation S = Aqueous solubility cap

Table 2 - Medium-Specific Concentrations (MSCs) for Inorganic Regulated Substances in Groundwater Appendix A

				Used /	Used Aquifers			H				
Regulated Substance	CASRN	≥ SQT	TDS ≤ 2500 mg/L		< SOT	250	TDS > 2500 mg/L		Nonuse Aquifers	e Aq	uifers	
		~	NR		~	_	N. R.		œ	_	NR	
ANTIMONY	7440-36-0	9	Σ	9 9	009	Σ	009	Σ	6,000	Σ	000'9	Σ
ARSENIC	7440-38-2	10	M	10 M	1,000	Σ	1,000	Σ	10,000	Σ	10,000	Σ
ASBESTOS (fibers/L)	12001-29-5	7,000,000	M 7,000,000	00 M	7,000,000	Σ	7,000,000,7	Σ	7,000,000	Σ	7,000,000	Σ
BARIUM AND COMPOUNDS	7440-39-3	2,000	M 2,000	00 M	200,000	Σ	200,000	Σ	2,000,000	Σ	2,000,000	Σ
BERYLLIUM	7440-41-7	4	M	4 M	400	Σ	400 r	Σ	4,000	Σ	4,000	Σ
BORON AND COMPOUNDS	7440-42-8	0000'9	H 6,000	H 00	000'009	ェ	600,000	ェ	6,000,000	ェ	000,000,9	エ
CADMIUM	7440-43-9	2	M	2 W	200	Σ	200 I	Σ	5,000	Σ	2,000	Σ
CHROMIUM (TOTAL)	7440-47-3	100	M	100 M	10,000	Σ	10,000	Σ	100,000	Σ	100,000	Σ
COBALT	7440-48-4	[13] 10	G [35] 29	23 G	[1,300]	Ŋ	[3,500] 2,900	ල	[13,000] 10,000	<u>ග</u>	[35,000] 29,000	Ŋ
COPPER	7440-50-8	1,000	1,000	00 M	100,000	Σ	100,000	ΣI	1,000,000	ΣI	1,000,000	Σ
CYANIDE, FREE	57-12-5	200	M 2	200 M	20,000	Σ	20,000	Σ	200,000	Σ	200,000	Σ
FLUORIDE	16984-48-8	4,000	M 4,000	00 M	400,000	Σ	400,000	Σ	4,000,000	Σ	4,000,000	Σ
LEAD	7439-92-1	5	M	2 W	200	Σ	500 r	Σ	5,000	Σ	2,000	Σ
LITHIUM	7439-93-2	[83]	G [230] 190	ව 06	[8,300] 6,900	Ð	[23,000] 19,000	<u>ග</u>	[83,000] [83,000]	9	[230,000] 190,000	Ŋ
MANGANESE	7439-96-5	300	Э	300 H	(,)	エ	30,000	ェ	300,000	ェ	300,000	エ
MERCURY	7439-97-6	2	M	2 M	200	Σ	200 r	Σ	2,000	Σ	2,000	Σ
MOLYBDENUM	7439-98-7	40	Н	40 H	4,000	т	4,000	I	40,000	Т	40,000	エ
NICKEL	7440-02-0	100	H 1	100 H	10,000	エ	10,000	ェ	100,000	ェ	100,000	エ
NITRATE NITROGEN	14797-55-8	10,000	M 10,000	00 M	1,000,000	Σ	1,000,000,1	Σ	10,000,000	Σ	10,000,000	Σ
NITRITE NITROGEN	14797-65-0	1,000	1,000 M	00 M	100,000	Σ	100,000	Σ	1,000,000,1	Σ	1,000,000	Σ
PERCHLORATE	6-86-0622	15	I	15 H	1,500	エ	1,500	ェ	15,000	ェ	15,000	エ
SELENIUM	7782-49-2	20	Σ	50 M	5,000	Σ	5,000	Σ	50,000	Σ	50,000	Σ
SILVER	7440-22-4	100	H 1	100 H	10,000	ェ	10,000	ェ	100,000	Т	100,000	エ
STRONTIUM	7440-24-6	4,000	H 4,000	H 00	400,000	т	400,000	I	4,000,000	н	4,000,000	エ
THALLIUM	7440-28-0	2	M	2 M		Σ		Σ		Σ	2,000	Σ
NIL	7440-31-5	[25,000] 21,000	G [70,000] 58,000	ල ලබ	[2,500,000] 2,100,000	Ŋ	[7,000,000] 5,800,000	<u>0</u>	[25,000,000] 21,000,000	<u>D</u>	[70,000,000] 58,000,000	O

All concentrations in µg/L (except asbestos)

M = Maximum Contaminant Level

H = Lifetime Health Advisory Level

SMCL = Secondary Maximum Contaminant Level

G = Ingestion

N = Inhalation

PA State MCL adopted as MSC for Copper and Lead

R = Residential NR = Nonresidential

Table 2 - Medium-Specific Concentrations (MSCs) for Inorganic Regulated Substances in Groundwater Appendix A

			Used Aquifers	auifers				
Regulated Substance	CASRN	TDS ≤ 2	TDS ≤ 2500 mg/L		TDS > 2500 mg/L	Nonuse Aquifers	Aquifers	
		~	NR.	~	NR	æ	NR	
VANADIUM	7440-62-2	[2.9] <u>2.4</u> G	[8.2] <u>6.8</u> G	[290] <u>240</u> G	[820] <u>680</u> G	[2,900] G 2,400	[8,200] 6,80 <u>0</u>	Ŋ
ZINC AND COMPOUNDS	7440-66-6	2,000 H	2,000 H	200,000 H	200,000 H	2,000,000 H	2,000,000	エ

SECONE	SECONDARY CONTAMINANTS	NANTS	
REGULATED SUBSTANCE	CASRN	SMCL	UNITS
ALUMINUM	7429-90-5	200	hg/L
CHLORIDE	7647-14-5	250,000	hg/L
[COPPER]	[7440-50-8]	[1000]	[hg/L]
[FLUORIDE]	[7681-49-4]	[2,000]	[hg/L]
IRON	7439-89-6	300	hg/L
[MANGANESE]	[7439-96-5]	[20]	[hg/L]
SULFATE	7757-82-6	250,000	hg/L

R = Residential NR = Nonresidential

All concentrations in µg/L (except asbestos)

M = Maximum Contaminant Level

H = Lifetime Health Advisory Level

SMCL = Secondary Maximum Contaminant Level

G = Ingestion

N = Inhalation

PA State MCL adopted as MSC for Copper and Lead

Appendix A

Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil

A. Direct Contact Numeric Values

				No	onresi	dential	
REGULATED SUBSTANCE	CASRN	Resident 0-15 fee		Surface Soil 0-2 feet		Subsurfa Soil 2-15 fee	
ACENAPHTHENE	83-32-9	13,000	G	190,000	С	190,000	С
ACENAPHTHYLENE	208-96-8	13,000	G	190,000	С	190,000	С
ACEPHATE	30560-19-1	[880] <u>260</u>	G	[10,000] <u>3,800</u>	G	190,000	С
ACETALDEHYDE	75-07-0	170	Ν	[720] <u>710</u>	N	[830] <u>820</u>	N
ACETONE	67-64-1	10,000	С	10,000	С	10,000	С
ACETONITRILE	75-05-8	1,100	N	[4,800] <u>4,700</u>	N	5,500	N
ACETOPHENONE	98-86-2	10,000	С	10,000	С	10,000	С
ACETYLAMINOFLUORENE, 2- (2AAF)	53-96-3	4.9	G	24	G	190,000	С
ACROLEIN	107-02-8	0.38	N	1.6	N	1.8	Ν
ACRYLAMIDE	79-06-1	1.7	Ν	22	N	[26] <u>25</u>	Ν
ACRYLIC ACID	79-10-7	19	N	79	N	91	N
ACRYLONITRILE	107-13-1	[6.6] <u>6.5</u>	N	33	N	[38] <u>37</u>	N
ALACHLOR	15972-60-8	330	G	1,600	G	190,000	С
ALDICARB	116-06-3	220	G	3,200	G	190,000	С
ALDICARB SULFONE	1646-88-4	220	G	3,200	G	190,000	С
ALDICARB SULFOXIDE	1646-87-3	220	G	3,200	G	190,000	С
ALDRIN	309-00-2	1.1	G	5.4	G	190,000	С
ALLYL ALCOHOL	107-18-6	1.9	N	[8] <u>7.9</u>	N	9.1	Ν
AMETRYN	834-12-8	2,000	G	29,000	G	190,000	С
AMINOBIPHENYL, 4-	92-67-1	0.89	G	4.3	G	190,000	С
AMITROLE	61-82-5	20	G	97	G	190,000	С
AMMONIA	7664-41-7	[1,900] <u>9,600</u>	N	[8,000] <u>10,000</u>	[N] <u>C</u>	[9,100] <u>10,000</u>	[N] <u>C</u>
AMMONIUM SULFAMATE	7773-06-0	44,000	G	190,000	С	190,000	С
ANILINE	62-53-3	19	N	79	N	[91] <u>90</u>	N
ANTHRACENE	120-12-7	66,000	G	190,000	С	190,000	С
ATRAZINE	1912-24-9	81	G	400	G	190,000	С
AZINPHOS-METHYL (GUTHION)	86-50-0	[660] <u>330</u>	G	[9,600] <u>4,800</u>	G	190,000	С
BAYGON (PROPOXUR)	114-26-1	880	G	13,000	G	190,000	С
BENOMYL	17804-35-2	[11,000] <u>7,800</u>	G	[160,000] <u>38,000</u>	G	190,000	С
BENTAZON	25057-89-0	6,600	G	96,000	G	190,000	С
BENZENE	71-43-2	57	N	[290] <u>280</u>	N	330	N
BENZIDINE	92-87-5	0.018	G	0.4	G	190,000	С
I DENIZO[A1ANTUDACENE						190,000	С
BENZO[A]ANTHRACENE	56-55-3	[6] <u>6.1</u>	G	130	G		
BENZO[A]PYRENE	50-32-8	[0.58] <u>4.2</u>	G	[12] <u>91</u>	G	190,000	С
BENZO[A]PYRENE BENZO[B]FLUORANTHENE	50-32-8 205-99-2	[0.58] 4.2 3.5	G G	[12] <u>91</u> 76	G G	190,000 190,000	C C
BENZO[A]PYRENE BENZO[B]FLUORANTHENE BENZO[GHI]PERYLENE	50-32-8 205-99-2 191-24-2	[0.58] <u>4.2</u> 3.5 13,000	G G G	[12] <u>91</u> 76 190,000	G G C	190,000 190,000 190,000	C C
BENZO[A]PYRENE BENZO[BJFLUORANTHENE BENZO[GHI]PERYLENE BENZO[KJFLUORANTHENE	50-32-8 205-99-2 191-24-2 207-08-9	[0.58] <u>4.2</u> 3.5 13,000 [4] <u>3.5</u>	G G G	[12] <u>91</u> 76 190,000 76	G G C G	190,000 190,000 190,000 190,000	C C C
BENZO[A]PYRENE BENZO[B]FLUORANTHENE BENZO[GHI]PERYLENE BENZO[K]FLUORANTHENE BENZOIC ACID	50-32-8 205-99-2 191-24-2 207-08-9 65-85-0	[0.58] <u>4.2</u> 3.5 13,000 [4] <u>3.5</u> 190,000	G G G C	[12] <u>91</u> 76 190,000 76 190,000	G G C G	190,000 190,000 190,000 190,000 190,000	C C C C
BENZO[A]PYRENE BENZO[B]FLUORANTHENE BENZO[GHI]PERYLENE BENZO[K]FLUORANTHENE BENZOIC ACID BENZOTRICHLORIDE	50-32-8 205-99-2 191-24-2 207-08-9 65-85-0 98-07-7	[0.58] 4.2 3.5 13,000 [4] 3.5 190,000 1.4	G G G C	[12] <u>91</u> 76 190,000 76 190,000 7	G G C G	190,000 190,000 190,000 190,000 190,000 10,000	C C C C
BENZO[A]PYRENE BENZO[B]FLUORANTHENE BENZO[GHI]PERYLENE BENZO[K]FLUORANTHENE BENZOIC ACID BENZOTRICHLORIDE BENZYL ALCOHOL	50-32-8 205-99-2 191-24-2 207-08-9 65-85-0 98-07-7 100-51-6	[0.58] 4.2 3.5 13,000 [4] 3.5 190,000 1.4 10,000	G G G C C	[12] <u>91</u> 76 190,000 76 190,000 7 10,000	G C G C	190,000 190,000 190,000 190,000 190,000 10,000	C C C C C
BENZO[A]PYRENE BENZO[B]FLUORANTHENE BENZO[GHI]PERYLENE BENZO[K]FLUORANTHENE BENZOIC ACID BENZOTRICHLORIDE BENZYL ALCOHOL BENZYL CHLORIDE	50-32-8 205-99-2 191-24-2 207-08-9 65-85-0 98-07-7 100-51-6 100-44-7	[0.58] 4.2 3.5 13,000 [4] 3.5 190,000 1.4 10,000 9	G G G C C	[12] 91 76 190,000 76 190,000 7 10,000 45	G G C G C	190,000 190,000 190,000 190,000 190,000 10,000 10,000 52	C C C C C C
BENZO[A]PYRENE BENZO[B]FLUORANTHENE BENZO[GHI]PERYLENE BENZO[K]FLUORANTHENE BENZOIC ACID BENZOTRICHLORIDE BENZYL ALCOHOL BENZYL CHLORIDE BETA PROPIOLACTONE	50-32-8 205-99-2 191-24-2 207-08-9 65-85-0 98-07-7 100-51-6 100-44-7 57-57-8	[0.58] 4.2 3.5 13,000 [4] 3.5 190,000 1.4 10,000 9 0.11	G G G C C N N	[12] 91 76 190,000 76 190,000 7 10,000 45 [0.56] 0.55	G G C G C N N	190,000 190,000 190,000 190,000 190,000 10,000 10,000 52 [0.64] 0.63	C C C C C C N N
BENZO[A]PYRENE BENZO[B]FLUORANTHENE BENZO[GHI]PERYLENE BENZO[K]FLUORANTHENE BENZOIC ACID BENZOTRICHLORIDE BENZYL ALCOHOL BENZYL CHLORIDE BETA PROPIOLACTONE BHC, ALPHA	50-32-8 205-99-2 191-24-2 207-08-9 65-85-0 98-07-7 100-51-6 100-44-7 57-57-8	[0.58] 4.2 3.5 13,000 [4] 3.5 190,000 1.4 10,000 9 0.11	G G G C C N N	[12] 91 76 190,000 76 190,000 7 10,000 45 [0.56] 0.55	G G C G C N N	190,000 190,000 190,000 190,000 190,000 10,000 52 [0.64] 0.63	C C C C C C N N
BENZO[A]PYRENE BENZO[B]FLUORANTHENE BENZO[GHI]PERYLENE BENZO[K]FLUORANTHENE BENZOIC ACID BENZOTRICHLORIDE BENZYL ALCOHOL BENZYL CHLORIDE BETA PROPIOLACTONE	50-32-8 205-99-2 191-24-2 207-08-9 65-85-0 98-07-7 100-51-6 100-44-7 57-57-8	[0.58] 4.2 3.5 13,000 [4] 3.5 190,000 1.4 10,000 9 0.11	G G G C C N N	[12] 91 76 190,000 76 190,000 7 10,000 45 [0.56] 0.55	G G C G C N N	190,000 190,000 190,000 190,000 190,000 10,000 10,000 52 [0.64] 0.63	C C C C C C N N

All concentrations in mg/kg G – Ingestion N- Inhalation C- Cap

Appendix A

Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil

A. Direct Contact Numeric Values

REGULATED SUBSTANCE CASRN Residential 0-15 feet Soil 0-2 feet Soil 0	il feet [C] N C C C C C C C C C
BIS(2-CHLOROETHOXY)METHANE	0 N 0 C 6 N 0 N 1 N 0 C 0 C 0 C 0 C 0 C 0 N 0 N
BIS(2-CHLOROETHYL)ETHER	6 N O N 1 N O C O C O C O C O C O N O N
BIS(2-CHLORO-ISOPROPYL)ETHER 108-60-1 44 N 220 N 25 BIS(CHLOROMETHYL)ETHER 542-88-1 [0.0072] N 0.036 N 0.04 BIS[2-ETHYLHEXYL] PHTHALATE 117-81-7 1,300 G 6,500 G 10,00 BISPHENOL A 80-05-7 11,000 G 160,000 G 190,00 BROMACIL 314-40-9 22,000 G 190,000 C 190,00 BROMOBENZENE 108-86-1 1,100 N 4,700 N 5,40 BROMOCHLOROMETHANE 74-97-5 [770] 760 N 3,200 N 3,60 BROMOMETHANE 75-27-4 12 N 60 N 6 BROMOMETHANE 74-83-9 [96] 95 N 400 N 46 BROMOXYNIL 1689-84-5 [4,400] G [64,000] G 190,00	0 N 1 N 0 C 0 C 0 C 0 C 0 N 9 N
BIS(CHLOROMETHYL)ETHER 542-88-1 [0.0072] N 0.0071 N 0.036 N 0.04 BIS[2-ETHYLHEXYL] PHTHALATE 117-81-7 1,300 G 6,500 G 10,00 G 160,000 G 190,00 BISPHENOL A 80-05-7 11,000 G 160,000 G 190,00 G 190,00 BROMACIL 314-40-9 22,000 G 190,000 C 190,00 G 190,000 C 190,00 BROMOBENZENE 108-86-1 1,100 N 4,700 N 5,40 N 5,40 BROMOCHLOROMETHANE 74-97-5 [770] 760 N 3,200 N 3,60 BROMODICHLOROMETHANE 75-27-4 12 N 60 N 6 BROMOMETHANE 74-83-9 [96] 95 N 400 N 46 BROMOXYNIL 1689-84-5 [4,400] G [64,000] G 190,00	1 N C C C C C C C C N C N C N C N C N C
BIS[2-ETHYLHEXYL] PHTHALATE	C C C C C C C C C C C C C C C C C C C
BISPHENOL A 80-05-7 11,000 G 160,000 G 190,00 BROMACIL 314-40-9 22,000 G 190,000 C 190,00 BROMOBENZENE 108-86-1 1,100 N 4,700 N 5,40 BROMOCHLOROMETHANE 74-97-5 [770] 760 N 3,200 N 3,60 BROMODICHLOROMETHANE 75-27-4 12 N 60 N 6 BROMOMETHANE 74-83-9 [96] 95 N 400 N 46 BROMOXYNIL 1689-84-5 [4,400] G [64,000] G 190,00	0 C 0 C 0 N 0 N
BROMACIL 314-40-9 22,000 G 190,000 C 190,00 BROMOBENZENE 108-86-1 1,100 N 4,700 N 5,40 BROMOCHLOROMETHANE 74-97-5 [770] 760 N 3,200 N 3,60 BROMODICHLOROMETHANE 75-27-4 12 N 60 N 6 BROMOMETHANE 74-83-9 [96] 95 N 400 N 46 BROMOXYNIL 1689-84-5 [4,400] G [64,000] G 190,00	O C N N N N N N N N N N N N N N N N N N
BROMOBENZENE 108-86-1 1.100 N 4,700 N 5.40 BROMOCHLOROMETHANE 74-97-5 [770] 760 N 3,200 N 3,60 BROMODICHLOROMETHANE 75-27-4 12 N 60 N 6 BROMOMETHANE 74-83-9 [96] 95 N 400 N 46 BROMOXYNIL 1689-84-5 [4,400] G [64,000] G 190,00	N N N N N N N N N N N N N N N N N N N
BROMOCHLOROMETHANE 74-97-5 [770] 760 N 3,200 N 3,60 BROMODICHLOROMETHANE 75-27-4 12 N 60 N 6 BROMOMETHANE 74-83-9 [96] 95 N 400 N 46 BROMOXYNIL 1689-84-5 [4,400] G [64,000] G 190,00	0 N 9 N 0 N
BROMODICHLOROMETHANE 75-27-4 12 N 60 N 6 BROMOMETHANE 74-83-9 [96] 95 N 400 N 46 BROMOXYNIL 1689-84-5 [4,400] G [64,000] G 190,00	9 N 0 N
BROMOMETHANE 74-83-9 [96] 95 N 400 N 46 BROMOXYNIL 1689-84-5 [4,400] G [64,000] G 190,00) N
BROMOXYNIL 1689-84-5 [4,400] G [64,000] G 190,00	
) C
<u>180</u> <u>880</u>	
BROMOXYNIL OCTANOATE 1689-99-2 [4,400] G [64,000] G 190,00) C
BUTADIENE, 1,3- 106-99-0 [5.5] 15 [G] [27] 74 [G] 8	5 N
BUTYL ALCOHOL, N- 71-36-3 10,000 C 10,000 C 10,000	
BUTYLATE 2008-41-5 10,000 C 10,000 C 10,000	
BUTYLBENZENE, N- 104-51-8 10,000 C 10,000 C 10,000	
BUTYLBENZENE, SEC- 135-98-8 10,000 C 10,000 C 10,000	
BUTYLBENZENE, TERT- 98-06-6 10,000 C 10,000 C 10,000	
BUTYLBENZYL PHTHALATE 85-68-7 9,800 G 10,000 C 10,00	
CAPTAN 133-06-2 8,100 G 40,000 G 190,00	
CARBARYL 63-25-2 22,000 G 190,000 C 190,00	
CARBAZOLE 86-74-8 930 G 4,600 G 190,00	
CARBOFURAN 1563-66-2 1,100 G 16,000 G 190,00	
CARBON DISULFIDE 75-15-0 10,000 C 10,000 C 10,000	
CARBON TETRACHLORIDE 56-23-5 [74] 75 N 370 N 43	
CARBOXIN 5234-68-4 22,000 G 190,000 C 190,00	
CHLORAMBEN 133-90-4 3,300 G 48,000 G 190,00	
CHLORDANE 57-74-9 53 G 260 G 190,00	
CHLORO-1,1-DIFLUOROETHANE, 1- 75-68-3 10,000 C 10,000 C 10,000	
CHLORO-1-PROPENE, 3- (ALLYL CHLORIDE) 107-05-1 19 N 80 N [91] 9	
CHLOROACETALDEHYDE 107-20-0 [62] 69 G [300] 340 G 10,00	
CHLOROACETOPHENONE, 2- 532-27-4 190,000 C 190,000 C 190,000	
CHLOROANILINE, P- 106-47-8 93 G 460 G 190,00	
CHLOROBENZENE 108-90-7 [960] 950 N [4,000] N [4,600] 3,900 4,50	<u> </u>
CHLOROBENZILATE 510-15-6 170 G 830 G 190,00	
CHLOROBUTANE, 1- 109-69-3 8,800 G 10,000 C 10,00	
<u>G</u> <u>G</u> 10,00	
CHLORODIFLUOROMETHANE 75-45-6 10,000 C 10,000 C 10,000	
CHLOROETHANE 75-00-3 [6,400] [G] 10,000 C 10,000) C
CHLOROFORM 67-66-3 19 N [97] 96 N 11	
CHLORONAPHTHALENE, 2- 91-58-7 18,000 G 190,000 C 190,00	N C

All concentrations in mg/kg

G – Ingestion N- Inhalation

C- Cap

Appendix A

Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil

A. Direct Contact Numeric Values

				Nonresidential				
REGULATED SUBSTANCE	CASRN	Residential 0-15 feet		Surface Soil 0-2 feet		Subsurface Soil 2-15 feet		
CHLORONITROBENZENE, P-	100-00-5	[220] <u>39</u>	[G] N	[3,200] 160	[G] N	[190,000] 180	[C] N	
CHLOROPHENOL, 2-	95-57-8	1,100	G	10,000	С	10,000	С	
CHLOROPRENE	126-99-8	1.5	N	7.4	N	8.5	N	
CHLOROPROPANE, 2-	75-29-6	1,900	N	[8,000] 7,900	N	9,100	N	
CHLOROTHALONIL	1897-45-6	[3,300] <u>1,100</u>	G	[29,000] <u>5,400</u>	G	190,000	С	
CHLOROTOLUENE, O-	95-49-8	4,400	G	10,000	С	10,000	С	
CHLOROTOLUENE, P-	106-43-4	4,400	С	10,000	С	10,000	С	
CHLORPYRIFOS	2921-88-2	220	G	3,200	G	190,000	С	
CHLORSULFURON	64902-72-3	[11,000] <u>4,400</u>	G	[160,000] <u>64,000</u>	G	190,000	С	
CHLORTHAL-DIMETHYL (DACTHAL) (DCPA)	1861-32-1	2,200	G	32,000	G	190,000	С	
CHRYSENE	218-01-9	35	G	760	G	190,000	С	
CRESOL(S)	1319-77-3	10,000	С	10,000	С	10,000	С	
CRESOL, 4,6-DINITRO-O-	534-52-1	18	G	260	G	190,000	С	
CRESOL, O- (2-METHYLPHENOL)	95-48-7	11,000	G	160,000	G	190,000	С	
CRESOL, M- (3-METHYLPHENOL)	108-39-4	10,000	С	10,000	С	10,000	С	
CRESOL, P- (4-METHYLPHENOL)	106-44-5	1,100	G	16,000	G	190,000	С	
CRESOL, P-CHLORO-M-	59-50-7	22,000	G	190,000	G	190,000	С	
CROTONALDEHYDE	4170-30-3	9.8	G	48	G	10,000	С	
CROTONALDEHYDE, TRANS-	123-73-9	9.8	G	48	G	10,000	С	
CUMENE (ISOPROPYL BENZENE)	98-82-8	[7,700] <u>7,600</u>	N	10,000	С	10,000	С	
CYANAZINE	21725-46-2	22	G	110	G	190,000	С	
CYCLOHEXANE	110-82-7	10,000	С	10,000	С	10,000	С	
CYCLOHEXANONE	108-94-1	10,000	С	10,000	С	10,000	С	
CYFLUTHRIN	68359-37-5	5,500	G	80,000	G	190,000	С	
CYROMAZINE	66215-27-8	[1,700] <u>110,000</u>	G	[24,000] 190,000	[G] <u>C</u>	190,000	С	
DDD, 4,4'-	72-54-8	78	G	380	G	190,000	С	
DDE, 4,4'-	72-55-9	55	G	270	G	190,000	С	
DDT, 4,4'-	50-29-3	55	G	270	G	190,000	С	
DI(2-ETHYLHEXYL)ADIPATE	103-23-1	10,000	С	10,000	С	10,000	С	
DIALLATE	2303-16-4	300	G	1,500	G	10,000	С	
DIAMINOTOLUENE, 2,4-	95-80-7	4.7	G	23	G	190,000	С	
DIAZINON	333-41-5	150	G	2,200	G	10,000	С	
DIBENZO[A,H]ANTHRACENE	53-70-3	1	G	22	G	190,000	С	
DIBENZOFURAN	132-64-9	220	G	3,200	G	190,000	С	
DIBROMO-3-CHLOROPROPANE, 1,2-	96-12-8	0.029	N	0.37	N	[0.43] <u>0.42</u>	N	
DIBROMOBENZENE, 1,4-	106-37-6	2,200	G	32,000	G	190,000	С	
DIBROMOETHANE, 1,2- (ETHYLENE DIBROMIDE)	106-93-4	0.74	N	3.7	N	[4.3] <u>4.2</u>	N	
DIBROMOMETHANE	74-95-3	[77] <u>76</u>	N	[320] <u>310</u>	Ν	[370] <u>360</u>	N	
DIBUTYL PHTHALATE, N-	84-74-2	10,000	С	10,000	С	10,000	С	
DICAMBA	1918-00-9	6,600	G	96,000	G	190,000	С	
DICHLOROACETIC ACID	76-43-6	370	G	1,800	G	10,000	С	
DICHLORO-2-BUTENE, 1,4-	764-41-0	0.11	N	[0.53] 0.52	N	[0.61] <u>0.6</u>	N	
DICHLORO-2-BUTENE, TRANS-1,4-	110-57-6	[0.1] <u>0.11</u>	N	0.52	N	0.6	N	
DICHLOROBENZENE. 1.2-	95-50-1	3,800	N	10,000	С	10,000	С	

All concentrations in mg/kg

G – Ingestion N- Inhalation

C- Cap

Appendix A

Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil

A. Direct Contact Numeric Values

		Residential 0-15 feet		Nonresidential				
REGULATED SUBSTANCE	CASRN			Surface Soil 0-2 feet		Subsurface Soil 2-15 feet		
DICHLOROBENZENE, 1,3-	541-73-1	10,000	С	10,000	С	10,000	С	
DICHLOROBENZENE, P-	106-46-7	40	Ν	200	Ν	230	Ν	
DICHLOROBENZIDINE, 3,3'-	91-94-1	41	G	200	G	190,000	С	
DICHLORODIFLUOROMETHANE (FREON 12)	75-71-8	1,900	N	8,000	N	9,100	N	
DICHLOROETHANE, 1,1-	75-34-3	280	N	1,400	N	1,600	N	
DICHLOROETHANE, 1,2-	107-06-2	17	N	[86] <u>85</u>	N	98	N	
DICHLOROETHYLENE, 1,1-	75-35-4	3,800	N	10,000	С	10,000	С	
DICHLOROETHYLENE, CIS-1,2-	156-59-2	440	G	6,400	G	10,000	С	
DICHLOROETHYLENE, TRANS-1,2-	156-60-5	[1,100] 4,400	[N] G	[4,800] 10,000	[N]	[5,500] 10,000	[N] C	
DICHLOROMETHANE (METHYLENE CHLORIDE)	75-09-2	1,300	G	10,000	С	10,000	С	
DICHLOROPHENOL, 2,4-	120-83-2	660	G	9,600	G	190,000	С	
DICHLOROPHENOXYACETIC ACID, 2,4- (2,4-D)	94-75-7	2,200	G	32,000	G	190,000	С	
DICHLOROPROPANE, 1,2-	78-87-5	[45] <u>0.12</u>	N	[220] <u>0.6</u>	N	[260] 0.69	N	
DICHLOROPROPENE, 1,3-	542-75-6	110	N	[560] 550	N	640	N	
DICHLOROPROPIONIC ACID, 2,2- (DALAPON)	75-99-0	6,600	G	10,000	С	10,000	С	
DICHLORVOS	62-73-7	64	G	310	G	10.000	С	
DICYCLOPENTADIENE	77-73-6	[6] <u>5.7</u>	N	24	N	27	N	
DIELDRIN	60-57-1	1.2	G	[6] 5.7	G	190,000	С	
DIETHANOLAMINE	111-42-2	440	G	6,400	G	10,000	C	
DIETHYL PHTHALATE	84-66-2	10,000	C	10,000	C	10,000	C	
DIFLUBENZURON	35367-38-5	4,400	G	64,000	G	190,000	C	
DIISOPROPYL METHYLPHOSPHONATE	1445-75-6	10,000	C	10.000	C	10.000	C	
DIMETHOATE	60-51-5	[44] 480	G	[40] 7,000	G	190.000	C	
DIMETHOXYENZIDINE, 3,3-	119-90-4	[1,300] 12	G	[6,500] 57	G	190,000	C	
DIMETHOX I BENZIBINE, 0,3"	70-38-2	66,000	G	190,000	C	190,000	C	
DIMETHYLAMINOAZOBENZENE, P-	60-11-7	4	G	20	G	190,000	C	
DIMETHYLANILINE, N,N-	121-69-7	440	G	[6,400] 3,400	G	10,000	С	
DIMETHYLBENZIDINE, 3,3-	119-93-7	1.7	G	8.3	G	190,000	С	
DIMETHYL METHYLPHOSPHONATE	756-79-6	10,000	C	10,000	C	10,000	C	
DIMETHYLPHENOL, 2,4-	105-67-9	4,400	G	10,000	C	10.000	C	
DINITROBENZENE, 1,3-	99-65-0	22	G	320	G	190.000	C	
DINITROPHENOL, 2,4-	51-28-5	440	G	6,400	G	190,000	C	
DINITROTOLUENE, 2,4-	121-14-2	60	G	290	G	190,000	C	
DINITROTOLUENE, 2,6- (2,6-DNT)	606-20-2	12	G	61	G	190,000	C	
DINOSEB	88-85-7	220	G	3,200	G	190,000	C	
DIOXANE, 1,4-	123-91-1	[58] 89	N	[290] 440	N	[330] 510	N	
DIPHENAMID	957-51-7	6,600	G	96.000	G	190.000	C	
DIPHENYLAMINE	122-39-4	[5,500] 22,000	G	[80,000] 190,000	[G]	190,000	С	
DIPHENYLHYDRAZINE, 1,2-	122-66-7	[23] <u>2.1</u>	[G] N	[110] <u>10</u>	[G] N	[190,000] 12	[C] N	
DIQUAT	85-00-7	480	G	7,000	G	190,000	C	
DISULFOTON	298-04-4	8.8	G	130	G	10,000	C	
DITHIANE, 1,4-	505-29-3	2,200	G	32,000	G	190,000	C	
DIURON	330-54-1	440	G	6,400	G	190,000	C	
ENDOSULFAN	115-29-7	1,300	Ğ	19,000	G	190,000	C	
ENDOSULFAN I (ALPHA)	959-98-8	1,300	G	19,000	G	190.000	C	
ENDOSULFAN II (BETA)	33213-65-9	1,300	G	19,000	G	190,000	C	
ENDOSULFAN SULFATE	1031-07-8	1,300	G	19,000	G	190,000	C	
	1001010	1,000		.0,000		.00,000		

All concentrations in mg/kg

G – Ingestion N- Inhalation C- Cap

PROPOSED RULEMAKING

Appendix A

Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil

A. Direct Contact Numeric Values

				Nonresidential				
REGULATED SUBSTANCE CASRN		Residential 0-15 feet		Surface Soil 0-2 feet		Subsurface Soil 2-15 feet		
ENDOTHALL	145-73-3	4,400	G	64,000	G	190,000	С	
ENDRIN	72-20-8	66	G	960	G	190,000	С	
EPICHLOROHYDRIN	106-89-8	19	N	79	N	91	N	
ETHEPHON	16672-87-0	1,100	G	16,000	G	190,000	С	
ETHION	563-12-2	110	G	1,600	G	10,000	С	
ETHOXYETHANOL, 2- (EGEE)	110-80-5	[3,900] 3,800	N	10,000	С	10,000	С	
ETHYL ACETATE	141-78-6	1,300	N	[5,600] <u>5,500</u>	N	[6,400] <u>6,300</u>	N	
ETHYL ACRYLATE	140-88-5	150	N	[640] <u>630</u>	N	[730] <u>720</u>	Ν	
ETHYL BENZENE	100-41-4	180	N	[890] 880	N	1,000	N	
ETHYL DIPROPYLTHIOCARBAMATE, S- (EPTC)	759-94-4	[5,500] <u>10,000</u>	[G] <u>C</u>	10,000	С	10,000	С	
ETHYL ETHER	60-29-7	10,000	С	10,000	С	10,000	С	
ETHYL METHACRYLATE	97-63-2	5,700	N	10,000	С	10,000	С	
ETHYLENE CHLORHYDRIN	107-07-3	4,400	G	10,000	С	10,000	С	
ETHYLENE GLYCOL	107-21-1	[7,700] <u>7,600</u>	N	10,000	С	10,000	С	
ETHYLENE THIOUREA (ETU)	96-45-7	18	G	260	G	190,000	С	
ETHYLP-NITROPHENYL PHENYLPHOSPHOROTHIOATE	2104-64-5	2.2	G	32	G	190,000	С	
FENAMIPHOS	22224-92-6	55	G	800	G	190,000	С	
FENVALERATE (PYDRIN)	51630-58-1	5,500	G	10,000	С	10,000	С	
FLUOMETURON	2164-17-2	2,900	G	42,000	G	190,000	С	
FLUORANTHENE	206-44-0	8,800	G	130,000	G	190,000	С	
FLUORENE	86-73-7	8,800	G	130,000	G	190,000	С	
FLUOROTRICHLOROMETHANE (FREON 11)	75-69-4	10,000	С	10,000	С	10,000	С	
FONOFOS	944-22-9	440	G	6,400	G	10,000	С	
FORMALDEHYDE	50-00-0	34	N	170	N	200	N	
FORMIC ACID	64-18-6	[6] <u>5.7</u>	N	24	N	27	N	
FOSETYL-AL	39148-24-8	190,000	С	190,000	С	190,000	С	
FURAN	110-00-9	220	G	3,200	G	10,000	С	
FURFURAL	98-01-1	[660] <u>530</u>	G	[4,000] 2,600	[N] <u>G</u>	4,500	N	
GLYPHOSATE	1071-83-6	22,000	G	190,000	С	190,000	С	
HEPTACHLOR	76-44-8	[4] <u>4.1</u>	G	20	G	190,000	С	
HEPTACHLOR EPOXIDE	1024-57-3	2	G	10	G	190,000	С	
HEXACHLOROBENZENE	118-74-1	12	G	57	G	190,000	С	
HEXACHLOROBUTADIENE	87-68-3	220	G	1,200	G	10,000	С	
HEXACHLOROCYCLOPENTADIENE	77-47-4	1,300	G	10,000	С	10,000	С	
HEXACHLOROETHANE	67-72-1	[44] <u>46</u>	N	[220] <u>230</u>	N	[260] <u>270</u>	N	
HEXANE	110-54-3	10,000	С	10,000	С	10,000	С	
HEXAZINONE	51235-04-2	7,300	G	110,000	G	190,000	С	
HEXYTHIAZOX (SAVEY)	78587-05-0	5,500	G	80,000	G	190,000	С	
HMX	2691-41-0	11,000	G	160,000	G	190,000	С	
HYDRAZINE/HYDRAZINE SULFATE	302-01-2	[0.09] 0.091	N	0.45	N	0.52	N	
HYDROQUINONE	123-31-9	310	G	1,500	G	190,000	С	
INDENO[1,2,3-CD]PYRENE	193-39-5	3.5	G	76	G	190,000	С	
IPRODIONE	36734-19-7	[8,800] <u>420</u>	G	[130,000] 2,100	G	190,000	С	
ISOBUTYL ALCOHOL	78-83-1	10,000	С	10,000	С	10,000	С	

All concentrations in mg/kg

G – Ingestion N- Inhalation C- Cap

Appendix A

Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil

A. Direct Contact Numeric Values

				N	onresi	dential	
REGULATED SUBSTANCE	CASRN	Resident 0-15 fee		Surface Soil 0-2 fee		Subsurfa Soil 2-15 fe	
ISOPHORONE	78-59-1	10,000	С	10,000	С	10,000	С
ISOPROPYL METHYLPHOSPHONATE	1832-54-8	10,000	С	10,000	С	10,000	С
KEPONE	143-50-0	1.9	G	9.1	G	190,000	С
MALATHION	121-75-5	4,400	G	10,000	С	10,000	С
MALEIC HYDRAZIDE	123-33-1	110,000	G	190,000	С	190,000	С
MANEB	12427-38-2	[1,100] <u>310</u>	G	[16,000] <u>1,500</u>	G	190,000	С
MERPHOS OXIDE	78-48-8	[6.6] <u>220</u>	G	[96] <u>3,200</u>	G	10,000	С
METHACRYLONITRILE	126-98-7	22	G	320	G	[2,800] <u>2,700</u>	N
METHAMIDOPHOS	10265-92-6	11	G	160	G	190,000	С
METHANOL	67-56-1	10,000	С	10,000	С	10,000	С
METHOMYL	16752-77-5	5,500	G	80,000	G	190,000	С
METHOXYCHLOR	72-43-5	1,100	G	16,000	G	190,000	С
METHOXYETHANOL, 2-	109-86-4	380	N	1,600	N	1,800	N
METHYL ACETATE	79-20-9	10,000	С	10,000	C	10,000	С
METHYL ACRYLATE	96-33-3	380	N	1,600	N	1,800	N
METHYL CHLORIDE	74-87-3	250	N	1,200	N	1,400	N
METHYL ETHYL KETONE	78-93-3	10,000	C	10,000	C	10,000	С
METHYL HYDRAZINE	60-34-4	0.38	N	1.6	N	1.8	N
METHYL ISOBUTYL KETONE	108-10-1	10,000	C	10,000	C	10,000	С
METHYL ISOCYANATE	624-83-9	19	N	79	N	91	N
METHYL N-BUTYL KETONE (2-HEXANONE)	591-78-6	570	N	2,400	N	[2,800] <u>2,700</u>	N
METHYL METHACRYLATE	80-62-6	10,000	С	10,000	С	10,000	С
METHYL METHANESULFONATE	66-27-3	190	G	920	G	10,000	С
METHYL PARATHION	298-00-0	55	G	800	G	190,000	С
METHYL STYRENE (MIXED ISOMERS)				[3,200] <u>3,100</u>	N	3,600	N
METHYL TERT-BUTYL ETHER (MTBE)		98-83-9 10,000 C 51218-45-2 10,000 C 21087-64-9 5,500 G 7786-34-7 5.5 G	[8,600] <u>8,500</u>	N	[9,900] <u>9,800</u>	N	
METHYLCHLOROPHENOXYACETIC ACD (MCPA)	25013-15-4 [770] <u>760</u> N 1634-04-4 1,700 N (MCPA) 94-74-6 110 G 4'- 101-14-4 42 G 91-57-6 [880] <u>57</u> [G] N 98-83-9 10,000 C	1,600	С	190,000	С		
METHYLENE BIS(2-CHLOROANILINE), 4,4'-		-4 1,700 N -6 110 G -4 42 G -6 [880] <u>57</u> [G] [910	G	190,000	С	
METHYLNAPHTHALENE, 2-			110 G 42 G 80] <u>57</u> [G] [1: N 10,000 C 1 10,000 C 1 5,500 G 8	[13,000] <u>240</u>	[G] <u>N</u>	[190,000] <u>270</u>	[C]
METHYLSTYRENE, ALPHA	91-57-6 [880] <u>57</u> [G] [98-83-9 10,000 C 51218-45-2 10,000 C 21087-64-9 5,500 G <u>7786-34-7</u> 5.5 <u>G</u> 79-11-8 440 G 91-20-3 [160] <u>13</u> [G] [10,000	С	10,000	С		
METOLACHLOR		10,000	C	10,000	С		
METRIBUZIN		98-83-9 10,000 C 11218-45-2 10,000 C 11087-64-9 5,500 G 7786-34-7 5.5 G 79-11-8 440 G	80,000	G	190,000	С	
MEVINPHOS			C 10, G 80, G 6, G 6, M [760]	80	<u>G</u>	190,000	<u>C</u>
MONOCHLOROACETIC ACID				6,400	G	190,000	С
NAPHTHALENE			<u>N</u>	[760] <u>66</u>	[G] <u>N</u>	[190,000] <u>77</u>	[C]
NAPHTHYLAMINE, 1-	134-32-7	10	G	51	G	190,000	С
NAPHTHYLAMINE, 2-	91-59-8	10	G	51	G	190,000	С
NAPROPAMIDE	15299-99-7	[22,000] <u>26,000</u>	G	190,000	С	190,000	С
NITROANILINE, O-	88-74-4	[2,200] <u>0.95</u>	[G] <u>N</u>	[32,000] <u>3.9</u>	[G] <u>N</u>	[190,000] <u>4.5</u>	[C]
NITROANILINE, P-	100-01-6	880	G	4,600	G	190,000	С
NITROBENZENE	98-95-3	[440] <u>11</u>	[G] <u>N</u>	[6,400] <u>55</u>	[G] <u>N</u>	[10,000] <u>63</u>	[C]
NITROGUANIDINE	556-88-7	22,000	G	190,000	С	190,000	С

Appendix A

Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil

A. Direct Contact Numeric Values

				N	onresi	dential	
REGULATED SUBSTANCE	CASRN	Resident 0-15 fee		Surface Soil 0-2 fee		Subsurfa Soil 2-15 fe	
NITROPHENOL, 2-	88-75-5	1,800	G	26,000	G	190,000	С
NITROPHENOL, 4-	100-02-7	1,800	G	26,000	G	190,000	С
NITROPROPANE, 2-	79-46-9	0.16	N	0.82	N	0.94	N
NITROSODIETHYLAMINE, N-	55-18-5	0.0041	N	0.051	N	0.059	N
NITROSODIMETHYLAMINE, N-	62-75-9	0.012	N	0.16	N	0.18	N
NITROSO-DI-N-BUTYLAMINE, N-	924-16-3	[3.4] <u>0.28</u>	[G] <u>N</u>	[17] <u>1.4</u>	[G] <u>N</u>	[10,000] 1.6	[C] <u>N</u>
NITROSODI-N-PROPYLAMINE, N-	621-64-7	[2.7] <u>0.22</u>	[G] N	[13] <u>1.1</u>	[G] N	[10,000] <u>1.3</u>	[C] N
NITROSODIPHENYLAMINE, N-	86-30-6	[3,800] <u>170</u>	[G] <u>N</u>	[19,000] <u>860</u>	[G] <u>N</u>	[190,000] <u>990</u>	[C]
NITROSO-N-ETHYLUREA, N-	759-73-9	0.16	G	3.4	G	190,000	С
OCTYL PHTHALATE, DI-N-	117-84-0	2,200	G	10,000	С	10,000	С
OXAMYL (VYDATE)	23135-22-0	5,500	G	80,000	G	190,000	С
PARAQUAT	1910-42-5	990	G	14,000	G	190,000	С
PARATHION	56-38-2	[1,300] <u>6.6</u>	G	[10,000] 96	[C] G	10,000	С
PCBS, TOTAL (POLYCHLORINATED BIPHENYLS) (AROCLORS)	<u>1336-36-3</u>	9.3	<u>G</u>	<u>46</u>	G	190,000	<u>C</u>
PCB-1016 (AROCLOR)	12674-11-2	[9] <u>15</u>	G	[46] 220	G	10,000	С
PCB-1221 (AROCLOR)	11104-28-2	[9] <u>4.7</u>	[G] <u>N</u>	[46] <u>23</u>	[G] <u>N</u>	[10,000] 27	[C] N
PCB-1232 (AROCLOR)	11141-16-5	[9] <u>9.3</u>	G	46	G	10,000	<u>N</u> C
PCB-1242 (AROCLOR)	53469-21-9	[9] 9.3	G	46	G	10,000	С
PCB-1248 (AROCLOR)	12672-29-6	9.3	G	46	G	10.000	С
PCB-1254 (AROCLOR)	11097-69-1	4.4	G	[46] 64	G	10.000	С
PCB-1260 (AROCLOR)	11096-82-5	[9] <u>9.3</u>	G	46	G	190,000	С
PEBULATE	1114-71-2	10,000	С	10,000	С	10,000	С
PENTACHLOROBENZENE	608-93-5	180	G	2,600	G	190,000	С
PENTACHLOROETHANE	76-01-7	210	G	1.000	G	10.000	С
PENTACHLORONITROBENZENE	82-68-8	72	G	350	G	190,000	С
PENTACHLOROPHENOL	87-86-5	47	G	230	G	190,000	C
PERFLUOROBUTANE SULFONATE (PFBS)	375-73-5	4,400	G	10,000	С	10,000	C
PERFLUOROOCTANE SULFONATE (PFOS)	1763-23-1	4.4	G	64	G	190,000	С
PERFLUOROOCTANOIC ACID (PFOA)	335-67-1	4.4	G	64	G	190,000	C C
PHENACETIN	62-44-2	8,500	G	41,000	G	190,000	С
PHENANTHRENE	85-01-8	66,000	G	190,000	С	190,000	С
PHENOL	108-95-2	3,800	N	16,000	N	18,000	N
PHENYL MERCAPTAN	108-98-5	220	G	3,200	G	10,000	С
PHENYLENEDIAMINE, M-	108-45-2	1,300	G	19,000	G	190,000	C
PHENYLPHENOL, 2-	90-43-7	[9,800] 9,600	G	[48,000] 47,000	G	190,000	С
PHORATE	298-02-2	44	G	640	G	10,000	С
PHTHALIC ANHYDRIDE	85-44-9	[190,000] 380	[C] N	[190,000] 1,600	[C] N	[190,000] 1,800	
PICLORAM	1918-02-1	15,000	G	190,000	С	190,000	С
PROMETON	1610-18-0	3,300	G	48,000	G	190,000	С
PRONAMIDE	23950-58-5	17,000	G	190,000	C	190,000	C
PROPACHLOR	1918-16-7	2,900	G	42,000	G	190,000	C
PROPANIL	709-98-8	1,100	G	16,000	G	190,000	С
PROPANOL, 2- (ISOPROPYL ALCOHOL)	67-63-0	3,800	N	10,000	C	10,000	C
PROPAZINE	139-40-2	4,400	G	10,000	C	10,000	C
t-		,			-		

Appendix A

Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil

A. Direct Contact Numeric Values

				No	onresi	dential	
REGULATED SUBSTANCE	CASRN	Resident 0-15 fee		Surface Soil 0-2 fee		Subsurfa Soil 2-15 fee	
PROPHAM	122-42-9	4,400	G	64,000	G	190,000	С
PROPYLBENZENE, N-	103-65-1	10,000	С	10,000	С	10,000	С
PROPYLENE OXIDE	75-56-9	78	G	380	G	690	N
PYRENE	129-00-0	6,600	G	96,000	G	190,000	С
PYRETHRUM	8003-34-7	220	G	3,200	G	10,000	С
PYRIDINE	110-86-1	220	G	3,200	G	10,000	С
QUINOLINE	91-22-5	[6] 6.2	G	30	G	10,000	С
QUIZALOFOP (ASSURE)	76578-14-8	2,000	G	29,000	G	190,000	С
RDX	121-82-4	[170] <u>230</u>	G	[830] 1,100	G	190,000	С
RESORCINOL	108-46-3	190,000	С	190,000	С	190,000	С
RONNEL	299-84-3	11,000	G	160,000	G	190,000	С
SIMAZINE	122-34-9	160	G	760	G	190,000	С
STRYCHNINE	57-24-9	66	G	960	G	190,000	С
STYRENE	100-42-5	10,000	С	10,000	С	10,000	С
TEBUTHIURON	34014-18-1	15,000	G	190,000	С	190,000	С
TERBACIL	5902-51-2	2,900	G	42,000	G	190,000	С
TERBUFOS	13071-79-9	5.5	G	80	G	10.000	C
TETRACHLOROBENZENE, 1,2,4,5-	95-94-3	66	G	960	G	190,000	С
TETRACHLORODIBENZO-P-DIOXIN, 2,3,7,8- (TCDD)	1746-01-6	0.00014	G	0.0007	G	190,000	С
TETRACHLOROETHANE, 1,1,1,2-	630-20-6	60	N	300	N	340	N
TETRACHLOROETHANE, 1,1,2,2-	79-34-5	[7.7] <u>7.6</u>	N	38	N	44	N
TETRACHLOROETHYLENE (PCE)	127-18-4	[770] 760	N	3,200	N	3,600	N
TETRACHLOROPHENOL, 2,3,4,6-	58-90-2	6,600	G	96,000	G	190,000	С
TETRAETHYL LEAD	78-00-2	0.022	G	0.32	G	10,000	C
TETRAETHYLDITHIOPYROPHOSPHATE	3689-24-5	110	G	1,600	G	10.000	C
TETRAHYDROFURAN	109-99-9	[240] <u>230</u>	N	[1,200] 1,100	N	[1,400] 1,300	N
THIOFANOX	39196-18-4	66	G	960	G	190,000	С
THIRAM	137-26-8	[1,100] 3,300	G	[16,000] 48,000	G	190,000	С
TOLUENE	108-88-3	10,000	С	10,000	С	10,000	С
TOLUIDINE, M-	108-44-1	1,200	G	5,700	G	10,000	С
TOLUIDINE, O-	95-53-4	1,200	G	5,700	G	10,000	С
TOLUIDINE, P-	106-49-0	620	G	3,000	G	190,000	С
TOXAPHENE	8001-35-2	17	G	83	G	190,000	С
TRIALLATE	2303-17-5	[2,900] 26	G	[10,000] <u>130</u>	[C] <u>G</u>	10,000	С
TRIBROMOMETHANE (BROMOFORM)	75-25-2	[410] <u>400</u>	N	2,000	N	2,300	N
TRICHLORO-1,2,2-TRIFLUOROETHANE, 1,1,2-	76-13-1	10,000	С	10,000	С	10,000	С
TRICHLOROACETIC ACID	76-03-9	270	G	1,300	G	190,000	С
TRICHLOROBENZENE, 1,2,4-	120-82-1	[640] <u>39</u>	[G] <u>N</u>	[3,100] <u>160</u>	[G] <u>N</u>	[10,000] <u>190</u>	[C] <u>N</u>
TRICHLOROBENZENE, 1,3,5-	108-70-3	[1,300] <u>46</u>	[G] <u>N</u>	[19,000] <u>190</u>	[G] <u>N</u>	[190,000] <u>230</u>	[C] <u>N</u>
TRICHLOROETHANE, 1,1,1-	71-55-6	10,000	С	10,000	С	10,000	С
TRICHLOROETHANE, 1,1,2-	79-00-5	[4] <u>3.8</u>	N	16	N	18	N
TRICHLOROETHYLENE (TCE)	79-01-6	38	N	160	N	180	N
TRICHLOROPHENOL, 2,4,5-	95-95-4	22,000	G	190,000	С	190,000	С
TRICHLOROPHENOL, 2,4,6-	88-06-2	220	G	3,200	G	190,000	С
TRICHLOROPHENOXYACETIC ACID, 2,4,5- (2,4,5-T)	93-76-5	2,200	G	32,000	G	190,000	С

PROPOSED RULEMAKING

Appendix A

Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil

A. Direct Contact Numeric Values

				N	onresi	dential	
REGULATED SUBSTANCE	CASRN	Resident 0-15 fee		Surface Soil 0-2 fee		Subsurfa Soil 2-15 fe	
TRICHLOROPHENOXYPROPIONIC ACID, 2,4,5-(2,4,5-TP)(SILVEX)	93-72-1	1,800	G	26,000	G	190,000	С
TRICHLOROPROPANE, 1,1,2-	598-77-6	1,100	G	10,000	С	10,000	С
TRICHLOROPROPANE, 1,2,3-	96-18-4	0.14	G	3.0	G	[28] <u>27</u>	Ν
TRICHLOROPROPENE, 1,2,3-	96-19-5	5.7	N	24	N	27	Ν
TRIETHYLAMINE	121-44-8	130	N	[560] <u>550</u>	N	[640] <u>630</u>	Ν
TRIETHYLENE GLYCOL	112-27-6	10,000	С	10,000	С	10,000	О
TRIFLURALIN	1582-09-8	1,700	G	12,000	G	190,000	С
TRIMETHYLBENZENE, 1,3,4- (TRIMETHYLBENZENE, 1,2,4-)	95-63-6	[130] 1,100	N	[560] 4,700	N	[640] 5,400	N
TRIMETHYLBENZENE, 1,3,5-	108-67-8	[2,200] <u>1,100</u>	[G] <u>N</u>	[10,000] 4,700	[C] <u>N</u>	[10,000] <u>5,400</u>	[C] <u>N</u>
TRINITROGLYCEROL (NITROGLYCERIN)	55-63-0	22	G	320	G	10,000	С
TRINITROTOLUENE, 2,4,6-	118-96-7	110	G	1,600	G	190,000	С
VINYL ACETATE	108-05-4	[3,900] <u>3,800</u>	N	10,000	С	10,000	С
VINYL BROMIDE (BROMOETHENE)	593-60-2	14	N	70	N	80	N
VINYL CHLORIDE	75-01-4	[0.9] 0.93	G	61	G	[280] <u>290</u>	Ν
WARFARIN	81-81-2	66	G	960	G	190,000	С
XYLENES (TOTAL)	1330-20-7	1,900	N	[8,000] <u>7,900</u>	N	9,100	N
ZINEB	12122-67-7	11,000	G	160,000	G	190,000	С

All concentrations in mg/kg

Appendix A
Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

	lios	Buffer	Distance (feet)	15	15	₹ Z	N A	AN A	¥	¥ Z	20	N A	NA	NA	Υ	Y Y	AA	NA	NA	10	Ą	¥	Υ V	
r		T	2 .	Ш	Ш	Ш	В	_ი _ш	Ш	Ш	Ш	ш	В		Ш	Ш	ш	Е	Е	Ш	В	Ш	Ш	
		Nonresidential	Generic Value	4,700	18,000	[4.6]	0.96	[10,00 0] 9,800	09	[640] 520	[370] 300	0.05	0.043	16	5.1	0.077	20	0.027	0.045	240	_	6.5	[6.2] <u>5</u>	
	Nonuse Aquifers	Nonre	100 X GW MSC	380	1,600	[39] <u>12</u>	7.9	10,000	530	[1,200] <u>970</u>	[89] <u>72</u>	0.18	0.25	88	37	0.2	300	0.2	0.4	2	[9] 8.8	9	[16] <u>13</u>	
l	se A	r	U	Ш	Ш	Ш	Ш	ш	Ш	Ш	Ш	Ш	Е	Е	Ш	Ш	Ш	Е	Е	ш	Ш	Ш	Ш	
	Nonu	Residential	Generic	4,700	18,000	[1.0] 0.5	0.23	[4,300] 3,500	15	[230] 190	[78] <u>70</u>	0.0047	0.0033	3.9	_	0.077	20	0.027	0.045	240	0.25	6.5	[1.4] 1.2	
		Resid	100 X GW MSC	380	1,600	[8.4]	1.9	10,000	130	[420] 350	[19] <u>17</u>	0.042	0.019	21	7.2	0.2	300	0.2	0.4	2	2.1	9	[3.5]	
r	T	t		Ш	Ш	Ш	Ш		Ш	ပ	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Е	Е	Ш	Ш	Ш	Ш	
		Nonresidential	Generic Value	4,700	18,000	[460] 140	96	10,000 C	009	10,000	[37] <u>30</u>	0.2	4.3	16	5.1	7.7	2	2.7	4.5	[240] 190	~	029	[0.62] 0.5	
	TDS > 2500 mg/l	Nonres	100 X GW MSC	380	1,600	[3,900] 1,200	790	10,000	5,300	10,000	[8.9] 7.2	1.8	25	88	37	20	30	20	40	[2.0] 1.6	[9] 8.8	009	[1.6]	
	250		v	Ш	Ш	Ш	Ш	U	Ш	U	Ш	Ш	Ш		Ш	Ш	Ш	Е	Е	Ш	Ш	Ш	Ш	
	TDS	Residential	Generic	4,700	18,000	[100] 50	23	10,000	150	10,000	<u> [8]</u>	0.047	0.33	3.9	_	7.7	5	2.7	4.5	[52] <u>46</u>	0.25	650	[0.14] 0.12	
Head Aguifare	5	Resi	100 X GW MSC	380	1,600	[840] 420	190	10,000	1,300	10,000	[1.9] 1.7	0.42	1.9	21	7.2	20	30	20	40	[0.43] 0.38	2.1	009	[0.35]	
٥		1_	· U	Ш	Ш	Ш	Ш	ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш			Е	Е	Ш	Ш	Ш	Ш	
Ilso		Nonresidential	Generic Value	4,700	[8,000] 6,600	[4.6] 1.4	96.0	[1,200] <u>980</u>	9	[640] 520	[0.37] 0.3	0.002	0.043	0.16	0.051	0.077	0.05	0.027	0.045	[2.4] 1.9	0.01	6.5	[0.006 21	0.005
	3S < 2500 mg/l	Nonre	100 X GW MSC	380	[700] 580	[39] 12	7.9	[10,00 0] 8,800	23	[1,200] <u>970</u>	[0.089] 0.072	0.018	0.25	0.88	0.37	0.2	0.3	0.2	0.4	[0.02] 0.016	0.088	9	[0.016]	0.013
	250	3	ပ	Ш	Ш	Ш	Ш	ш	Ш	Ш	ш	Ш	Ш	Ш		_	_	Ш.	Е	Ш	Ш	Ш	Ш	
	> SQT	Residential	Generic Value	[3,100] 2,600	[2,800] 2,400	[1.0] 0.5	0.23	[430] 350	1.5	[230] 190	[0.08] 0.07	0.00047	0.0033	0.039	0.01	0.077	0.05	0.027	0.045	[0.52] 0.46	0.0025	6.5	[0.0014] 0.0012	
		Resi	100 X GW MSC	[250] 210	[250] 210	[8.4]	1.9	[3,800] 3,100	13	[420] 350	[0.019] 0.017	0.0042	0.019	0.21	0.072	0.2	0.3	0.2	0.4	[0.004 3] 0.0038	0.021	9	[0.003 51	0.0031
			CASKN	83-32-9	208-96-8	30560-19-1	75-07-0	67-64-1	75-05-8	98-86-2	53-96-3	107-02-8	79-06-1	79-10-7	107-13-1	15972-60-8	116-06-3	1646-88-4	1646-87-3	309-00-2	107-18-6	834-12-8	92-67-1	
		REGULATED	SUBSTANCE	ACENAPHTHENE	ACENAPHTHYLENE	ACEPHATE	ACETALDEHYDE	ACETONE	ACETONITRILE	ACETOPHENONE	ACETYLAMINOFLUORENE, 2- (2AAF)	ACROLEIN	ACRYLAMIDE	ACRYLIC ACID	ACRYLONITRILE	ALACHLOR	ALDICARB	ALDICARB SULFONE	ALDICARB SULFOXIDE	ALDRIN	ALLYL ALCOHOL	AMETRYN	AMINOBIPHENYL, 4-	

Appendix A
Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

					/ ped /	Used Aquifers					:	:			Г
			TDS ≤ 2500 mg/L	0 mg/L			TDS > 2	TDS > 2500 mg/L			Nonuse	Nonuse Aquiters		Soil	
REGULATED	CASRN	Res	Residential	Nonre	Nonresidential	Resi	Residential	Nonre	Nonresidential	Res	Residential	Nonre	Nonresidential	Buffer	
SUBSTANCE		100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	Distance (feet)	Φ.
AMITROLE	61-82-5	[870.0] [80.0]	[0.032] E 0.028	[0.36] 0.29	[0.15] E	[8]	[3.2] E	[36] 29	[15] <u>12</u> E	<u>69</u> [84]	[32] <u>28</u> E	[360] 290	[150] E 120	A N	
AMMONIA	7664-41-7	3,000	360 E	3,000	360 E	10,000	10,000 C	10,000	10,000 C	3,000	360 E	3,000	360 E	Ą	
AMMONIUM SULFAMATE	7773-06-0	200	24 E	200	24 E	20,000	2,400 E	20,000	2,400 E		24 E	200	24 E	A N	
ANILINE	62-53-3	0.21	0.12 E	0.88	0.52 E	21	12 E	88	52 E	0.21	0.12 E	0.88	0.52 E	ž	
ANTHRACENE	120-12-7	9.9	350 E	9.9	350 E	9.9	350 E		320 E	9.9	350 E	9.9	350 E	10	
ATRAZINE	1912-24-9	0.3	0.13 E	0.3	0.13 E	30	13 E	30	13 E		0.13 E	0.3	0.13 E	Ž	
AZINPHOS-METHYL (GUTHION)	86-50-0	[13] 5.2	[15] <u>5.9</u> E	[35] 15	[40] <u>17</u> E	[1,300] 520	[1,500] E 590	[3,200] 1,500	[3,600] E	[13] 5.2	[15] E 5.9	[35] 15	[40] <u>17</u> E	Ϋ́	
BAYGON (PROPOXUR)	114-26-1	0.3	0.057 E	0.3	0.057 E	30	5.7 E	30	5.7 E		57 E	300	57 E	Ą	
BENOMYL	17804-35-2	[200] 27	[970] E	[200] 110	[970] E	200	970 E	200	970 E	[200] 27	[970] E	[200]	[970] E	20	
BENTAZON	25057-89-0	20	2.9 E	20	2.9 E	2,000	290 E	2,000	290 E	20	2.9 E	20	2.9 E	A N	
BENZENE	71-43-2	9.0	0.13 E	0.5	0.13 E	20	13 E	20	13 E	90	13 E	20	13 E	AN	
BENZIDINE	92-87-5	000.0]	[0.13] E	[0.001	[2] <u>1.6</u> E	8600.0]	[13] <u>12</u> E	_	[200] E)]	[130] E	[4.5]	[2,000] E	2	
		098] <u>0.0000</u> <u>92</u>	0.12	5] 0.001 2		0.0092		0.12	160	0.092	120	1.2	1,600		
BENZO[A]ANTHRACENE	56-55-3	[0.032] <u>0.03</u>	[28] <u>26</u>	[0.49] 0.39	[430] E	1.1	960 E	1.1	3 096	1.1	3 096 E	1.1	3 096	2	
BENZO[A]PYRENE	50-32-8	0.02	46 E	0.02	46 E	0.38	860 E	0.38	Be0 E	0.38	860 E	0.38	860 E	2	
BENZO[B]FLUORANTHENE	205-99-2	[0.019] <u>0.018</u>	[26] <u>25</u> E	0.12	170 E	0.12	170 E		170 E		170 E	0.12	170 E		
BENZO[GHI]PERYLENE	191-24-2	0.026	180 E	0.026	180 E	0.026	180 E	0.026	180 E	0.026	180 E	0.026	180 E	2	
BENZO[K]FLUORANTHENE	207-08-9	[0.019] <u>0.018</u>	[210] E 200	0.055	610 E										
BENZOIC ACID	0-58-99	[17,00	[3,200] E	_	[9,000] E	190,00	52,000 E	190,00	52,000 E	[17,000	[3,200] E	[47,000	[9,000] E	NA	
		14,000	2,70	39,00	000,7	>		D		14,000	7,7	39,000	000		
BENZOTRICHLORIDE	98-07-7	0.0056 1	[0.014] E 0.012	[0.026	[0.063] E	[0.56] 0.5	[1.4] E	[3] <u>2.1</u>	[6.3] E	[5.6] 0.5	[14] E	[26] 2.1	[63] E	30	
		0.00		0.02											1

¹ For other options see Section 250.308

Appendix A
Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

					Used A	Used Aquifers								
			TDS ≤ 2500 mg/L	0 mg/L		L	TDS > 2	TDS > 2500 mg/L			Nonuse	Nonuse Aquifers		Soil
REGULATED	NACAC	Res	Residential	Nonre	Nonresidential	Res	Residential	Nonre	Nonresidential	Resid	Residential	Nonre	Nonresidential	Buffer
SUBSTANCE		100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	Distance (feet)
BENZYL ALCOHOL	100-51-6	[420] 350	[150] E 130	[1,200] <u>970</u>	[430] E 350	10,000	10,000 C	10,000	10,000 C	[420] 350	[150] E 130	[1,200] 970	[430] E 350	Ϋ́
BENZYL CHLORIDE	100-44-7	0.1	0.059 E	0.51	0.3 E	10	5.9 E	51	30 E	10	5.9 E	51	30 E	ΑN
BETA PROPIOLACTONE	57-57-8	0.0012	0.00015 E	0.006	0.0007 6	[0.1] 0.12	0.015 E	0.63	0.076 E	0.012	0.0015 E	0.063	9/00'0	NA
ВНС, АLРНА	319-84-6	[0.012] 0.01	[0.055] E	[0.054] 0.043	[0.25] E	_	[5.5] E	[5.4]	[25] <u>20</u> E	[12] 10	[55] <u>46</u> E	[54] <u>43</u>	[250] E	20
BHC, BETA-	319-85-7	[0.041] 0.036	[0.24] E	[0.19] 0.15	[1.1] E 0.88	[4.1] 3.6	[24] <u>21</u> E	10	29 E	10	29 E	10	3 6 <u>6</u>	15
BHC, GAMMA (LINDANE)	6-68-89	0.02	0.072 E	0.02	0.072 E	7	7.2 E	2	7.2 E	20	72 E	20	12 E	20
BIPHENYL, 1,1-	92-52-4	[9.1] 0.084	[40] <u>0.37</u> E	[43] 0.35	[190] E <u>1.5</u>	[720] 8.4	[3,100] E	[720]	[3,100] E	[720] <u>8.4</u>	[3,100] E	[720] 35	[3,100] E <u>150</u>	20
BIS(2-CHLOROETHOXY) METHANE	111-91-1	[13] <u>10</u>	[3.4] <u>2.6</u> E	[35] 29	[9.2] E	[1,300] 1,000	[340] E 260	[3,500] 2,900	[920] E	[13] 10	[3.4] E	[35] <u>29</u>	[9.2] E	NA
BIS(2- CHLOROETHYL)ETHER	111-44-4	0.015	0.0045 E	0.076	0.023 E	1.5	0.45 E	7.6	2.3 E	1.5	0.45 E	7.6	2.3 E	N A
BIS(2-CHLORO- ISOPROPYL)ETHER	108-60-1	30	8 E	30	8 E	3,000	800 E	3,000	800 E	3,000	800 E	3,000	B 008	NA
BIS(CHLOROMETHYL)ETHER	542-88-1	0.0000	0.000012 E	0.000	0.000.0 6	0.0079	[0.001] E	0.04	0.006 E	0.0079	[0.001] E 0.0012	0.04	900°0	NA
BIS[2-ETHYLHEXYL] PHTHALATE	117-81-7	9.0	130 E	9.0	130 E	29	e,300 E	29	e,300 E	58	e,300 E	29	e,300 E	10
BISPHENOL A	80-05-7	[210] 170	[810] E 660	[580] 490	[2,200] E	12,000	46,000 E	12,000	46,000 E	12,000	46,000 E	12,000	46,000 E	20
BROMACIL	314-40-9	7	1.8 E	7	1.8 E	200	180 E	200	180 E	7	1.8 E	7	1.8 E	NA
BROMOBENZENE	108-86-1	0.006	0.0047 E	0.006	0.0047 E	9.0	0.47 E	9.0	0.47 E	0.006	0.0047 E	0.006	0.0047 E	NA
BROMOCHLOROMETHANE	74-97-5	6	1.6 E	6	1.6 E	006	160 E		160 E	6	1.6 E	6	1.6 E	Ϋ́
BROMODICHLORO METHANE (THM)	75-27-4	8	2.7 E	8	2.7 E	800	270 E	800	270 E	8	2.7 E	8	2.7 E	A V
BROMOMETHANE	74-83-9	_	0.54 E	_	0.54 E	100	54 E	_	54 E	100	54 E	100	54 E	NA
BROMOXYNIL	1689-84-5	[83] 0.63	[71] <u>0.54</u> E	[230] 2.6	[200] E	[8,300] <u>63</u>	[7,100] E	[13,00 0] <u>260</u>	[11,000 E] <u>220</u>	[83] 0.63	[71] E 0.54	[230] 2.6	[200] E	AN
BROMOXYNIL OCTANOATE	1689-99-2	[8] 0.63	[360] <u>28</u> E	[8] <u>2.6</u>	[360] E	∞	360 E	ω	360 E	œ	360 E	∞	360 E	15
:	000													

Appendix A
Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

					Used /	Used Aquifers								
			TDS ≤ 2500 mg/L	0 mg/L			TDS > 2500 mg/L	300 mg/L			Nonus	Nonuse Aquiters		Soil
REGULATED	NASAS	Resi	Residential	Nonre	Nonresidential	Res	Residential	Nonre	Nonresidential	Resi	Residential	Nonre	Nonresidential	Buffer
SUBSTANCE		100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	Distance (feet)
BUTADIENE, 1,3-	106-99-0	[0.021] 0.11	[0.0086] E	[0.1] 0.45	[0.041] E 0.19	[2.1]	[0.86] E	[10] <u>45</u>	[4.1] 19 E	[2.1]	[0.86] E	E [10] 45	[4.1] E	Ϋ́
BUTYL ALCOHOL, N-	71-36-3	[420] 350	[50] <u>42</u> E	[1,200 1 970	[140] E 120	10,000	[5,000] E	10,000	10,000 C	[4,200] 3,500	[500] E	E [10,000 19,700	[1,400] E 1,200	Υ Υ
BUTYLATE	2008-41-5	40	58 E	40	58 E		5,800 E	4,000	5,800 E	40	28 F	E 40	28 E	30
BUTYLBENZENE, N-	104-51-8	[210] 170	[1,300] E	[580] 490	[3,700] E 3,100	1,500	9,500 E	1,500	9,500 E	[210] 170		E [580]	[3,700] E 3,100	15
BUTYLBENZENE, SEC-	135-98-8	[420] 350	[980] E 820	[1,200] <u>970</u>	[2,800] E 2,300	1,700	4,000 E	1,700	4,000 E	[420] 350	[980] 820	E [1,200] 970	[2,800] E 2,300	30
BUTYLBENZENE, TERT-	9-90-86	[420] 350	[760] E 630	[1,200] <u>970</u>	[2,200] E	3,000	5,400 E	3,000	5,400 E	[420] 350	0E9 [094]	E [1,200] 970	[2,200] E	30
BUTYLBENZYL PHTHALATE	85-68-7	[38] <u>34</u>	[3,200] E 2,900	[180] 140	10,000 C	270	10,000 C	270	10,000 C	270	10,000	C 270	10,000 C	10
CAPTAN	133-06-2	[32] 28	[20] 17 E	20	31 E	20	31 E	20	31 E	20	31	E 50	31 E	ΑN
CARBARYL	63-25-2	[420] 350	[250] E 210	[1,200] <u>970</u>	[700] E 570	12,	7,000 E	12,	7,000 E	12,000	7,000	E 12,000	7,000 E	NA
CARBAZOLE	86-74-8	[3.7] 3.3	[24] <u>21</u> E	[17] 14	[110] E	120	760 E	120	760 E	[4] <u>3.3</u>	[24] <u>21</u> [E [17] <u>14</u>	[110] E	15
CARBOFURAN	1563-66-2	4	0.87 E	4	0.87 E	Н	87 E	400	87 E	4	0.87 E	E 4	0.87 E	NA
CARBON DISULFIDE	75-15-0	150	130 E	620	530 E	10,000	10,000 C	10,000	10,000 C	150	130 E	E 620	530 E	NA
CARBON TETRACHLORIDE	56-23-5	0.5	0.26 E	0.5	0.26 E		26 E		26 E	5	2.6 E		2.6 E	ΑĀ
CARBOXIN	5234-68-4	20	53 E	70	53 E	7,000	5,300 E		5,300 E	70	53 E	E 70	53 E	A
CHLORAMBEN	133-90-4	10	1.6 E	10	1.6 E	1,000	160 E	1,000	160 E	10	1.6 E	E 10	1.6 E	NA
CHLORDANE	57-74-9	0.2	49 E	0.2	49 E	-	1,400 E	9.6	1,400 E	5.6	1,400	E 5.6	1,400 E	10
CHLORO-1,1- DIFLUOROETHANE, 1-	75-68-3	10,000	1,800 E	10,00 0	7,300 E	10,000	10,000 C	10,000	10,000 C	10,000	1,800	E 10,000	7,300 E	ΝΑ
CHLORO-1-PROPENE, 3- (ALLYL CHLORIDE)	107-05-1	0.21	0.049 E	0.88	0.2 E	21	4.9 E	88	20 E	21	4.9	E 88	20 E	NA
CHLOROACETALDEHYDE	107-20-0	0.24	0.029 E	[1.1] 1	[0.13] E	24	2.9 E	[110] 100	[13] <u>12</u> E	0.24	0.029	E [1.1] <u>1</u>	[0.1] E	NA
[CHLOROACETOPHENONE, 2-]	[532-27-4]	[0.13]	[0.039] [E]	[0.35]	[0.11] [E]	[13]	[3.9] [E]	[35]	[11.0] [E]	[130]	[68]	[[350] E]	[110] [E]	[NA]

Appendix A
Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

		Soil	Buffer	Distance (feet)	Ϋ́	N A	15	30	ΑN	ΑN	Ϋ́	NA	15	ΑN	NA	NA	NA	30	30	N A	15	ΑN	15
				Generic Value	[2.1] E 1.8	610 E	8,600 E	[730] E 610	250 E	10,000 C	[2,600] [10,000 E]	20 E	[20,00 E 0] 0]	[16] E 2.4	4.4 E	2 E	67 E	[150] E 41	20 E	10 E	2.3 E	[80] <u>26</u> E	820 E
	Nonuse Aguifers		Nonresidential	100 X GW MSC	[1.7] 1.4	1,000	1,300	[470] 390	800	10,000	10,000	80	08 <u>7</u>	[12] 1.8	4	8.3	88	[60] <u>16</u>	10	10	0.2	[580] [190	20
	Nonuse		ential	Generic Value	[0.47] E 0.42	610 E	[4,400] E	[270] E 220	250 E	2,800 E	[540] [10,000 E]]	20 E	[7,000] E	[5.5] 0.55	4.4 E	0.38 E	16 E	[61] E 9.7	20 E	10 E	2.3 E	[29] E 9.6	820 E
			Residential	100 X GW MSC	[0.37]	1,000	[660]	[170] 140	800	10,000	[2,500] 10,000	80	[330]	[4.2] 0.42	4	1.6	21	[24] 3.8	10	10	0.2	[210] <u>69</u>	20
			Nonresidential	Generic Value	[210] E 180	610 E	[2,000] E	10,000 C	250 E	10,000 C	[2,600] [10,000 E]]	200 E	26,000 E	[1,600] E 240	440 E	2 E	6,700 E	150 E	2,000 E	1,000 E	230 E	2,600 E	820 E
		00 mg/L	Nonres	100 X GW MSC	[170] 140	1,000	[310] 250	10,000	800	10,000	10,000	800	1,200	[1,200] 180	400	8.3	8,800	09	1,000	1,000	20	19,000	20
		TDS > 2500 mg/L	ential	Generic Value	[47] <u>42</u> E	610 E	[440] E	10,000 C	250 E	10,000 C	[540] [10,000 E]	200 E	26,000 E	[550] E	440 E	0.38 E	1,600 E	150 E	2,000 E	1,000 E	230 E	[2,600] E	820 E
Guifore	Siaiinh		Residential	100 X GW MSC	[37] 33	1,000	<u>69</u> [99]	10,000	008	10,000	[2,500] 10,000	800	1,200	[420] 42	400	1.6	2,100	09	1,000	1,000	20	[19,000] 6,900	20
Ilead Acuitore	Y naso		Nonresidential	Generic Value	[2.1] E 1.8	6.1 E	20] <u>17</u> E	[730] E 61 <u>0</u>	2.5 E	10,000 C	[26] E	2 E	[20,00 E 0] 0]	[16] E 2.4	4.4 E	0.02 E	67 E	[150] E 41	20 E	10 E	2.3 E	[80] <u>26</u> E	110 E
		0 mg/L	Nonres	100 X GW MSC	1.7]	10	[3.1]	[470] 390	80	10,00	[120] 8,800	80	[930] 780	[12]	4	0.083	88	[60] 16	10	10	0.2	[580] 190	7
		TDS ≤ 2500 mg/L	Residential	Generic Value	[0.47] E 0.42	6.1 E	[4.4] 3.9 E	[270] E 220	2.5 E	2,800 E	[5.4] <u>450</u> E	2 E	[7,000] E	[5.5] E 0.55	4.4 E	0.0038 E	16 E	[61] <u>9.7</u> E	20 E	10 E	2.3 E	[29] <u>9.6</u> E	110 E
			Resi	100 X GW MSC	[0.37]	10	[0.66] 0.59	[170]	∞	10,000	[25] <u>2,100</u>	8	[330] 280	[4.2] 0.42	4	0.016	21	[24] 3.8	10	10	0.2	[210] <u>69</u>	7
ſ			NASAC		106-47-8	108-90-7	510-15-6	109-69-3	124-48-1	75-45-6	75-00-3	62-99-29	91-58-7	100-00-5	8-22-26	126-99-8	75-29-6	1897-45-6	95-49-8	106-43-4	2921-88-2	64902-72-3	1861-32-1
			REGULATED	SUBSTANCE	CHLOROANILINE, P-	CHLOROBENZENE	CHLOROBENZILATE	CHLOROBUTANE, 1-	CHLORODIBROMO METHANE (THM)	CHLORODIFLUORO METHANE (THM)	CHLOROETHANE	CHLOROFORM (THM)	CHLORONAPHTHALENE, 2-	CHLORONITROBENZENE, P-	CHLOROPHENOL, 2-	CHLOROPRENE	CHLOROPROPANE, 2-	CHLOROTHALONIL	CHLOROTOLUENE, O-	CHLOROTOLUENE, P-	CHLORPYRIFOS	CHLORSULFURON	CHLORTHAL-DIMETHYL (DACTHAL) (DCPA)

¹ For other options see Section 250.308

All concentrations in mg/kg
E – Number calculated by the soil to groundwater equation [is] in section 250.308
C – Cap
NA – The soil buffer distance option is not available for this substance
[THMs – The values listed for trihalomethanes (THMs) are the total for all THMs combined.]
[HAAs – The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.]

Appendix A
Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

					Used	Used Aquifers								_	
			TDS ≤ 2500 mg/l	0 mg/L		_	TDS > 2	TDS > 2500 mg/L		_	Nonus	Nonuse Aquifers	_		Soil
REGULATED	NASAS	Resi	Residential	Nonre	Nonresidential	Res	Residential	Nonre	Nonresidential	Re	Residential	Nonre	Nonresidential	<u> </u>	Buffer
SUBSTANCE		100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value		Distance (feet)
CHRYSENE	218-01-9	[0.19] 0.18	[230] E 220	0.19	230 E	0.19	230 E	E 0.19	230	E 0.19	230	E 0.19	230	Ш	2
CRESOL(S)	1319-77-3	130	23 E	530	92 E	10,000	2,300 E	E 10,000	9,200	E 10,000	2,300	E 10,000	9,200	Ш	N A
CRESOL, 4,6-DINITRO-O-	534-52-1	[0.33] 0.28	[0.25] E	[0.93] 0.78	[0.7] E	[33] 28	[25] <u>21</u> E	E [93] 78	[70]	E [330]	[250] 21	E [930]	[700]	ш	¥ ∀
CRESOL, O- (2- METHYLPHENOL)	95-48-7	[210] 170	[35] <u>28</u> E	[580] 490	[96] <u>81</u>	E [21,000 17,000	[3,500] E	E [58,00 0]49,0 00	[9,600] 8,100	E [21,000] 17,000	[3,500] 2,800	E [58,000] 49,000	[9,600] 8,100	ш	A A
CRESOL, M- (3- METHYLPHENOL)	108-39-4	[210] 170	[41] <u>34</u> E	[580] 490	[110] E	10,000	[4,100] 3,400	E 10,000	[10,000] <u>9,700</u>	10,000 C J	10,000	C 10,000	10,000	U	Ą
CRESOL, P- (4- METHYLPHENOL)	106-44-5	[21] 17	[4.9] <u>4</u> E	[58] 49	[14] <u>11</u> E	1,700	[490] 400	E [5,800]	[1,400] 1,100	E [21,000 17,000	[4,900] 4,000	E [58,000] 49,000	[14,00 11,000	ш	₹
CRESOL, P-CHLORO-M-	29-20-7	[420] 350	[870] E	[1,200] <u>970</u>	[2,500] E	E [42,000]	[87,000 E	E [120,0 00] 97,000	190,00	C [420]	[870] 720	E [1,200]	[2,500] 2,000	ш	30
CROTONALDEHYDE	4170-30-3	[0.038] 0.034	[0.0048] E	[0.18] 0.14	[0.023] E	[3.8]	[0.48] E	E [18] 14	[2.3]	E [3.8]	[0.48]	E [18] <u>14</u>	[2.3]	ш	¥ ∀
CROTONALDEHYDE, TRANS-	123-73-9	[0.038] 0.034	[0.0048] E 0.0043	[0.18] 0.14	[0.023] E 0.018	[3.8]	[0.48] E	E [18] 14	[2.3] 1.8	E [3.8]	[0.48] 0.43	E [18] <u>14</u>	[2.3] 1.8	Ш	NA A
CUMENE (ISOPROPYL BENZENE)	98-85-8	84	600 E	320	2,500 E	5,000	10,000 (0	C 5,000	10,000	C 2,000	10,000	C 5,000	10,000	C	15
CYANAZINE	21725-46-2	0.1	0.061 E	0.1	0.061 E	10	6.1 E	10	6.1 E	E 0.1	0.061	E 0.1	0.061	Е	NA
CYCLOHEXANE	110-82-7	1,300	1,700 E	5,300	6,900 E	5,500	7,200 E	5,500	7,200 E	E 1,300	1,700	E 5,300	6,900	Е	NA
CYCLOHEXANONE	108-94-1	150	41 E	620	170 E	10,000	4,100 E	10,000	10,000 C	C 150	41	E 620	170	Е	NA
CYFLUTHRIN	68359-37-5		33 E	0.1	33 E		33	E 0.1	33	E 0.1	33	E 0.1	33	Е	10
CYROMAZINE	66215-27-8	[31] 1,700	[96] 5,300	[88] <u>4,900</u>	[270] E	[3,100] 170,00 0	[9,600] 190,00 0	[[8,800] E 190,00]] 0	[27,000] 190,00	[[31] E 1,700]	[96] 2'300	E [88]	[270] 15,000	Ш	20
DDD, 4,4'-	72-54-8	[0.3]	[33] <u>30</u> E	[1.4]	[150] E	16	1,800	16	1,80	16 16	1,800	E 16	1,800	ш	10

Appendix A
Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

		Soil	Buffer	Distance (feet)	10	2	2	NA	N A	30	വ	15	NA	20	NA	NA	20	NA	NA	NA	
r				o .	ш	ш	ပ	ш	Ш	Е	Ш	Ш	В	Ш	Ш	Е	C	Е	Е	Ш	
			Nonresidential	Generic Value	870	330	10,000	[2,300] 2,300	[17] <u>14</u>	0.14	270	12,000	0.92	[490] 400	0.12	140	10,000	45	0.79	0.0034	
	Nonise Admifers	ciplinh	Nonre	100 X GW MSC	4	0.55	10,000	[4,000] 4,000	[85] <u>68</u>	0.1	90.0	450	2	[120] <u>97</u>	0.5	350	10,000	400	9	900.0	
	7 05	200		c (Ш	ш	ပ	Ш	ш	Ш	Ш	Ш	Ш	Ш	Ш	Е	C	Е	Ш	Ш	
	Non		Residential	Generic Value	870	330	10,000	[700] [640	[3.6] 3.2	0.14	270	[12,00 0] 9,000	0.92	[170] 140	0.12	32	10,000	45	0.79	[0.000] 7]	0.000
			Resi	100 X GW MSC	4	0.55	10,000	[1,200] $1,100$	[18] <u>16</u>	0.1	90.0	[450] <u>350</u>	2	[42] <u>35</u>	0.5	84	10,000	400	6	0.0012	
r	T	┪	ī	0	Ш	ш	ပ	Ш	ш	Е	ш	Ш	Ш	Е	Е	Е	S	Е	Е	Е	
			Nonresidential	Generic Value	870	330	10,000	[330] 260	[1.7] 1.4	14	270	12,000	0.92	8,200	0.12	140	10,000	4,500	79	0.34	
		TDS > 2500 mg/L	Nonres	100 X GW MSC	4	0.55	4,000	[560] 450	[8.5] <u>6.8</u>	10	90.0	450	2	2,000	0.5	320	10,000	40,000	009	9.0	
		250			Ш	ш	ပ	Ш	Ш	Е	Ш	Ш	В	Е	Е	Е	O	E '	Е	Е	
		TDS >	Residential	Generic Value	870	330	10,000	[70] <u>64</u>	[0.36] <u>0.32</u>	14	270	[11,000] <u>9,000</u>	0.92	8,200	0.12	32	10,000	4,500	42	[0.07] 0.067	
or Ogicia	Osed Addilers		Resid	100 X GW MSC	4	0.55	4,000	[120]	[1.8] 1.6	10	90.0	[420] 350	2	2,000	0.5	84	10,000	40,000	009	0.12	
Š	ă		_	j c	Ш	ш	ပ	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Е	Ш	Е	Ш	Ш	
1	nse O		Nonresidential	Generic Value	[220] 170	330	10,000	[3.3] 2.6	[0.017] <u>0.014</u>	0.14	270	[310] <u>250</u>	0.0092	[490] 400	0.0012	1.4	[4,900] 4,000	45	0.79	0.0034	
		TDS ≤ 2500 mg/L	Nonre	100 X GW MSC	[1] <u>0.8</u>	0.55	40	[5.6] 4.5	[0.085]	1.0	90'0	[12] <u>9.7</u>	0.02	[120] <u>97</u>	0.005	3.5	[1,200] <u>970</u>	400	9	900'0	
		250		ပ	Ξ.	Ш	S	Ш	Ш	Ш	ш	Ш	Е	Ш	E	Е	Е	E	Е	Н.	
		ZDS ≤	Residential	Generic Value	[46] <u>41</u>	[130] 110	10,000	[0.7] 0.64	[0.0036] <u>0.0032</u>	0.14	[25] <u>23</u>	[110] <u>90</u>	0.0092	[170] 140	0.0012	0.32	[1,700] <u>1,400</u>	45	0.79	0.00067	
			Resi	100 X GW MSC	[0.21] 0.19	[0.21] 0.19	40	[1.2]	[0.018] 0.016	0.1	[0.005 5] 0.0052	[4.2] 3.5	0.02	[42] <u>35</u>	0.005	0.84	[420] 350	400	9	0.0012	
			CASRN		72-55-9	50-29-3	103-23-1	2303-16-4	2-08-56	333-41-5	53-70-3	132-64-9	96-12-8	106-37-6	106-93-4	74-95-3	84-74-2	1918-00-9	76-43-6	764-41-0	
			REGULATED	SUBSTANCE	DDE, 4,4'-	DDT, 4,4'-	DI(2-ETHYLHEXYL)ADIPATE	DIALLATE	DIAMINOTOLUENE, 2,4-	DIAZINON	DIBENZO[A,H] ANTHRACENE	DIBENZOFURAN	DIBROMO-3- CHLOROPROPANE, 1,2-	DIBROMOBENZENE, 1,4-	DIBROMOETHANE, 1,2- (ETHYLENE DIBROMIDE)	DIBROMOMETHANE	DIBUTYL PHTHALATE, N-	DICAMBA	DICHLOROACETIC ACID (HAA)	DICHLORO-2-BUTENE, 1,4-	

¹ For other options see Section 250.308

All concentrations in mg/kg
E – Number calculated by the soil to groundwater equation [is] in section 250.308
C – Cap
NA – The soil buffer distance option is not available for this substance
[THMs – The values listed for trihalomethanes (THMs) are the total for all THMs combined.]
[HAAs – The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.]

Appendix A
Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

					Used	Used Aquifers									Г
			TDS ≤ 2500 mg/L	0 mg/L			TDS > 2500 mg/L	00 mg/L			Nonus	Nonuse Aquifers		Soil	
REGULATED	NGV	Resi	Residential	Nonre	Nonresidential	Res	Residential	Nonre	Nonresidential	Resi	Residential	Nonre	Nonresidential	Buffer	
SUBSTANCE		100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	Distance (feet)	o o
DICHLORO-2-BUTENE, TRANS-1,4-	110-57-6	0.0012	0.00078 E	900.0	0.0039 E	E 0.12	0.078 E	9.0	0.39 E	0.0012	0.0007 8	E 0.006	0.0039 E	Υ N	
DICHLOROBENZENE, 1,2-	95-50-1	09	29 E	09	9 69	E 6,000	5,900 E	6,000	5,900 E	6,000	2,900	E 6,000	5,900 E	Ϋ́	
DICHLOROBENZENE, 1,3-	541-73-1	09	61 E	09	61 E	E 6,000	6,100 E	6,000	6,100 E	6,000	6,100	E 6,000	6,100 E	¥.	
DICHLOROBENZENE, P-	106-46-7	7.5	10 E	7.5	10 E	E 750	1,000 E	750	1,000 E	750	1,000	E 750	1,000 E	30	
DICHLOROBENZIDINE, 3,3'-	91-94-1	[0.16] 0.14	[8.8] <u>7.7</u> [[0.76] 0.6	[42] <u>33</u> E	E [16] 14	[880] E	<u>09</u> [94]	[4,200] E	[160] 140	[8,800] 7,700	E 310	17,000 E	10	
DICHLORODIFLUORO- METHANE (FREON 12)	75-71-8	100	100 E	100	100	E 10,000	10,000 C	10,000	10,000 C	10,000	10,000	C 10,000	10,000 C	AN .:	
DICHLOROETHANE, 1,1-	75-34-3	3.1	0.75 E	16	3.9	E 310	12 E	1,600	390 E	31	7.5	E 160	39 E	ΑZ V	
DICHLOROETHANE, 1,2-	107-06-2	0.5	0.1 E	0.5	0.1	E 20	10 E	20	10 E	2	~	E 2	1 E	¥.	
DICHLOROETHYLENE, 1,1-	75-35-4	0.7	0.19 E	0.7	0.19 E	E 70	19 E	20	19 E	7	1.9	E 7	1.9 E	NA	
DICHLOROETHYLENE, CIS- 1,2-	156-59-2	7	1.6 E	7	1.6	E 700	160 E	200	160 E	02	16	E 70	16 E	AN N	
DICHLOROETHYLENE, TRANS-1,2-	156-60-5	10	2.3 E	10	2.3	E 1,000	230 E	1,000	230 E	100	23	E 100	23 E	NA	
DICHLOROMETHANE (METHYLENE CHLORIDE)	75-09-2	0.5	0.076 E	0.5	0.076	E 20	7.6 E	20	7.6 E	20	1 9.7	E 50	7.6 E	NA	
DICHLOROPHENOL, 2,4-	120-83-2	2	1 E	2	1	E 200	100 E	200	100 E	2,000	1,000	E 2,000	1,000 E	NA	
DICHLOROPHENOXY ACETIC ACID, 2,4- (2,4-D)	94-75-7	7	1.8 E	7	1.8	E 700	180 E	002	180 E	7,000	1,800	E 7,000	1,800 E	NA	
DICHLOROPROPANE, 1,2-	78-87-5	0.5	0.11 E	0.5	0.11 E	E 20	11 E	20	11 E	5	1.1	E 5	1.1 E	NA	
DICHLOROPROPENE, 1,3-	542-75-6	[0.73] 0.65	[0.13] E 0.12	[3.4] 2.7	[0.61] E	E [73] <u>65</u>	[13] <u>12</u> E	[340] 270	[61] <u>48</u> E	[73] <u>65</u>	[13] <u>12</u>	E [340]	[61] <u>48</u> E	AN	
DICHLOROPROPIONIC ACID, 2,2- (DALAPON)	75-99-0	20	5.3 E	20	5.3 E	E 2,000	530 E	2,000	530 E	2,000	230	E 2,000	530 E	₹ Z	
DICHLORVOS	62-73-7	[0.25]	[0.059] E 0.052	[1.2] 0.94	[0.28] E	E [25] <u>22</u>	[5.9] E	[120] <u>94</u>	[28] <u>22</u> E	[0.25] 0.22	[0.059] 0.052	E [1.2] 0.94	[0.28] E	A A	
DICYCLOPENTADIENE	77-73-6	0.063	0.13 E	0.26	0.56	E [6] 6.3	13 E	26	26 E	[0.1] 0.063	[0.1] 0.13	E [0.3]	[1] E 0.56	30	
DIELDRIN	60-57-1	[0.004 6] 0.0041	[0.13] E 0.11	[0.021] 0.017	[0.58] E	E [0.46]	[13] <u>11</u> E	[2.1] 1.7	[58] <u>47</u> E	[4.6] 4.1	[130] 110	E [17] <u>17</u>	[470] E 470	15	
[DIETHANOLAMINE]	[111-42-2]	[NA]	[NA]	[NA]	[NA]	[NA]	[NA]	[NA]	[NA]	[NA]	[NA]	[NA]	[NA]	[NA]	П

Appendix A
Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

					Used /	Used Aguifers				L				L	
			TDS ≤ 2500 mg/L	0 mg/L		L	TDS > 2	TDS > 2500 mg/L			Nonus	Nonuse Aquifers		Soil	
REGULATED	CASBN	Res	Residential	Nonre	Nonresidential	Resi	Residential	Nonre	Nonresidential	Re	Residential	Nonre	Nonresidential	Buffer	-i-
SUBSTANCE		100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	Distance (feet)	
DIETHYL РНТНАLATE	84-66-2	[3,300] <u>2,800</u>	[1,000] E	[9,300] 7,800	[2,900] E	10,000	10,000 C	10,000	10,000	C 10,000	10,000 C	10,000	10,000	S S	
DIFLUBENZURON	35367-38-5	20	52 E	20	52 E	20	52 E	20	52 E	E 20	52	E 20	25	E 20	
DIISOPROPYL METHYLPHOSPHONATE	1445-75-6	09	8.2 E	09	8.2 E	000'9	820 E	000'9	820	E 60	8.2	Е 60	8.2	E NA	
DIMETHOATE	60-51-5	9 <u>.7</u> [88.0]	[0.32] E	[2.3] 21	[0.89] E	[83]	[32] E 290	[230]	[89] 810	E [830] 7,600	[320] 2,900	E [2,300] 21,000	[890] 8,100	E NA	
DIMETHOXYBENZIDINE, 3,3-	119-90-4	[0.046] 0.041	[0.15] E	$\begin{bmatrix} 0.21 \\ 0.17 \end{bmatrix}$	[0.71] E 0.57	[5] 4.1	[15] <u>14</u> E	[21] 17	[71] <u>57</u>	E [46] <u>41</u>	[150] 140	E [210]	[710] <u>570</u>	E 20	
DIMETHRIN	70-38-2	3.6	240 E	3.6	240 E	3.6	240 E	3.6	240 E	E 3.6	3 240	3.6	240	E 10	
DIMETHYLAMINOAZO BENZENE, P-	60-11-7	[0.016] <u>0.014</u>	[0.042] E	[0.074] 0.059	[0.19] E	[1.6] 1.4	[4.2] E	[7.4] <u>5.9</u>	[19] <u>15</u> [E [16] <u>14</u>	[42] <u>37</u>	E [74] <u>59</u>	[190] <u>150</u>	E 20	
DIMETHYLANILINE, N,N-	121-69-7	[8.3] 2.4	[4.7] <u>1.3</u> E	[23] 10	[13] E <u>5.6</u>	[830] 240	[470] E 130	[2,300] 1,000	[1,300] [[]	E [830]	[470] 130	E [2,300] 1,000	[1,300] <u>560</u>	E NA	
DIMETHYLBENZIDINE, 3,3-	119-93-7	[0.006 [9 0.0059	[0.36] E 0.33	[0.031] 0.025	[1.7] E	0.7]	[36] <u>33</u> E	[3.1]	[170] E	E [7] <u>5.9</u>	[360] 330	E [31] <u>25</u>	[1,700] <u>1,400</u>	E 10	
DIMETHYL METHYLPHOSPHONATE	756-79-6	10	1.2 E	10	1.2 E	1,000	120 E	1,000	120	E 10	1.2	E 10	1.2	E NA	
DIMETHYLPHENOL, 2,4-	105-67-9	[83] <u>69</u>	[36] <u>30</u> E	[230] <u>190</u>	[100] E	[8,300] <u>6,900</u>	[3,600] E 3,000	10,000	[10,000] <u>8,300</u>	10,000 c 1	10,000	C 10,000	10,000	C	
DINITROBENZENE, 1,3-	99-65-0	0.1	0.049 E	0.1	0.049 E	10	4.9 E	10	4.9 E	E 100	49	E 100	49	E NA	
DINITROPHENOL, 2,4-	51-28-5	[8.3] <u>6.9</u>	[0.94] E 0.78	[23] <u>19</u>	[2.6] E	[830] 690	[94] <u>78</u> E	[2,300] 1,900	[260] E	E [8,300] 6,900	[940] 780	E [23,000] 19,000	[2,600] <u>2,100</u>	E NA	
DINITROTOLUENE, 2,4-	121-14-2	[0.24] <u>0.21</u>	[0.057] E	[1.1] 0.88	[0.26] E	[24] 21	[6] <u>5</u> E	[110]	[26] <u>21</u> [E [240]	[57] <u>50</u>	E [1,100] 880	[260] 210	E NA	
DINITROTOLUENE, 2,6-(2,6-DNT)	606-20-2	[0.049] 0.043	[0.015] E	[0.23] 0.18	[0.068] E 0.053	[5] 4.3	[2] <u>1.3</u> E	[23] 18	[7] 5.3	E [49] <u>43</u>	[15] 13	E [230]	[68] <u>53</u>	E NA	
DINOSEB	88-85-7	0.7	0.29 E	0.7	0.29 E	20	29 E	70	29 E	E 700	290	E 700	290	E NA	

Appendix A
Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

		Soil	Buffer	Distance (feet)	N A	NA A	δ _N	30	N A	20	A A	NA A	15	15	15	15	NA	15	NA	NA	15	ΑN	A A	NA V	¥
				Generic Value	[4.2] E	12 E	18,000 E	[44] <u>19</u> E	0.24 E	180 E	1.3 E	[20] <u>16</u> E	250 E	260 E	260 E	70 E		5.5 E	17 E	[6.7] E 5.7	[130] E 110	2,500 E	1,600 E	[270] E 220	4.600 E
	Nonuse Admifers	200	Nonresidential	100 X GW GW G MSC V	[32] <u>27</u> [8]	20	30,000 18	[25] <u>11</u> [44	2	20	8	[23] <u>19</u> [20	48	20	45	12	10	0.2	88	[58] <u>49</u> [[5.8]	10,000	6,200	[100 <u>0</u> 25	7,000 4
	A AG		-		i e	Ш	е Э	E [Ш	Ш	Э	<u>і</u> з	Е	Ш	Е	ш	Ш	Ш	Е) I	Ш	E 1	Э	Е	ш
	Non		Residential	Generic Value	[0.84] 0.85	12	18,000	[44] 3.9	0.24	180	1.3	[1.1] 5.9	250	[130] 110	[150] 120	02	4.1	5.5 E	4.2	[2.4] <u>2</u>	[46] <u>37</u>	069	068	[58] <u>54</u>	4,600
			Resi	100 X GW MSC	[6.4] 6.5	20	30,000	[25] 2.2	2	70	8	[8.3] 6.9	48	[25] <u>21</u>	[25] <u>21</u>	12	10	0.2	21	[21] <u>17</u>	[2.1] 1.7	4,200	1,500	[150] 140	7.000
			_	ic e	Э.	Ξ (Ш	Э.	ы Н	3 E	Ξ (Ш	Э (Э () E	Ш	Ε	550 E	Έ	Ш	Э (Ξ (Ξ (Ш	Э
			Nonresidential	Generic Value	[42] <u>35</u>	1,200	[17,000] 18,000	[44] 19	24	18	130	[2,000] 1,600	250	260	260	20	410	220	17	[670] [570	1,900	2,500		[270] 220	Ľ
		TDS > 2500 mg/L	Nonre	100 X GW MSC	[320] 270	2,000	[29,00 0] 30,000	[25] <u>11</u>	200	7	008	[2,300] 1,900	48	20	45	12	1,000	20	88	[5,800] 4,900	85	10,000	6,200	0 <u>29</u> [002]	7,000
		> 25		ic e	Э	Э (ш	ш	Ш +	3 E	E	Э (E	Ш) E) E) E	2 E] E	Ш) E) E	ш) E
		TDS	Residential	Generic Value	[8.4] 8.5	1,200	[5,900] 18,000	[16] 3.9	24	18	130	[710] 590	250	260	260	20	410	250	4.2	[240] 200	1,900	290	390	[58] <u>54</u>	4,600
Head Aguifare	dallels		Resi	100 X GW MSC	[64] <u>65</u>	2,000	[10,000] 30,000	[9.1] 2.2	200	7	800	069 [088]	48	20	45	12	1,000	20	21	[2,100] 1,700	85	4,200	1,500	[150] 140	7,000
2	2		al	ric e	Ш	Ш	ш	Ш	Ш	E	Ш	Ш	Ш	Ш	Ш	70 E	Ш	E	Ε,	ш	Ш	Ε	Ш	Ш	46 E
le,	030		Nonresidential	Generic Value	[0.42] 0.35	12	[170] <u>570</u>	[0.76] 0.19	0.24	0.18	1.3	[20] <u>16</u>	250	260	260	20	4.1	5.5	0.17	[6.7] 5.7	[130] 110	22	16	[2.7]	46
		TDS ≤ 2500 mg/L	Nonre	100 X GW MSC	[3.2] 2.7	20	[290] <u>970</u>	[0.43]	2	0.07	8	[23] 19	48	20	45	12	10	0.2	0.88	[58] 49	[5.8] 4.9	180	62	[7.0] 5.7	70
		₹ 250		ic	<u>п</u>	2 E	<u>а</u>	П С	4 E	3 E	3 E	<u>Б</u>	П С	П С		E		2 E	2 E	2	2 E	日 6	<u>日</u>	П 41	3 E
		TDS	Residential	Generic Value	[0.084] 0.085	12	[59] <u>210</u>	[0.16] 0.039	0.24	0.18	1.3	[7.1] 5.9	[130] 110	[130] 110	[150] <u>120</u>	70	4.1	5.5	0.042	[2.4] <u>2</u>	[46] <u>37</u>	5.9	3.9	[0.58] 0.54	46
			Res	100 X GW MSC	[0.64] 0.65	20	[100] <u>350</u>	[0.091] 0.022	2	0.07	8	6:9 [8:3]	[25] <u>21</u>	[25] <u>21</u>	[25] <u>21</u>	12	10	0.2	0.21	[21] 17	[2.1] 1.7	42	15	[1.5] 1.4	0/
			CASRN		123-91-1	957-51-7	122-39-4	122-66-7	2-00-58	298-04-4	505-29-3	330-54-1	115-29-7	929-98-8	33213-65-9	1031-07-8	145-73-3	72-20-8	106-89-8	16672-87-0	563-12-2	110-80-5	141-78-6	140-88-5	100-41-4
			REGULATED	SUBSTANCE	DIOXANE, 1,4-	DIPHENAMID	DIPHENYLAMINE	DIPHENYLHYDRAZINE, 1,2-	DIQUAT	DISULFOTON	DITHIANE, 1,4-	DIURON	ENDOSULFAN	ENDOSULFAN I (ALPHA)	ENDOSULFAN II (BETA)	ENDOSULFAN SULFATE	ENDOTHALL	ENDRIN	EPICHLOROHYDRIN	ETHEPHON	ETHION	ETHOXYETHANOL, 2- (EGEE)	ETHYL ACETATE	ETHYL ACRYLATE	ETHYL BENZENE

 1 For other options see Section 250.308 All concentrations in mg/kg E – Number calculated by the soil to groundwater equation [is] in section 250.308

C – Cap
NA – The soil buffer distance option is not available for this substance
[THMs – The values listed for trihalomethanes (THMs) are the total for all THMs combined.]
[HAAs – The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.]

Appendix A
Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

Nonise Aquifors		Residential Nonresidential Buffer	100 X Generic GW Generic GW Value MSC Value GW Gwet)	170 171 E 1290 1210 E NA 120 120 250	[830] [230] E [2,300] [650] E NA 690 190 1,900 530	63 10 E 260 43 E NA	E [83] 69 [10] E [230] [26] 22 E NA	C 10,000 10,000 C 10,000 10,000 C NA	E [330] [37] 31 E [930] [100] E NA 280 87	10.042 10.13 E 10.12 10.37 E 20 2.035 0.11 0.097 0.33 E 20	0.07 0.06 E 0.07 0.06 E NA	8.5 94 E 8.5 94 E 15	9 2.5 E 9 2.5 E NA	26 3,200 E 26 3,200 E 10	190 3,800 E 190 3,800 E 15	10,000 8,700 E 10,000 8,700 E NA	1 2.9 E 1 2.9 E 20	10,000 1,200 E 10,000 1,200 E NA	0.63 0.071 E 2.6 0.29 E NA	E [35,000	0	<u>7,700</u> <u>24,000</u> <u>21,000</u>	L
	g/L	Nonresidential	X Generic V Value	000 10,000 C	000 10,000 C	000 4,300 E	[2,600]	10,000	[10] 8.7	[12] [37] <u>30</u> E	7 6 E	8.5 94	900 250 E	26 3,200 E	190 3,800 E	300 8,700 E	100 290 E	000 1,200 E	26 2.9 E	190,00	0		10001
	TDS > 2500 mg/L	Residential No	Generic 100 X Value GW	10,000 10,000 10,000 10,000 10,000 1	10,000 C 10,000	1,000 E 10,000	[950] E 10,000 790	10,000 C 10,000	[3.7] E [93] <u>78</u>	13 <u> 11</u> Е [9 9	94 E	250 E 9	3,200 E	3,800 E 1	8,700 E 10,000	290 E 1	1,200 E 10,000	0.71 E	190,00 C 190,00	0		L
Used Aquifers		Resid	100 X GW MSC	10,000	10,000	6,300	[8,300]	10,000	[33] 28	3.5	7	8.5	006	26	190	10,000	100	10,000	6.3	-	0		
/ Dasd /		Nonresidential	Generic Value	[210] E	[650] E	43 E	[26] <u>22</u> E	170 E	[0.1] E	[0.37] E	0.06 E	94 E	2.5 E	3,200 E	3,800 E	87 E	2.9 E	12 E	0.029 E	\vdash	0		
	S ≤ 2500 mg/L	Nonr	100 X GW MSC	E [290]	E [2,300]	E 260	E [230]	E 1,400	E [0.93] 0.78	E [0.12]	E 0.07	E 8.5	E 0	E 26	E 190	E 200	E 1	E 100	E 0.26	E [35,		24,00 0	
	TDS≤	Residential	Generic Value	[71] <u>120</u>	[230] 190	10	[10] 7.9	170	[0.037]		90.0	94	2.5	3,200	[3,400] 2,800	87	2.9	12	0.0071	[12,000]	7,700		1 7 10 72
		Re	100 X GW MSC	[100] 170	069 [083]	63	[83]	1,400	[0.33] 0.28	[0.042] 0.035	0.07	8.5	6	26	[170] 140	200	1	100	0.063	[13,00	0	8,700	
		NACAC		759-94-4	60-29-7	97-63-2	107-07-3	107-21-1	96-45-7	2104-64-5	22224-92-6	51630-58-1	2164-17-2	206-44-0	86-73-7	75-69-4	944-22-9	20-00-0	64-18-6	39148-24-8			000
		REGULATED	SUBSTANCE	ETHYL DIPROPYL THIOCARBAMATE, S- (EPTC)	ЕТНҮС ЕТНЕК	ETHYL METHACRYLATE	ETHYLENE CHLORHYDRIN	ETHYLENE GLYCOL	ETHYLENE THIOUREA (ETU)	ETHYLP-NITROPHENYL PHENYLPHOSPHORO THIOATE	FENAMIPHOS	FENVALERATE (PYDRIN)	FLUOMETURON	FLUORANTHENE	FLUORENE	FLUOROTRICHLORO METHANE (FREON 11)	FONOFOS	FORMALDEHYDE	FORMIC ACID	FOSETYL-AL			-440-

¹ For other options see Section 250.308

C – Cap
NA – The soil buffer distance option is not available for this substance
[THMs – The values listed for trihalomethanes (THMs) are the total for all THMs combined.]
[HAAs – The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.]

All concentrations in mg/kg E – Number calculated by the soil to groundwater equation [is] in section 250.308

Appendix A
Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

					Used	Used Aquifers				L				L
			TDS ≤ 2500 mg/L	0 mg/L			TDS > 2500 mg/L	500 mg/L			Nonuse	Nonuse Aquirers		Soil
REGULATED	NASAS	Resi	Residential	Nonre	Nonresidential	Res	Residential	Nonre	Nonresidential	Resi	Residential	Nonre	Nonresidential	Buffer
SUBSTANCE		100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	Distance (feet)
FURFURAL	98-01-1	[11]	[1.4] E 0.24	[35] 7.8	[4.4]	E [1,100]	[140] E 24	[3,500] 780	[440] E 99	1.1]	[1.4] E 0.24	-	[4.4] E	¥
GLYPHOSATE	1071-83-6	70	620 E	20	620	E 7,000	62,000 E	7,000	62,000 E	02	620 E	20	620 E	15
HEPTACHLOR	76-44-8	0.04	0.68 E	0.04	0.68	E 4	89 E	4	68 E	18	310 E	18	310 E	15
HEPTACHLOR EPOXIDE	1024-57-3	0.02	1.1 E	0.02	1.1	E 2	110 E	2	110 E	20	1,100 E	20	1,100 E	10
HEXACHLOROBENZENE	118-74-1	0.1	0.96 E	0.1	0.96	E 0.6	5.8 E	9.0	5.8 E	9.0	2.8 E	9.0	2.8 E	15
HEXACHLOROBUTADIENE	87-68-3	[0.94] 0.84	[11] <u>10</u> E	[4.4] 3.5	[52] <u>42</u>	E [94] <u>84</u>	[1,100] E	290	3,400 E	290	3,400 E	290	3,400 E	15
HEXACHLOROCYCLO PENTADIENE	77-47-4	2	91 E	2	91	E 180	3,300 E	180	3,300 E	180	3,300 E	180	3,300 E	15
HEXACHLOROETHANE	67-72-1	0.1	0.56 E	0.1	0.56	E 10	26 E	10	26 E	10	3 9S	10	3 99	15
HEXANE	110-54-3	150	1,400 E	[620] 580	[5,600] 5,300	E 950	8,700 E	950	8,700 E	150	1,400 E	[620] 580	[5,600] E	15
HEXAZINONE	51235-04-2	40	8.5 E	40	8.5	E 4,000	850 E	4,000	B20 E	40	3 5.8	40	8.5 E	NA
HEXYTHIAZOX (SAVEY)	78587-05-0	20	820 E	20	820 E	= 20	820 E	20	820 E	20	820 E	20	820 E	15
HMX	2691-41-0	40	4.8 E	40	4.8	E 200	9 09	200	9 09	40	4.8 E	40	4.8 E	NA
HYDRAZINE/HYDRAZINE SULFATE	302-01-2	0.001	0.00011 E	0.005	0.0005	E 0.1	0.011 E	0.51	0.057 E	0.01	0.0011 E	0.051	0.0057 E	A V
HYDROQUINONE	123-31-9	[1.2]	[0.16] E 0.15	[5.7] 4.5	0.77]	E [120]	[16] <u>15</u> E	[570] 450	∃ <u>13</u> [77]	[1,200] 1,100	[160] E 150	[5,700] 4,500	[770] E 610	ΑN
INDENO[1,2,3-CD]PYRENE	193-39-5	[0.019] 0.018	[1,500] E	[0.28] <u>0.23</u>	[22,00 0] 18,000	E [1.9]	[150,00 E 0] 140,00 0	6.2	190,00 C 0	6.2	190,00 C	6.2	190,00 C	5
IPRODIONE	36734-19-7	[170]	[490] <u>4.3</u> E	[470] 6.2	[1,300] 18	E [1,300]	[3,700] E	[1,300] 620	[3,700] E 1,800	[170]	[490] E	[470] 6.2	[1,300] E	20
ISOBUTYL ALCOHOL	78-83-1	[1,300] 1,000	[340] E 260	[3,500] 2,900	[910] 7 <u>60</u>	E 10,000	10,000 C	10,000	10,000 C	10,000	10,000 C	10,000	10,000 C	ΑΝ
ISOPHORONE	78-59-1	10	1.9 E	10	1.9	E 1,000	190 E	1,000	190 E	10,000	1,900 E	10,000	1,900 E	NA
ISOPROPYL METHYLPHOSPHONATE	1832-54-8	70	8.1 E	20	8.1	E 7,000	810 E	7,000	810 E	70	8.1 E	20	8.1 E	Z Z

¹ For other options see Section 250.308

Appendix A
Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

					Used A	Used Aguifers				L				
			TDS ≤ 2500 mg/L	0 mg/L			TDS > 2	TDS > 2500 mg/L			Nonuse	Nonuse Aquifers		Soil
REGULATED	NASAC	Resi	Residential	Nonre	Nonresidential	Resi	Residential	Nonre	Nonresidential	Res	Residential	Nonre	Nonresidential	Buffer
SUBSTANCE		100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	Distance (feet)
KEPONE	143-50-0	[0.007 3] 0.0065	[1] <u>0.89</u> E	[0.034] 0.027	[4.7] E	[0.73] 0.65	[100] 89		[470] E	4	[1,000] E	_	[4,700] E 3,700	10
MALATHION	121-75-5	90	170 E	20	170 E	5,000	10,000 C	5,000	10,000 C	10,000	10,000 C	10,000	10,000 C	20
MALEIC HYDRAZIDE	123-33-1	400	47 E	400	47 E	40,000	4,700 E	40,000	4,700 E	400	47 E	400	47 E	Ą
MANEB	12427-38-2	[21]	[2] <u>0.12</u> E	[58] 4.5	[6.6] E	[2,100] 110	[240] E	[2,300] 450	[260] E	[21]	[2] E	[58]	[6.6] E	NA
MERPHOS OXIDE	78-48-8	[0.13] <u>3.5</u>	[17] <u>460</u> E	[0.35] <u>9.7</u>	[46] E	[13] 230	[1,700] 10,000 E 10,000]	[35] 230	[4,600] [10,000 E]	[0.13]	[17] E	[0.35]	[46] E	10
METHACRYLONITRILE	126-98-7	[0.42] 0.35	[0.069] E	[1.2] 0.97	[0.2] E 0.16	[42] <u>35</u>	[6.9] E	[120] 97	[20] <u>16</u> E	[0.42] 0.35	[0.069] E	[1.2] 0.97	[0.2] E	NA
METHAMIDOPHOS	10265-92-6	[0.21] 0.17	[0.026] E	[0.58] 0.49	[0.072] E 0.061	[21] 17	[2.6] E	[58] <u>49</u>	[7.2] E	[0.21] 0.17	[0.026] E	[0.58] 0.49	[0.072] E	NA
METHANOL	67-56-1	[840] <u>4,200</u>	E 663	[3,500] 10,00 <u>0</u>	[410] E	10,000	[9,900] [10,000 E 10,000 J	10,000	10,000 C	10,000	[9,900] [10,000 E 10,000 I	10,000	10,000 C	NA
METHOMYL	16752-77-5	20	3.2 E	20	3.2 E	2,000	320 E	2,000	320 E	20	3.2 E	20	3.2 E	NA
METHOXYCHLOR	72-43-5	4	630 E	4	630 E	4.5	710 E	_	710 E	`	710 E		710 E	10
METHOXYETHANOL, 2-	109-86-4	4.2	0.48 E	18	2 E	420	48 E	1,800	200 E	\dashv	4.8 E	180	20 E	Ϋ́
МЕТНҮL АСЕТАТЕ	79-20-9	[4,200] 3,500	[780] E 650	[10,00 0] 9,700	[2,200] E	10,000	10,000 C	10,000	10,000 C	[4,200] 3,500	[780] E <u>650</u>	[10,000] <u>9,700</u>	[2,200] E	NA
METHYL ACRYLATE	96-33-3	[4] 4.2	1 E	18	[5] 4.5 E	420	100 E	1,800	450 E	420	100 E	1,800	450 E	NA
METHYL CHLORIDE	74-87-3	3	0.38 E	3	0.38 E	300	38 E	300	38 E	300	38 E	300	38 E	NA
METHYL ETHYL KETONE	78-93-3	400	76 E	400	76 E	10,000	7,600 E	10,000	7,600 E	10,000	7,600 E	10,000	7,600 E	Ā
METHYL HYDRAZINE	60-34-4	0.0042	0.00048 E	0.018	0.002 E	0.42	0.048 E	1.8	0.2 E	0.042	0.0048 E	0.18	0.02 E	ΝΑ
METHYL ISOBUTYL KETONE	108-10-1	[330] 280	[51] <u>43</u> E	[930] 780	[140] E 120	10,000	[5,100] E	10,000	10,000 C	10,000	[5,100] E	10,000	10,000 C	NA N
METHYL ISOCYANATE	624-83-9	0.21	0.029 E	0.88	0.12 E	21	2.9 E	88	12 E	0.21	0.029 E	0.88	0.12 E	Ϋ́
METHYL N-BUTYL KETONE (2-HEXANONE)	591-78-6	6.3	1.6 E	56	6.4 E	630	160 E	2,600	640 E	6.3	1.6 E	26	6.4 E	Ϋ́

All concentrations in mg/kg E – Number calculated by the soil to groundwater equation [is] in section 250.308 $\,$

C – Cap
NA – The soil buffer distance option is not available for this substance
[THMs – The values listed for trihalomethanes (THMs) are the total for all THMs combined.]
[HAAs – The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.]

Appendix A
Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

					'pesn'	Used Aquifers				L				
			TDS ≤ 2500 mg/l	00 mg/L		L	TDS > 2	TDS > 2500 mg/L			Nonus	Nonuse Aquiters		Soil
REGULATED	NGOAC	Res	Residential	Non	Nonresidential	Res	Residential	Nonr	Nonresidential	Re	Residential	Nonre	Nonresidential	Buffer
SUBSTANCE	NO CO	100 X GW MSC	Generic Value	100 X GW	Generic Value	100 X GW	Generic Value	100 X GW SS	Generic Value	100 X GW	Generic Value	100 X GW	Generic Value	Distance (feet)
METHYL METHACRYLATE	80-62-6	150	20 E	620	84 E	Ļ	2,000 E	Ŧ,	8,400 E	÷	2,000	E 10,000	8,400 E	ΑN
METHYL METHANESULFONATE	66-27-3	[0.74] 0.66	[0.092] E	_	0.7		[9.2] E	[340]	-	-	[0.092] 0.082	E [3.4]		
METHYL PARATHION	298-00-0	0.1	0.21 E	0.1	0.21 E	10	21 E	10	21 E	100	210	E 100	210 E	30
METHYL STYRENE (MIXED ISOMERS)	25013-15-4	8.4	47 E	35	200 E	840	4,700 E	3,500	10,000 C	8.4	47	E 35	200 E	15
METHYL TERT-BUTYL ETHER (MTBE)	1634-04-4	2	0.28 E	2	0.28 E	500	28 E	200	28 E	20	2.8	E 20	2.8 E	¥ V
METHYLCHLOROPHENOXYA CETIC ACID (MCPA)	94-74-6	8	1.2 E	3	1.2 E	300	120 E	300	120 E	3,000	1,200	E 3,000	1,200 E	NA
METHYLENE BIS(2- CHLOROANILINE), 4,4'-	101-14-4	[0.23]	[1.8] <u>1.6</u> E	[3.4]	[26] <u>21</u> E	[23] 21	[180] E	[340] 270	[2,600] E	[0.23] 0.21	[1.8]	E [3.4]	[26] <u>21</u> E	15
METHYLNAPHTHALENE, 2-	91-57-6	[17] [7]	[680] <u>25</u> [[47] 2.6	[1,900] 100	E [1,700]	[68,000 E	[2,500] 260	[100,00 E 0] 0]	[17] 0.63	[680] <u>25</u>	E [47]	[1,900] E	15
METHYLSTYRENE, ALPHA	98-83-9	[290] 240	[510] E 420	[820] 680	[1,400] E	10,000	10,000 C	10,000	10,000 C	[290]	[510] 420	E [820]	[1,400] E	30
METOLACHLOR	51218-45-2	02	40 E	0/	40 E	7,000	4,000 E	7,000	4,000 E	20	40	E 70	40 E	AN
METRIBUZIN	21087-64-9	2	2.4 E	2	2.4 E	200	240 E	200	240 E		2.4	E 7	2.4 E	NA
MEVINPHOS	7786-34-7	0.087	0.019 E	0.24	0.053 E	8.7	1.9 E	24	5.3 E	0.087	0.019	E 0.24	0.053 E	NA
MONOCHLOROACETIC ACID (HAA)	79-11-8	9	B 29.0	9	0.67 E	009	E 29	009	9 L9		29.0 9	9 E	0.67 E	ΝΑ
NAPHTHALENE	91-20-3	10	25 E	10	25 E	1,000	2,500 E	1,000	2,500 E	[3,000]	[7,500] 2,500	E [3,000] 1,000	[7,500] E	30
NAPHTHYLAMINE, 1-	134-32-7	$\begin{bmatrix} 0.041 \\ 0.036 \end{bmatrix}$	[0.33] E	[0.19] 0.15	[1.5] E	[4.1]	[33] <u>29</u> E	[19] 15	[150] E	[41]	[330]	E [190]	[1,500] E	15
NAPHTHYLAMINE, 2-	91-59-8	[0.041] 0.036	[0.013] E	[0.19] 0.15	[0.062] E	[4.1]	[1.3] E	[19] 15	[6.2] E	[41] <u>36</u>	[13] 12	E [190]	[62] <u>49</u> E	NA
NAPROPAMIDE	15299-99-7	420	3 026	1,200	2,800 E	7,000	16,000 E	7,000	16,000 E	420	026	E 1,200	2,800 E	30
NITROANILINE, O-	88-74-4	[42] 0.011	[8] <u>0.002</u> E	[120] 0.044	[21] 0.0079	E [4,200] 1.1	[750] E 0.2		[2,100] E	[42] 0.011	[8] 0.002	E [120] 0.044	[21] E 0.0079	NA
NITROANILINE, P-	100-01-6	[3.7] 3.3	[0.55] E	[17]	[2.5] E	[370]	[55] <u>49</u> E	[1,700] 1,400	[250] E	[3.7]	[0.55] 0.49	E [17] 14	[2.5] E	ΑN

¹ For other options see Section 250.308

C – Cap
NA – The soil buffer distance option is not available for this substance
[THMs – The values listed for trihalomethanes (THMs) are the total for all THMs combined.]
[HAAs – The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.]

All concentrations in mg/kg E – Number calculated by the soil to groundwater equation [is] in section 250.308

Appendix A
Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

					Used	Used Aquifers						, , , , , , , , , , , , , , , , , , ,		
			TDS ≤ 25(S ≤ 2500 mg/L			TDS > 2500 mg/L	300 mg/L			Nonus	Nonuse Aquirers		Soil
REGULATED	NASAD	Res	Residential	Nonre	Nonresidential	Re	Residential	Nonre	Nonresidential	Resi	Residential	Nonre	Nonresidential	Buffer
SUBSTANCE		100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	Distance (feet)
NITROBENZENE	98-95-3	[8.3] 0.12	[3.6] E	[23] 0.63	[10] E 0.27	E [830]	1 [360] E	[2,300] <u>63</u>	[1,000] E	[8,300] 12	[3,600] 5.2	E [10,000] <u>63</u>	[10,00 0] <u>27</u> C	ΝΑ
NITROGUANIDINE	556-88-7	70	7.8 E	70	7.8	E 7,000	780 E	7,000	780 E	70	7.8	E 70	7.8 E	ΑΝ
NITROPHENOL, 2-	88-75-5	[33] <u>28</u>	E [6.7]	[93] <u>78</u>	[19] <u>16</u> [E [3,300] 2,800	1 [670] E	[9,300] 7,800	[1,900] E	[33,000] <u>2,800</u>	[6,700] <u>570</u>	E [93,000] 7,800	[19,00 E 0] 01,600	N A
NITROPHENOL, 4-	100-02-7	9	4.1 E	9	4.1	E 600	410 E	009	410 E	[6,000] 600	[4,100] 410	E [6,000] 600	[4,100] E 410	AN
NITROPROPANE, 2-	79-46-9	0.0018	0.00029 E	0.009	0.0015	E 0.18	3 0.029 E	0.93	0.15 E	0.018	0.0029	E 0.093	0.015 E	NA
NITROSODIETHYLAMINE, N-	55-18-5	0.0000	0.000007 E	0.000	0.0001	E 0.0045	[0.0008 E	0.058	0.01 E	0.0004	[0.000]	E 0.0058	0.001 E	ΑΝ
		f	0	3			0.0007)	0.0000			
NITROSODIMETHYLAMINE, N-	62-75-9	0.0001 4	0.000019 E	0.001 8	0.0002 F	E 0.014	0.0019 E	0.18	0.024 E	0.0014	0.0001	E 0.018	0.0024 E	NA
NITROSO-DI-N-BUTYLAMINE, N-	924-16-3	[0.014] 0.0031	[0.017] E	[0.063] 0.016	[0.078] [0.02]	E [1.4]	1 [1.7] E 0.38	[6.3] 1.6	[7.8] <u>2</u> E	[14] 0.31	[17] 0.38	E [63]	[78] <u>2</u> E	AN A
NITROSODI-N- PROPYLAMINE, N-	621-64-7	[0.01] 0.0025	[0.0014] E	[0.049] 0.013	[0.006 8] 8] 0.0018	E [1]		[4.9] 1.3	[0.68] E 0.18	[10] 0.025	[1.4] [0.0035	E [49]	[6.8] E	N V
NITROSODIPHENYLAMINE, N-	86-30-6	[15] 1.9	[23] 3 E	9.6 9.6	[110] [[]	E [1,500] 190	1 [2,300] E	[3,500] 960	[5,500] E	[3,500] 190	[5,500] [[]	E [3,500] 960	[5,500] E	30
NITROSO-N-ETHYLUREA, N-	759-73-9	[0.000 84] <u>0.0007</u>	[0.00009 E 7]	[0.013] <u>0.01</u>	[0.001 E	E [0.08]	[0.0097] 0.0091	[1.3] 1	[0.15] E	[0.8] 0.79	[0.097] 0.091	E [13] <u>10</u>	[1.5] E	Υ Y
OCTYL PHTHALATE, DI-N-	117-84-0	[42] <u>35</u>	10,000 C	[120] <u>97</u>	10,000	C 300	10,000 C	300	10,000 C	300	10,000	C 300	10,000 C	5
OXAMYL (VYDATE)	23135-22-0	20	2.6 E		H	E 2,000		2,000	260 E	20		E 20	2.6 E	NA
PARAQUAT	1910-42-5	က	120 E	3	120 E	E 300	12,000 E	300	12,000 E	3	120	Э	120 E	15

¹ For other options see Section 250.308

All concentrations in mg/kg
E – Number calculated by the soil to groundwater equation [is] in section 250.308
C – Cap
NA – The soil buffer distance option is not available for this substance
[THMs – The values listed for trihalomethanes (THMs) are the total for all THMs combined.]
[HAAs – The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.]

Appendix A
Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

REGULATED SUBSTANCE	CASRN	Resi	TDS ≤ 2500 mg/l Residential Non	00 mg/L Nonre	Used / ng/L Nonresidential	Used Aquifers	TDS > 2500 mg/L Residential Nonr	S00 mg/L Nonre	mg/L Nonresidential	A S	lider	Nonuse Aquifers	uifers Nonresidential	ntial	Soil Buffer Distance
		GW MSC	Generic Value	GW GW MSC	Generic Value	GW MSC	Generic Value	GW MSC	Generic Value	GW MSC	Generic		GW GW	Generic Value	(feet)
	56-38-2	[25] 0.1	[150] E 0.59	[70] 0.29	[410] E	[2,000] 10	[10,000 [] 59 C] 1 59 D]	[2,000] <u>29</u>	[10,000]] 170] 071]	[25]	[150] 1 0.59	Ш	,1 [07] <u>62.0</u>	[410] E	15
 	1336-36-3	0.05	9.8 E	0.02	9.8 <u>B</u>	101	9 <u>80</u>	rol	980 E	0.02	8.6	Ш	0.05	8. 8. Ш	위
	12674-11-2	[0.037] 0.24	[10] <u>66</u> E	[0.17] 0.68	[47] E 190	[4] 24	[1,000] E 6,600	[17] <u>25</u>	[4,700] E 6,900	[0.04] 0.24	ij [10] <u>66</u>]]	[0.17] 0.68	[47] E 190	10
	11104-28-2	[0.037] 0.033	[0.18] E 0.16	[0.17] 0.14	[0.83] E	E [3.7]	[18] <u>16</u> E	[17] 14	E83] 68	E [0.037] 0.033	7] [0.18] 3 0.16	o <u>l</u>	[0.17] [0 0.14	[0.83] E	20
	11141-16-5	[0.037] 0.033	[0.14] E 0.13	[0.17] 0.14	[0.7] E 0.54	[3.7]	[14] <u>13</u> E	[17] 14	[66] <u>54</u> E	E [0.037] 0.033	7] [0.14] 3 0.13	o] =	[0.17] [0.14	[0.7] E 0.54	20
	53469-21-9	[0.037] 0.033	4 E	[0.17] 0.14	[20] <u>17</u> E	[3.7]	[440] E 400	10	1,200 E	[0.037] 0.033	7.1 3	o] =	[0.17] [20 0.14	[20] <u>17</u> E	10
	12672-29-6	[0.037] 0.033	[18] <u>16</u> E	[0.17] 0.14	[81] <u>67</u>	[3.7]	[1,800] E	5.4	2,600 E	[0.037] 0.033	7] [18] <u>16</u>	o <u>.</u>	[0.17] [81 0.14	[81] <u>67</u> E	10
	11097-69-1	[0.037] 0.069	[75] <u>140</u> E	[0.17] 0.19	[340] E	[3.7] <u>5.7</u>	[7,500] [10,000 E 1 1 C	5.7	10,000	C [0.037]	1 [75] 9 140	<u>o</u>	[0.17] [5] [5] [5] [5]	[340] E 380	ಬ
	11096-82-5	[0.037] 0.033	[170] E 150	[0.17] 0.14	[770] E	3.3	[17,000 E] 15,000	ω	36,000 E	[0.037] 0.033	.1 [170] 3 150	ш	0.17]	[770] E 630	വ
	1114-71-2	[210] 170	[350] E 290	[580] 490	088 <u>0</u>]	9,200	10,000 C	9,200	10,000 C	[210])] [350] 0 290	E I	[580] [9 490	[980] E 830	30
	608-93-5	[3.3]	[260] E 220	[9.3] 7.8	[750] E 620	74	5,900 E	74	5,900 E		74 5,900	Ш	74 5	5,900 E	10
	7-10-92	[0.81] 0.72	[3.9] <u>3.5</u> E	[3.8] 3	[19] <u>15</u> E	E [81] <u>72</u>	[390] E	[380] 300	[1,900] E	[0.81] 0.72] [3.9] 2 3.5	E [3.	[3.8] 3 [19	[19] <u>15</u> E	20
	82-68-8	[0.28] 0.25	[6] <u>5</u> E	_	[26] <u>20</u> E	E [28] <u>25</u>	[560] E	44	870 E		44 870	В	44	870 E	15
H	87-86-5	0.1	2 E	0.1	2 E	10	200 E	10	200 E	100	000'5 0	Ш	100	2,000 E	10

¹ For other options see Section 250.308

Appendix A
Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

		Soil	Buffer	Distance (feet)	<u>N</u>	NA	<u>N</u>	NA NA	10	AA	30	¥ V		15		30	NA		Ą	Ą	ΝΑ	ΑΝ	NA NA	NA
Γ				0	ပ၊	巨	Ш	Ш	Ш	Ш	ш	Ш		ပ		ш	С		Ш	Ш	Е	Ш	Е	Ш
			Nonresidential	Generic Value	<u>N</u>	NA	NA NA	29,000	10,000	3,300	[18] <u>15</u>	[9,900] 8.200		190,00	0	[4.9] 4.1	[190,0	260	7.4	39	[540] 450	0.46	[30] <u>25</u>	31
	Nonuse Admifers		Nonre	100 X GW MSC	190	0.007	0.007	76,000	110	20,000	[12] 9.7	[70,000 1	58,000	70,000		[2] 1.9	[190,00	1,800	20	40	[880] 730	~ I	[58] <u>49</u>	180
	9	2		ic	ပျ	Ш	Ш	ш	ш	Ш	Ш	Ш		ပ		Ш	_(Ш	Ш	Ш	Ш	Ш	Ш
	Non		Residential	Generic Value	NA	NA	Ν	[13,00 0] 12.000	+	3,300	[6.4] 5.3	[3,500]		190,00	>	[1.8]	[190,0	130	7.4	39	[190] 160	0.46	[11] 8.7	[7] 7.3
			Resi	100 X GW MSC	69	200'0	0.007	[33,000] 30.000	110	20,000	[4.2] 3.5	[25,000]	21,000	000'88]	34,000	[0.83] 0.69	00,061]	07 470	20	40	[310] 260	1	[21] 17	42
				C	ပ၊	Ш	Ш	ш	Ш	ш	ш	Ш		ပ		ш	<u>۔</u> ر	υ — ш	Ш	Ш	Ш	Ш	Ш	Ш
			Nonresidential	Generic Value	NA	<u>VN</u>	NA	[5,800] 4,600	10,000	3,300	[1,800] 1,500	[990] 820		190,00	0	[490] 410	[190,00	<u> </u>	740	3,900	076	0.46	[3,000] 2,500	3,100
		TDS > 2500 mg/L	Nonre	100 X GW MSC	10,000	<u>0.7</u>	0.7	[15,00 0] 12.000	110	20,000	[1,200] 970	[7,000] 5.800		[18,00	0] 14,000	[230] 190	[190,0	1,800	5,000	4,000	1,500	1	[5,800] $4,900$	10,000
	١	25		υ	ပျ	Ш	Ш	Ш	Ш	Ш	Ш	Ш		В		Ш	ĭ) — ш	Ш	Ш	Ш	Ξ	Ш	Е
		× SQ1	Residential	Generic Value	NA	<u>VN</u>	NA	[1,300] <u>1,200</u>	10,000	3,300	[640] 530	[350] 300		[55,000	49,000	[180] 150	[190,00	<u> </u>	740	3,900	920	0.46	[1,100] <u>870</u>	730
91	Used Aquirers		Resi	100 X GW MSC	006'9	<u>0.7</u>	<u>0.7</u>	[3,300] 3,000	110	20,000	[420] 350	[2,500] 2.100		[3,800]	3,400	<u>69</u> [ɛ8]	[190,00	10	5,000	4,000	1,500	← I	[2,100] 1,700	4,200
5	ğ			<u>د</u>	ပျ	Ш	Ш	Ш	Ш	Ш	Ш	Ш		Ш		Ш	Ш		Ш	Ш	Ш	Ξ	Ш	Е
	OSe		Nonresidential	Generic Value	NA	NA	N N	[58] <u>46</u>	10,000	33	[18] 15	[9.9] 8.2		[2,600]	2,000	[4.9] 4.1	[7,100]	20	7.4	39	[540] 450	0.0046	[30] <u>25</u>	31
		DS ≤ 2500 mg/L	Nonre	100 X GW MSC	190	0.007	0.007	[150] <u>120</u>	110	200	[12] 9.7	[70] 58		[180]	140	[2] <u>1.9</u>	[23,00	의 5	20	40	082 [088]	0.01	[58] 49	180
	١	250		0	ပျ	Ē	Ш	В	Е	Е	Ш	Е		Е		В	Е		Е	Е	Е	Ē	Е	Е
		ZDS ≤	Residential	Generic Value	N N	NA	NA	[13] 12	10,000	33	[6,400] 5.3	[3.5] 3		[550]	490	[1.8] 1.5	[2,600]	<u>? </u>	7.4	39	[190] 160	0.0046	[11] <u>8.7</u>	7.3
			Res	100 X GW MSC	<u>69</u>	0.007	0.007	[33] <u>30</u>	110	200	[4,200] 3.5	[25] <u>21</u>		[38] <u>34</u>		[0.83] 0.69	[8,300]	7.4	20	40	[310] 260	0.01	[21] 17	42
			CASRN		375-73-5	1763-23-1	335-67-1	62-44-2	85-01-8	108-95-2	108-98-5	108-45-2		90-43-7		298-02-2	85-44-9		1918-02-1	1610-18-0	23950-58-5	1918-16-7	8-86-602	67-63-0
			REGULATED	SUBSTANCE	PERFLUOROBUTANE SULFONATE (PFBS)	PERFLUOROOCTANE SULFONATE (PFOS)	PERFLUOROOCTANOIC ACID (PFOA)	PHENACETIN	PHENANTHRENE	PHENOL	PHENYL MERCAPTAN	PHENYLENEDIAMINE, M-		PHENYLPHENOL, 2-		PHORATE	PHTHALIC ANHYDRIDE		PICLORAM	PROMETON	PRONAMIDE	PROPACHLOR	PROPANIL	PROPANOL, 2- (ISOPROPYL ALCOHOL)

Appendix A
Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

						,								
					Used A	Used Aquirers					Nonige	Nonies Aguifare		
			TDS ≤ 2500 mg/L	00 mg/L			TDS > 2	TDS > 2500 mg/L			200	Signific		Soil
REGULATED	NA SA C	Resi	Residential	Nonre	Nonresidential	Resi	Residential	Nonre	Nonresidential	Res	Residential	Nonres	Nonresidential	Buffer
SUBSTANCE		100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	Distance (feet)
PROPAZINE	139-40-2	1	0.5 E	1	0.5 E	100	20 E	100	20 E	1	0.5 E	1	0.5 E	NA
PROPHAM	122-42-9	10	2.4 E	10	2.4 E	1,000	240 E	1,000	240 E	10	2.4 E	10	2.4 E	NA
PROPYLBENZENE, N-	103-65-1	210	400 E	880	1,700 E	5,200	9,900 E	5,200	9,900 E	210	400 E	880	1,700 E	30
PROPYLENE OXIDE	75-56-9	[0.3] 0.27	[0.052] E	[1.4]	[0.24] E 0.19	[30] <u>27</u>	[5.2] E	[140] 110	[24] <u>19</u> E	[0.3]	[0.052] E 0.047	[1.4]	[0.24] E	NA V
PYRENE	129-00-0	13	2,200 E	13	2,200 E	13	2,200 E		2,200 E		2,200 E	13	2,200 E	10
<u>PYRETHRUM</u>	8003-34-7	35	4.4 E	32	4.4 E	35	4.4 E	35	4.4 E	35	4.4 E	32	4.4 E	NA
PYRIDINE	110-86-1	[4.2] 3.4	[0.47] E 0.39	[12] 9.7	[1.3] E	[420] 350	[47] <u>39</u> E	[1,200] <u>970</u>	[130] E 110	[42] <u>35</u>	[4.7] E	[120] 97	[13] <u>11</u> E	N A
QUINOLINE	91-22-5	[0.024] 0.022	[0.081] E	[0.11] 0.091	[0.37] E	[2.4] 2.2	[8.1] E	[11] 9.1	[37] <u>31</u> E	[24] 22	[81] <u>74</u> E	[1,	[370] E 310	20
QUIZALOFOP (ASSURE)	76578-14-8	30	47 E	30	47 E	30	47 E	30	47 E	30	47 E	30	47 E	30
RDX	121-82-4	0.2	0.057 E	0.2	0.057 E	20	5.7 E	20	5.7 E	0.2	0.057 E	0.2	0.057 E	AN
RESORCINOL	108-46-3	[8,300]	[970] E	[23,00	[2,700] E	190,00	日 000,7 6] 日	190,00	190,00 C	[8,300]	[970] E	[23,000 1	[2,700] E	ΑN
			8	19,00)	80,000)) 			19,000		
RONNEL	299-84-3	[210] 170	[330] E 270	[580] 490	[910] E 760	4,000	6,200 E	4,000	6,200 E	[210] 170	[330] E 270	[580] 490	[910] E	30
SIMAZINE	122-34-9	0.4	0.15 E	0.4	0.15 E	40	15 E	40	15 E	0.4	0.15 E	0.4	0.15 E	AN
STRYCHNINE	57-24-9	[1.3] 1	[1.1] E 0.81	[3.5] 2.9	[2.8] E	[130] 100	[110] E 81	[350] 290	[280] E 240	[1,300] 1,000	[1,100] E <u>810</u>	[3,500] 2,900	[2,800] E 2,400	NA
STYRENE	100-42-5	10	24 E	10	24 E	1,000	2,400 E	4	2,400 E	1,000	2,400 E	1,000	2,400 E	30
TEBUTHIURON	34014-18-1	50	83 E	20	83 E	5,000	8,300 E	5,000	8,300 E	20	83 E	20	-	30
TERBACIL	5902-51-2	6	2.2 E	6	2.2 E	006	220 E	900	220 E	6		6	2.2 E	NA
TERBUFOS	13071-79-9	0.04	0.055 E	0.04	0.055 E	4	5.5 E	4	5.5 E	0.04	0.055 E	0.04	0.055 E	30
TETRACHLOROBENZENE, 1,2,4,5-	95-94-3	[1.3] 1	[6] <u>4.6</u> E	[3.5] 2.9	[16] <u>13</u> E	28	270 E	58	270 E	28	270 E	28	270 E	20
TETRACHLORODIBENZO-P- DIOXIN, 2,3,7,8- (TCDD)	1746-01-6	0.00000	0.032 E	0.000	0.032 E	0.0003	3.2 E	0.0003	3.2 E	0.0019	20 E	0.0019	20 E	2
TETRACHLOROETHANE, 1,1,1,2-	630-20-6	7	18 E	7	18 E	200	1,800 E	200	1,800 E	200	1,800 E	200	1,800 E	30
TETRACHLOROETHANE, 1,1,2,2-	79-34-5	[0.08] 0.084	0.026 E	0.43	0.13 E	[8] <u>8.4</u>	2.6 E	43	13 E	[8] 8.4	2.6 E	43	13 E	NA

Appendix A
Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

					/ pesn	Used Aquifers				L	Nonuse	Nonuse Aquifers		
			rΩl	≤ 2500 mg/L			TDS > 2	TDS > 2500 mg/L				o lo limbro		Soil
REGULATED	CASRN	Resi	Residential	Nonre	Nonresidential	Res	Residential	Nonre	Nonresidential	Resi	Residential	Nonres	Nonresidential	Buffer
SUBSTANCE		100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	Distance (feet)
TETRACHLOROETHYLENE (PCE)	127-18-4	0.5	0.43 E	9.0	0.43 E	20	43 E	20	43 E	2	4.3 E	2	4.3 E	ΨN
TETRACHLOROPHENOL, 2,3,4,6-	58-90-2	[130] 100	[2,000] E	[350] 290	[5,500] E	[13,000] 10,000	1190,00 0] C 160,00 1	18,000	190,00 C	18,000	190,00 0	18,000	190,00 0	15
TETRAETHYL LEAD	78-00-2	[0.000 42] 0.0003	[0.0052] E	[0.001 2] 0.000 97	[0.015] E	2	[0.52] E	[0.1] 0.097	[1.5] E	[0.42] 0.35	[0.52] E	[1] 0.97	[15] <u>12</u> E	15
TETRAETHYLDITHIO PYROPHOSPHATE	3689-24-5	[2.1]	[3.1] <u>2.5</u> E	[5.8] 4.9	[8.6] E	[210]	[310] E 250	[580] 490	0€Z ∃ [098]	[2.1]	[3.1] E 2.5	[5.8] 4.9	[8.6] E	30
TETRAHYDROFURAN	109-99-9	[2.6]	[0.57] E	13	2.8 E	[260]	[57] <u>55</u> E	1,300	280 E	[2.6]	[0.57] E 0.55	13	2.8 E	A V
THIOFANOX	39196-18-4	[1.3] 1	[0.14] E 0.11	[3.5]	[0.39] E	[130]	[14] <u>11</u> E	[350] 290	33] 37 E	[1.3] 1	[0.14] E 0.11	[3.5]	[0.39] E	NA N
THIRAM	137-26-8	[21] <u>52</u>	[55] <u>140</u> E	[58] 150	[150] E	[2,100] 3,000	[5,500] E	3,000	7,800 E	[21] <u>52</u>	[55] E 140	[58] 150	[150] E 390	20
TOLUENE	108-88-3	100	44 E	100	44 E	10,000	4,400 E	10,000	4,400 E	10,000	4,400 E	10,000	4,400 E	NA
TOLUIDINE, M-	108-44-1	[4.6]	[2.1] <u>1.9</u> E	[21]	[9.7] E		[210] E		[970] E		[2.1] E	[21] <u>17</u>	[9.7] E	AN.
TOLUIDINE, O-	95-53-4	[4.6] 4.1	[5.2] <u>4.7</u> E	[21] <u>17</u>	[24] <u>19</u> E	[460] 410	[520] E 470	[2,100] 1,700	[2,400] E 1,900	[4,600] 4,100	[5,200] E	10,000	10,000 C	AN.
TOLUIDINE, P-	106-49-0	[2.4] 2.2	[2.2] <u>2</u> E	[11] 9.1	[10] E	[24	[2	11,10	[1,000] E	[2.4]	[2.2] <u>2</u> E	[11] 9.1	[10] E	
TOXAPHENE	8001-35-2	0.3	1.2 E	0.3	1.2 E	30	120 E	30	120 E	0.3	1.2 E	0.3	1.2 E	20
TRIALLATE	2303-17-5	[54] 0.091	[280] E	[150] 0.38	[770] E	[400]	[2,000] E	[400] 38	[2,000] E	[54] 0.091	[280] E 0.47	[150] 0.38	[770] E	15
TRIBROMOMETHANE BROMOFORM) (THM)	75-25-2	8	3.5 E	8	3.5 E	800	320 E	800	320 E	800	320 E	800	350 E	NA
TRICHLORO-1,2,2- TRIFLUOROETHANE, 1,1,2-	76-13-1	[6,300] 1,100	[10,000] [3,400 C 1 1 <u>E</u>	[10,00 0] <u>4,400</u>	10,000 C	10,000	10,000 C	10,000	10,000 C	10,000	10,000 C	10,000	10,000 C	50

Appendix A
Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

		Soil	Buffer	Distance (feet)	ΨN	20		15	NA A	NA	A A	15	20	¥	20	Ą	NA	NA	NA	Ą	30	15
L		ഗ I	B.	Dist (fe		.,				۷												
			ial	eric ue	2] 17	8,5 7.0	'의	31 E	72 E	1.5 E	1.7 E	ပ ၀ ၀	回 0	Э 0	22 E	9.9] E	0; 0	5 E	1.5 E	三 回 回	日 6	
			Nonresidential	Generic Value	[0.32] 0.97	[10,00 0]	2,700	(1)		1	1	190,00 0	[34,00 0] 28,000	1,500		<u>.</u>	320	0.15	1	[2,900] 2,400	1	[3,500] 10,000
	Nonuse Aguifers		Nonre	100 X GW MSC	[2] 6	[4,400] 700		4	200	2	2	100,00	[12,000] <u>9,700</u>	7,000	5	[58] <u>49</u>	400	0.26	6.2	10,000	1	[620] <u>5,300</u>
	ounse		al	Generic Value	[0.32] E	8 -0		31 E	72 E	1.5 E	1.7 E	၁ 0 0	9,00 E	1,500 E	22 E	[3.6] E 2.9	320 E	37 E	0.36 E	000] E	1.9 E	[840] E 7,300
	Ž		Residential	Ger		1 [10,00		_	_			190,00	[12,00] 0] 10,000					3 0.037		11,0		
			Res	100 X GW MSC	[2] 6	[4,400] 700		4	200	2	2	100,00	[4,200] <u>3,500</u>	7,000	2	[21] 17	400	0.063	1.5	[8,300] [6,900	_	[150] <u>1,300</u>
			_	ic	ш	Ш		Ш	Ш	E	Ш	O O	ш	Ш	Ш	ш	Ξ	Ш	Ш	O C	Ξ (<u>-ш-о</u>
			Nonresidential	Generic Value	[32] <u>97</u>	2,700		3,100	720	15	17	190,00 0	[3,400] <u>2,800</u>	150	2,200	[990] 840	320	15	150	10,000	190	[3,500] <u>10,000</u>
		TDS > 2500 mg/L	Nonre	100 X GW MSC	[200] 600	200		400	2,000	20	20	[100,0 00] 97,000	[1,200] <u>970</u>	200	200	[5,800] 4,900	400	26	620	10,000	100	[620] <u>5,300</u>
		250		υ	Ш	Ш		Ш	Ш	Е	ш	O	ш	Ш	Е	Ш	Е	Ш	Ш	O	Ш	Ш
		TDS >	Residential	Generic Value	[32] <u>97</u>	2,700		3,100	720	15	17	190,00 0	[1,200] <u>1,000</u>	150	2,200	[360] 290	320	3.7	36	10,000	190	[840] 7,300
Head Aguifore	eiaiinh		Resi	100 X GW MSC	[200] 600	200		400	2,000	20	20	[42,000] 35,000	[420] 350	200	500	[2,100] 1,700	400	6.3	150	10,000	100	[150] 1,300
3			_	ic e	Ш	Ш		Ш	Ш	Е	Ш	Ш	Ш	Ш	Ш	Ш	Е	В	Е	Ш	Ε	Е
lea	020		Nonresidential	Generic Value	[0.32] 0.97	27		31	7.2	0.15	0.17	[7,300] 5,900	[34] <u>28</u>	1.5	22	[9.9] 8.4	3.2	0.15	1.5	[2,900] 2,400	1.9	[35] 300
		mg/L	Nonre	100 X GW MSC	[2] 6	7		4	20	0.5	0.5	[1,200] <u>970</u>	[12] <u>9.7</u>	7	5	[58] 49	4	0.26	6.2	10,00 0	1	[6.2] <u>53</u>
		2500			Ш	Ш		Ш	Ш	Е	Ш	Ш	Ш	Ш	Ш	Ш	В	Ш	Ш	Ш	Ш	Ш
	1	TDS ≤ 2500 mg/L	Residential	Generic Value	[0.32] 0.97	27		31	7.2	0.15	0.17	[2,600] <u>2,100</u>	[12] <u>10</u>	1.5	22	[3.6] <u>2.9</u>	3.2 E	0.037	0.36	[1,000] <u>870</u>	1.9	[8.4] 73
			Resi	100 X GW MSC	[2] 6	7		4	20	0.5	9.0	[420] 350	[4.2] 3.5	7	5	[21] 17	4	0.063	1.5	[8,300] 6,900	_	[1.5] <u>13</u>
			CASRN		76-03-9	120-82-1		108-70-3	71-55-6	2-00-62	79-01-6	95-95-4	88-06-2	93-76-5	93-72-1	9-77-869	96-18-4	96-19-5	121-44-8	112-27-6	1582-09-8	95-63-6
			REGULATED	SUBSTANCE	TRICHLOROACETIC ACID (HAA)	TRICHLOROBENZENE, 1,2,4-		TRICHLOROBENZENE, 1,3,5-	TRICHLOROETHANE, 1,1,1-	TRICHLOROETHANE, 1,1,2-	TRICHLOROETHYLENE (TCE)	TRICHLOROPHENOL, 2,4,5-	TRICHLOROPHENOL, 2,4,6-	TRICHLOROPHENOXY ACETIC ACID, 2,4,5- (2,4,5-T)	TRICHLOROPHENOXY PROPIONIC ACID, 2,4,5- (2,4,5-TP)(SILVEX)	TRICHLOROPROPANE, 1,1,2-	TRICHLOROPROPANE, 1,2,3-	TRICHLOROPROPENE, 1,2,3-	TRIETHYLAMINE	TRIETHYLENE GLYCOL	TRIFLURALIN	TRIMETHYLBENZENE, 1,3,4- (TRIMETHYLBENZENE, 1,2,4-)

¹ For other options see Section 250.308

Appendix A
Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

	Soil	Buffer	Distance (feet)	30	N A	Ϋ́	Ą	NA	Ϋ́	30	¥	AN
			U .	ш	Ш	Ш	Ш	Ш	Ш	Ш	ပ	Е
		Nonresidential	Generic Value	[210] <u>93</u>	20	0.023	21	3.8	0.27	4,100	10,000	[32] <u>78</u>
0.091110	Nomes Admiers	Nonre	100 X GW MSC	[120] <u>53</u>	20	0.2	180	7.8	2	1,700	10,000	[280]
3	26		ပ	Ш	Ш	Ш	Ш	Ш	Ш	Ш	ပ	Ш
N C	NOIN	Residential	Generic Value	[74] <u>23</u>	20	0.023	2	0.73	0.27	[3,100] 2,400	10,000 C	$[33] \frac{27}{2}$
		Resid	100 X GW MSC	[42] <u>13</u>	20	0.2	42	1.5	2	[1,300] 1,000	10,000	[210]
			0		Ш	Ξ	Е	Ш	Е		ပ	Ш
		Nonresidential	Generic Value	8,600 E	20 E	2.3	2,100 E	88	2.7 E	[840] E 690	10,000 C	160 E
	TDS > 2500 mg/L	Nonre	100 X GW MSC	4,900	20	20	10,000	78	20	[350] 290	10,000	1,000
	. 25(Ų	Ш	Ш	Ш		Ш	Ш	Ш	ပ	Ш
	< SQL	Residential	Generic Value	[7,400] 2,300	20 E	2.3	200 E	7.3	2.7	[310] 240	10,000 C	160 E
quifers		Resi	100 X GW MSC	[4,200] 1,300	09	20	4,200	15	20	[130] 100	10,000	1,000
3 ≤ 2500	_	ပ္	Ш	Ш	Ε	21 E	Е	Ε	Ш	Ш	ш	
	Nonresidential	Generic Value	[210] <u>93</u>	0.2	0.023	21	0.38	0.027 E	[8.4] 6.9	066	[92]	
	Nonre	100 X GW MSC	[120] <u>53</u>	9.0	0.2	180	82'0	0.2	[3.5] 2.9	1,000	[085]	
		υ	Ш	Ш	Ε	Ε	Ш	Ш	Ш	Ш	Ш.	
	Residential	Generic Value	[74] <u>23</u>	0.2	0.023	9	0.073 E	0.027 E	[3.1] <u>2.4</u>	066	[33] 27	
	TDS < 2	Res	100 X GW MSC	[42] <u>13</u>	0.5	0.2	42	0.15	0.2	81-81-2 [1.3] 1	1,000	[210]
	NASAS		108-67-8 [42] <u>13</u>	55-63-0	118-96-7	108-05-4	593-60-2	75-01-4	81-81-2	1330-20-7	12122-67-7	
		REGULATED	SUBSTANCE	TRIMETHYLBENZENE, 1,3,5-	TRINITROGLYCEROL NITROGLYCERIN)	TRINITROTOLUENE, 2,4,6-	VINYL ACETATE	VINYL BROMIDE (BROMOETHENE)	VINYL CHLORIDE	WARFARIN	XYLENES (TOTAL)	ZINEB

Appendix A

Table 4 – Medium-Specific Concentrations (MSCs) for Inorganic Regulated Substances in Soil

A. Direct Contact Numeric Values

		Residentia	al	Nonresid	enti	al MSCs	
REGULATED SUBSTANCE	CASRN	MSC 0-15 feet		Surface So 0-2 feet	il	Subsurfac Soil 2-15 feet	
ALUMINUM	7429-90-5	190,000	С	190,000	С	190,000	С
ANTIMONY	7440-36-0	88	G	1,300	G	190,000	С
ARSENIC	7440-38-2	12	G	61	G	190,000	С
BARIUM AND COMPOUNDS	7440-39-3	44,000	G	190,000	С	190,000	С
BERYLLIUM	7440-41-7	440	G	6,400	G	190,000	С
BORON AND COMPOUNDS	7440-42-8	44,000	G	190,000	С	190,000	С
CADMIUM	7440-43-9	110	G	1,600	G	190,000	С
CHROMIUM III	16065-83-1	190,000	С	190,000	С	190,000	С
CHROMIUM VI	18540-29-9	[4] <u>37</u>	G	[220] <u>180</u>	G	[20,000] 140,000	N
COBALT	7440-48-4	66	G	960	G	190,000	Ν
COPPER	7440-50-8	[8,100] 7,200	G	[120,000] 100,000	G	190,000	С
CYANIDE, FREE	57-12-5	130	G	1,900	G	190,000	С
FLUORIDE	16984-48-8	8,800	G	130,000	G	190,000	С
IRON	7439-89-6	150,000	G	190,000	С	190,000	С
LEAD	7439-92-1	[500] <u>420</u>	O	[1,000] <u>2,500</u>	[S] A	190,000	С
LITHIUM	7439-93-2	440	G	6,400	G	190,000	С
MANGANESE	7439-96-5	[10,000] <u>31,000</u>	G	[150,000] <u>190,000</u>	[G] C	190,000	С
MERCURY	7439-97-6	35	G	510	G	190,000	С
MOLYBDENUM	7439-98-7	1,100	G	16,000	G	190,000	С
NICKEL	7440-02-0	4,400	G	64,000	G	190,000	С
PERCHLORATE	7790-98-9	150	G	2,200	G	190,000	С
SELENIUM	7782-49-2	1,100	G	16,000	G	190,000	С
SILVER	7440-22-4	1,100	G	16,000	G	190,000	С
STRONTIUM	7440-24-6	130,000	G	190,000	С	190,000	С
THALLIUM	7440-28-0	[2] <u>2.2</u>	G	32	G	190,000	С
TIN	7440-31-5	130,000	G	190,000	С	190,000	С
VANADIUM	7440-62-2	15	G	220	G	190,000	С
ZINC	7440-66-6	66,000	G	190,000	С	190,000	С

R - Residential

NR – Non-Residential

G - Ingestion

N - Inhalation

C- Cap

U - [UBK Model] IEUBK Model

[S - SEGH Model] A - Adult Lead Model

NA - Not Applicable

Appendix A
Table 4 – Medium-Specific Concentrations (MSCs) for Inorganic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

					Used 4	Used Aquifers								
			TDS ≤ 2500 mg/L	:00 mg/L			TDS > 2500 mg/L	500 mg/L			Nonuse Aquirers	Adullers		Soil
REGULATED	CASRN	8	~	Z	NR	_	~	z	NR		~	NR	~	Buffer
SUBSTANCE		100 X GW MSC	Generic Value	Distance (feet)										
[ALUMINUM]	[7429-90-5]	[NA]	[NA]	[NA]										
ANTIMONY	7440-36-0	9.0	27	9.0	27	09	2,700	09	2,700	009	27,000	009	27,000	15
ARSENIC	7440-38-2	-	29	_	29	100	2,900	100	2,900	1,000	29,000	1,000	29,000	15
BARIUM AND COMPOUNDS	7440-39-3	200	8,200	200	8,200	20,000	190,000	20,000	190,000	190,000	190,000	190,000	190,000	15
BERYLLIUM	7440-41-7	0.4	320	0.4	320	40	32,000	40	32,000	400	190,000	400	190,000	10
BORON AND COMPOUNDS	7440-42-8	009	1,900	009	1,900	000'09	190,000	000'09	190,000	190,000	190,000	190,000	190,000	30
CADMIUM	7440-43-9	9.0	38	9.0	38	20	3,800	90	3,800	200	38,000	200	38,000	15
CHROMIUM (III)	16065-83-1	10	190,000	10	190,000	1,000	190,000	1,000	190,000	10,000	190,000	10,000	190,000	2
CHROMIUM (VI)	18540-29-9	10	190	10	190	1,000	19,000	1,000	19,000	10,000	190,000	10,000	190,000	15
COBALT	7440-48-4	-	[59] <u>45</u>	[4] <u>2.9</u>	[160]	[130]	[5,900] 4 500	[320]	[16,000	[1,300]	000,65]	[3,500]	[160,00	15
					3	<u></u>	F	3	13,000	-	45,000	200	130,000	
COPPER	7440-50-8	[NA] 100	[NA] 43,000	[NA] 100	[NA] 43,000	[NA] 10,000	[NA] 190,000	[NA] 10,000	[NA] 190,000	[NA] 100,000	[NA] 190,000	[NA] 100,000	[NA] 190,000	[NA] <u>10</u>
CYANIDE, FREE	57-12-5	20	200	20	200	2,000	20,000	2,000	20,000	20,000	190,000	20,000	190,000	20
FLUORIDE	16984-48-8	400	44	400	44	40,000	4,400	40,000	4,400	190,000	44,000	190,000	44,000	NA
[IRON]	[7439-89-6]	[NA]	[NA]	[NA]										
LEAD	7439-92-1	0.5	450	0.5	450	50	45,000	20	45,000	500	190,000	200	190,000	10
LITHIUM	7439-93-2	[8]	[2,500]	[23] <u>19</u>	[6,900]	[830]	190,000	[2,300]	190,000	[8,300]	190,000	[23,000	190,000	10
			7,100		6	200		006,1		006,0		19,000		
MANGANESE	7439-96-5	30	2,000	30	2,000	3,000	190,000	3,000	190,000	30,000	190,000	30,000	190,000	15
MERCURY	7439-97-6	0.2	10	0.2	10	20	1,000	20	1,000	200	10,000	200	10,000	15
MOLYBDENUM	7439-98-7	4	650	4	650	400	65,000	400	65,000	4,000	190,000	4,000	190,000	15
NICKEL	7440-02-0	10	650	10	650	1,000	65,000	1,000	65,000	10,000	190,000	10,000	190,000	15
PERCHLORATE	7790-98-9	1.5	0.17	1.5	0.17	150	17	150	17	1,500	170	1,500	170	NA
SELENIUM	7782-49-2	5	26	2	26	200	2,600	200	2,600	5,000	26,000	5,000	26,000	20
SILVER	7440-22-4	10	84	10	84	1,000	8,400	1,000	8,400	10,000	84,000	10,000	84,000	20

¹For other options see Section 250.308 All concentrations in mg/kg R – Residential NR – Non-Residential NA – Not Applicable

Appendix A
Table 4 – Medium-Specific Concentrations (MSCs) for Inorganic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

					Used A	Used Aquifers						9:		
			TDS ≤ 2500 mg/L	00 mg/L			TDS > 2500 mg/L	300 mg/L			Nonuse Aquirers	Adulters		Soil
REGULATED	CASRN	8	~	Z	NR		~	NR	~	4		NR	2	Buffer
SUBSTANCE		100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	Distance (feet)
STRONTIUM	7440-24-6	400	44	400	44	40,000	4,400	40,000	4,400	190,000	44,000	190,000	44,000	ΑN
THALLIUM	7440-28-0	0.2	14	0.2	14	20	1,400	20	1,400	200	14,000	200	14,000	15
N.	7440-31-5	[2,500] $2,100$	190,000	[7,000] 5,800	190,000	190,000	190,000	190,000 190,000 190,000 190,000	190,000 190,000	190,000	190,000 190,000		190,000	10
VANADIUM	7440-62-2	[0.29] 0.24	[290] 240	[0.82] 0.68	[820] 680	[29] <u>24</u>	[29,000] 24,000	[82] <u>68</u>	[82,000] 68,000	[82,000][290] <u>240</u> 68,000	190,000	[820] 680	190,000	2
ZINC	440-66-6	200	12,000	200	12,000	20,000	20,000 190,000	20,000	190,000	190,000	190,000	190,000 190,000 190,000 190,000 190,000	190,000	15

¹For other options see Section 250.308 All concentrations in mg/kg R – Residential NR – Non-Residential NA – Not Applicable

Appendix A
Table 5 – Physical and Toxicological Properties
A. Organic Regulated Substances

													_		_		_				_		_			_
Degradation Coefficient (K)(yr¹)	1.24	2.11			18.07	4.50		69'0	4.50		1.39	5.50		0.40			0.22	18.07		18.07	69.0				0.28	
Boiling Point (degrees C)	279	280	340	20	99	82	203	303	53	193	141	22	378	287	317	307	330	26	345	302	258	-33	603	184	340	313
Organic Liquid				×	×	×	×		×		×	×						×				×		×		
TF Vol from SubSurface Soil	20833	19776		[15100] 14945	[15000] 14942	[15000] 14958			[15100] 14948	[15000] 14906	[14900] 14902	[15100]						[15000] 14937				[15000] 15059		[14900] 1487 <u>6</u>	44562	
TF Vol from Surface Soil	17220	16493		[13100]	[13100] 13007	[13100] 13020			[13100] 13012	[13000] 12981	[13000] 12978	[13100] 13004						[13100] 13003				[13100] 13098		[13000] 12959	30838	
Aqueous Sol Reference ¹	1,5,6	2,6,7	9	-	-	-	-	7	1,2,4	4	2	-	2	2	5	5	4,5,6	2	2	5	4	2,5,7	10	_	1,5,6,7,8,9	2,4,5
Aqueous Sol (mg/L)	3.8	16.1	818000	1000000	1000000	1000000	2200	10.13	208000	2151000	1000000	73500	140	0009	0008	330000	0.02	1000000	185	1200	280000	310000	2160000	33800	990.0	02
YOC?	×	×		X	×	X			X	×	X	×						×				X		X	×	
Koc	4900	4500	3	4.1	0.31	9.0	170	1600	0.56	25	58	11	110	22	10	0.22	48000	3.2	688	110	120	8	3	190	21000	130
3)-1				-				0		_		-								0	С.			0		
IUR (µg/m³)-¹				0.0000022				0.0013		0.0001		0.000068					0.0049			900'0	0.00027			0.0000016		
l ₃)				-	Δ	-			-	-	_	-						×				-		-		
RfCi (mg/m³)				600:0	31	90:0			0.00002	900.0	0.001	0.002						0.0001				[0.1] 0.5		0.001		
CSFo (mg/kg-d)⁻¹			Ε					3.8 C		0.5		-	O 9				17 1			1 C	Н			1 2		3 C
CS (mg/k			[0.0087]					3		0		0.54	0.056				,			2	0.94			0.0057		0.23
o P	_	S	E o		_		_		-	_	-	Δ .	_	_	-	Σ	_	-	_			I	_	<u>a</u>	_	_
RfDo (mg/kg-d)	90'0	90.0	[0.004]		6.0		0.1		9000'0	0.002	9:0	0.04	0.01	0.001	0.001	0.001	0.00003	0.005	600'0			<u>58'0</u> [26'0]	0.2	200'0	0.3	0.035
CAS	83-32-9	208-96-8	30560-19-1	0-20-92	67-64-1	75-05-8	98-86-2	53-96-3	107-02-8	79-06-1	79-10-2	107-13-1	15972-60-8	116-06-3	1646-88-4	1646-87-3	309-00-2	107-18-6	834-12-8	92-67-1	61-82-5	7664-41-7	7773-06-0	62-53-3	120-12-7	1912-24-9
Regulated Substance	ACENAPHTHENE	ACENAPHTHYLENE	ACEPHATE	ACETALDEHYDE	ACETONE	ACETONITRILE	ACETOPHENONE	ACETYLAMINO-FLUORENE, 2- (2AAF)	ACROLEIN	ACRYLAMIDE	ACRYLIC ACID	ACRYLONITRILE	ALACHLOR	ALDICARB	ALDICARB SULFONE	ALDICARB SULFOXIDE	ALDRIN	ALLYL ALCOHOL	AMETRYN	AMINOBIPHENYL, 4-	AMITROLE	AMMONIA	AMMONIUM SULFAMATE	ANILINE	ANTHRACENE	ATRAZINE

Toxicity Value Sources: C = California EPA [Cancer Potency Factor]

IN = EPA NCEA Provisional Values <u>10</u> = EPA Office of Pesticide Programs Human Health Benchmarks for Pesticides

Health Benchmarks for Pesticides

P = EPA Provisional Peer-Reviewed Toxicity Value S = surrogate

D = ATSDR Minimal Risk Level H = Health Effects Assessment Summary Table (HEAST) I = Integrated Risk information System (IRIS) M = EPA Drinking Water Regulations and Health Advisories

Appendix A
Table 5 – Physical and Toxicological Properties
A. Organic Regulated Substances

Regulated Substance	CAS	RfDo (mg/kg-d)	_	CSFo (mg/kg-d) ⁻¹	R (mţ	RfCi (mg/m³)	IUR (µg/m³)-¹	_	Кос	VOC?	Aqueous Sol (mg/L)	Aqueous Sol Reference ¹	TF Vol from Surface Soil	TF Vol from SubSurface Soil	Organic Liquid	Boiling Point (degrees C)	Degradation Coefficient (K)(yr¹)
AZINPHOS-METHYL (GUTHION)	86-50-0	[0.003] 0.0015	Ēo		0	0.01 D			407.4		31.5	1, 2				421	
BAYGON (PROPOXUR)	114-26-1	0.004	-						31		2000	2,4,5				decomb.	4.50
BENOMYL	17804-35-2	0.05	_	0.0024 O					1,900		2	2				520	
BENTAZON	25057-89-0	0.03							13		200	2				415	
BENZENE	71-43-2	0.004	_	0.055	0	0.03	0.0000078	_	28	×	1780.5	1,2,3,4	[13100] 13053	15000	×	81	96.0
BENZIDINE	92-87-5	0.003	-	230			0.067	_	530,000		520	1,2,4				400	15.81
BENZO[A]ANTHRACENE	56-55-3			0.7 X			0.00011	S	350000		0.011	1,5,6				438	0.19
BENZO[A]PYRENE	50-32-8	0.0003		[7.3] 1	0.000002	<u>1</u>	[0.0011]	<u>[</u> [5]	910000		0.0038	1,5,6				495	0.24
BENZO[B]FLUORANTHENE	202-99-2			1.2 C			0.00011	ပ	220000		0.0012	5,6,7				357	0.21
BENZO[GHI]PERYLENE	191-24-2	90'0	S						2800000		0.00026	1,5,6				200	0.19
BENZO[K]FLUORANTHENE	207-08-9		H	1.2 C		H	0.00011	S	4400000		0.00055	5,6,7				480	90'0
BENZOIC ACID	65-85-0	4	_						32	×	2700	2,3,4,5	12985	14913		249	
BENZOTRICHLORIDE	7-20-86			13 1					920	X	53	1,5,13	13494	15606	×	221	121413.60
BENZYL ALCOHOL	100-51-6	0.1	Ь						100		40000	1,2,3	H		×	205	
BENZYL CHLORIDE	100-44-7	0.002	<u>م</u>	0.17	0.0	0.001 P	0.000049	ပ	190	×	493	1	[13000] 12940	[15000]		179	20.90
BETA PROPIOLACTONE	8-22-28			14 C			0.004	ပ	4	×	370000	2	[13100]	[15000]	×	162	10.0
BHC, ALPHA	319-84-6	800'0	D	6.3			0.0018		1800		1.7	4,5,6,7				288	0.94
BHC, BETA-	319-85-7			1.8			0.00053		2300		0.1	9				304	1.02
BHC, GAMMA (LINDANE)	58-89-9	0.0003	_	1.1 C			0.00031	С	1400		7.3	4,5,6				323	1.05
BIPHENYL, 1,1-	92-52-4	90'0	_	[X] 800:0	t) 0.0004	X X			1,700	x	7.2	_	14027	16325		255	18.07
BIS(2-CHLORO ETHOXY)METHANE	111-91-1	0.003	۵						61		100500	4,6,7,9,10,11			×	218	
BIS(2-CHLOROETHYL)ETHER	11144-4			1.			0.00033	_	92	×	10200	1,4,5	[13000]		×	179	69:0
BIS(2-CHLORO-ISOPROPYL)ETHER	108-60-1	0.04	_	0.07 H			0.00001	I	62	×	1700	9			×	189	69'0
BIS(CHLOROMETHYL)ETHER	542-88-1			220			0.062	_	16	×	22000	9	[13100]	[15100]	×	105	57270.57
BIS[2-ETHYLHEXYL] PHTHALATE	117-81-7	0.02		0.014			0.0000024	C	87000		0.285	4,5,6			×	384	99.0
BISPHENOL A	2-90-08	90.0	_						1,500		120	4				220	69'0

IN = EPA NCEA Provisional Values <u>10</u> = EPA Office of Pesticide Programs Human Health Benchmarks for Pesticides

Health Benchmarks for Pesticides

P = EPA Provisional Peer-Reviewed Toxicity Value S = surrogate Toxicity Value Sources: C = California EPA [Cancer Potency Factor]

[T = TEF] D = ATSDR Minimal Risk Level H = Health Effects Assessment Summary Table (HEAST) I = Integrated Risk information System (IRIS) M = EPA Drinking Water Regulations and Health Advisories

Appendix A
Table 5 – Physical and Toxicological Properties
A. Organic Regulated Substances

Regulated Substance	CAS	RfDo (mg/kg-d)	CSFo (mg/kg-d) ⁻¹	RfCi (mg/m³)	IUR (µg/m³)-1	Koc	VOC?	Aqueous Sol (mg/L)	Aqueous Sol Reference ¹	TF Vol from Surface Soil	TF Vol from SubSurface Soil	Organic Liquid	Boiling Point (degrees C)	Degradation Coefficient (K)(yr¹)
BROMACIL	314-40-9	0.1 M				28		815	2				421	
BROMOBENZENE	108-86-1	0.008		0.06		268	×	445	1,2	12954	14866	×	126.1	
BROMOCHLOROMETHANE	74-97-5	0.01 M		0.04 X		27	×	16700	4	[13100] 13007	[15000] 14942	×	89	
BROMODICHLOROMETHANE	75-27-4	0.02	0.062		0.000037 C	66	×	4500	9	[13100] 12984	[15000] 14910	×	87	
BROMOMETHANE	74-83-9	0.0014		0.005		170	×	17500	2	[13100] 13039	[15000] 14981	×	4	99.9
BROMOXYNIL	1689-84-5	[0.02] <u>0.015</u> [i]	0.103			300		130	2				329	
BROMOXYNIL OCTANOATE	1689-99-2	[0.02] <u>0.015</u> [i]	0.103			18,000		80:0	12				414	5.75
BUTADIENE, 1,3-	106-99-0		[3.4] <u>0.6</u> C	0.002	0.00003	120	×	735	L	[13200] 13115	[15000] 15041	×	-4.5	4.50
BUTYL ALCOHOL, N-	71-36-3	0.1				3.2	×	74000	1	[13000] 12998	[14900] 14930	×	118	4.68
витуцате	2008-41-5	0.05				240	×	45	2	[13200] 13430	[15200] 15519	×	138	
BUTYLBENZENE, N-	104-51-8	0.05 P				2,500	×	15	1,6,7	[13100] 12943	[15100] 14851	×	183	
BUTYLBENZENE, SEC-	135-98-8	0.1 X				068	×	21	1,6,7	[13100] 12983	[15000] 14910	×	174	
BUTYLBENZENE, TERT-	9-90-86	0.1 X				089	×	30	1,6,7	[13100] 12979	[15000] 14904	×	169	
BUTYLBENZYL PHTHALATE	85-68-7	0.2	0.0019 P			34000		2.69	4,5,6			×	370	1.39
CAPTAN	133-06-2	0.13	0.0023 C		0.000000066 C	200	Ī	0.5	4				259	589.39
CARBARYL	63-25-2	0.1	\dashv			190		120	2,4,5				315	4.22
CARBAZOLE	86-74-8	-	0.02 H			2,500		1.2	1,5,6				355	
CARBON DISULFIDE	1563-66-2 75-15-0	0.005		1 2.0		300	×	2100	1,2,3	[13100]	[15100]	×	311	
CARBON TETRACHLORIDE	56-23-5	0.004	1 20.0	0.1	0.00000	160	×	795	1,2,3	[13100]	[15000] 15083	×	77	0.07
CARBOXIN	5234-68-4	0.1				260		170	5,6,8				407	
CHLORAMBEN	133-90-4	0.015				20		200	2				210	
CHLORDANE	57-74-9	0.0005	0.35	0.0007	0.0001	98000	_	0.056	4,5,7				351	0.09

IN = EPA NCEA Provisional Values] <u>0</u> = EPA Office of Pesticide Programs Human Health Benchmarks for Pesticides P = EPA Provisional Peer-Reviewed Toxicity Value S = surrogate Toxicity Value Sources: C = California EPA [Cancer Potency Factor]

[T = TEF]

D = ATSDR Minimal Risk Level
H = Health Effects Assessment
Summary Table (HEAST)
1 = Integrated Risk information
System (IRIS)
M = EPA Drinking Water
Regulations and Health Advisories

Appendix A
Table 5 – Physical and Toxicological Properties
A. Organic Regulated Substances

IN = EPA NCEA Provisional Values <u>10</u> = EPA Office of Pesticide Programs Human Health Benchmarks for Pesticides

Health Benchmarks for Pesticides

P = EPA Provisional Peer-Reviewed Toxicity Value S = surrogate Toxicity Value Sources: C = California EPA [Cancer Potency Factor]

D = ATSDR Minimal Risk Level
H = Health Effects Assessment
Summary Table (HEAST)
1 = Integrated Risk information
System (IRIS)
M = EPA Drinking Water
Regulations and Health Advisories

Appendix A
Table 5 – Physical and Toxicological Properties
A. Organic Regulated Substances

		22	က	9	22	20	9	23		20	20	72						2	2	2	0	6	6	_	ဗ
Degradation Coefficient (K)(yr¹)		1.37	0.13	5.16	6.02	18.07	5.16	60.6		18.07	18.07	15.81						0.02	0.02	0.02	4.50	1.39	69:0		0.13
Boiling Point (degrees C)	531	360	448	139	312	191	202	202	235	104	104	152	698	81	157	448	222	320	348	260	214	328	292	306	524
Organic Liquid				×			×			×	×	×		×	×						×	×		×	
TF Vol from SubSurface Soil				[14900] 14899	14970	[14900]				[14900] 14931	[15100] 14940	[15100] 14846		[15100] 1511 <u>2</u>	[14900] 14858										
TF Vol from Surface Soil				[13000] 12976	13025	[13000] 12974				[13000] 12998	[13100] 13006	[13100] 12940		[13100] 13140	[13000] 12949										
Aqueous Sol Reference ¹	2,5,6,8,9	2,5,7	1	2	4	3,5,6	2	9	2	3	1	1,5,6	2,5	1,2,4,5,6	1,2,4,5	2	12	5,6,7	2	5,6,7	5	2,4,6,8	4	2,4,6,8	1,5,6
Aqueous Sol (mg/L)	192	0.5	0.0019	20000	150	2500	2500	22000	3846	180000	156000	20	171	92	36500	0.001	11000	0.16	0.04	0.0055	200	40	7470	20	0.0006
V0C?				×	×I	×				×	×	×		×	×										
Koc	11	6,500	490000	25	257	22	35	49	780	5.6	6.1	2800	199	479	99	130,000	1,200	44000	87000	240000	47,000,000	190	36	500	1800000
IUR (µg/m³)-¹			0.000011 C															O.000069 C	0.000097 C	0.000097			0.0011 C		0.0012 C
				O								_		_	Ь										_
RfCi (mg/m³)				90:0								0.4		9	0.7										
CSFo (mg/kg-d) ⁻¹			2 C							1.9 S	Н 6		Τ					1 4	- 4	1 4	2	Н	Ω		ر د
CS (mg/k			0.12							- -	1.9		0.84					0.24	0.34	0.34	0.0012	0.061			4.1
o (P-E	2 <u>0</u>	_		1 D	E×	- 2	- 2	H	1 ×	ا اه	1 P	-	2 H.M		2	- 2	E0	3 ×	3 3	1 9	- 9			2 D	
RfDo (mg/kg-d)	[0.05] 0.02	0.01		0.1	[0.0001]	0.05	0.05	0.005	0.1	0.001	0.001	0.1	0.002			0.025	[0.0075]	0.003	0.0003	0.0005	9.0			0.0007	
CAS	64902-72-3	1861-32-1	218-01-9	1319-77-3	534-52-1	95-48-7	108-39-4	106-44-5	29-20-2	4170-30-3	123-73-9	98-82-8	21725-46-2	110-82-7	108-94-1	68359-37-5	66215-27-8	72-54-8	72-55-9	50-29-3	103-23-1	2303-16-4	95-80-7	333-41-5	53-70-3
Regulated Substance	CHLORSULFURON	CHLORTHAL-DIMETHYL (DACTHAL) (DCPA)	CHRYSENE	CRESOL(S)	CRESOL, DINITRO-O-, 4,6-	CRESOL, O- (METHYLPHENOL, 2-)	CRESOL, M (METHYLPHENOL, 3-)	CRESOL, P (METHYLPHENOL, 4-)	CRESOL, P-CHLORO-M-	CROTONALDEHYDE	CROTONALDEHYDE, TRANS-	CUMENE (ISOPROPYL BENZENE)	CYANAZINE	CYCLOHEXANE	CYCLOHEXANONE	CYFLUTHRIN	CYROMAZINE	DDD, 4,4'-	DDE, 4,4'-	DDT, 4,4'-	DI(2-ETHYLHEXYL)ADIPATE	DIALLATE	DIAMINOTOLUENE, 2,4-	DIAZINON	DIBENZO[A,HJANTHRACENE

IN = EPA NCEA Provisional Values JO = EPA Office of Positicide Programs Human Health Benchmarks for Pesticides
P = EPA Provisional Peer-Reviewed Toxicity Value S = surrogate Toxicity Value Sources: C = California EPA [Cancer Potency Factor]

[T = TEF]

D = ATSDR Minimal Risk Level H = Health Effects Assessment Summary Table (HEAST) I = Integrated Risk information System (IRIS) M = EPA Drinking Water Regulations and Health Advisories

TE = TERA ITER Peer-Reviewed Value X = EPA Provisional Peer-Reviewed Toxicity Value Appendix

PENNSYLVANIA BULLETIN, VOL. 50, NO. 7, FEBRUARY 15, 2020

Appendix A
Table 5 – Physical and Toxicological Properties
A. Organic Regulated Substances

													-	?F	ROI	PO	SE	:D	RU	ILE	:IVI	4
Degradation Coefficient (K)(yr¹)	7.23	0.69		2.11	4.50	11.00					69.0	69.0	69:0	69.0	69:0	0.16	0.07	0.19	0.01	0.01	4.50	2,88
Boiling Point (degrees C)	287	196	220	131	96	340	329	194	156	155	180	173	174	368	-30	25	83	32	09	48	40	210
Organic Liquid		×		×	×	×		×	×	×	×	×			×	×	×	×	×	×	×	
TF Vol from SubSurface Soil	31445	[15000] 14856		[15100] 14893	[15100] 14858			[14900] 14924	[15000] 14851	[14800] 14847	[15100] 14855	[15100] 14849	[14900] 14850		[15000] 15041	[15000] 14998	[15000] 14945	[15000] 15119	[15000] 14979	15000	[15000] 15023	
TF Vol from Surface Soil	23885	[13000] 12946		[13100] 12972	[13100] 12948			[12900] 12994	[13100] 12943	[12900] 12940	[13100] 12946	[13100]	[12900] 12943		[13200] 13115	[13100] 13051	[13100] 13010	[13100]	[13100] 13037	[13100] 13053	[13100] 13071	
Aqueous Sol Reference ¹	1.6.7.9	4	-	1,2,3,5	-	1,2,3	4,5,6,8,10	-	6	6	1,4,5,6,7	-	-	4,5,6	1	2	1,2,3,4	1,4,5	1	1	1,2,3	
Aqueous Sol (mg/L)	4.48	1000	20	4150	11400	400	2600	1000000	820	850	147	106	82.9	3.11	280	2000	8412	2500	3500	9300	20000	4500
VOC?	×	×		×	×			×	×	×	×	×	×		×	×	×	×	×	×	×	
Koc	10233	140	1,600	54	110	1600	0.27	8.1	180	215	320	360	510	22000	360	52	38	65	49	47	16	160
Σ_		۵							۵	[S] <u>P</u>			ပ	O		၁	_				_	
IUR (µg/m³)⁻¹		90000		9000'0					0.0042	0.0042			0.000011	0.00034		0.0000016	0.000026				0.00000001	
- 6·		-		_	×						I		-		×	I	۵	_		[<u>B</u>]	-	
RfCi (mg/m³)		0.0002		600.0	0.004						0.2		8.0		0.1	0.5	0.007	0.2		[0.06]	9.0	
CSFo (mg/kg-d)⁻¹		0.8 P		- 2				0.05					24 C	0.45		2 L	91				0.002	
C (mg/								.O					0.0054	0		0.0057	0.091				0.0	
ਓ	×	۵	_	_	I	-	_	-			_	Σ	۵		_	۵	×	-	-	_	-	-
RfDo (mg/kg-d)	0.001	0.0002	0.01	600.0	0.01	0.1	0.03	0.004			0.09	0.09	0.07		0.2	0.2	900.0	0.05	0.002	0.02	0.006	0 003
CAS	132-64-9	96-12-8	106-37-6	106-93-4	74-95-3	84-74-2	1918-00-9	76-43-6	764-41-0	110-57-6	95-50-1	541-73-1	106-46-7	91-94-1	75-71-8	75-34-3	107-06-2	75-35-4	156-59-2	156-60-5	75-09-2	120-83-2
Regulated Substance	DIBENZOFURAN	DIBROMO-3-CHLOROPROPANE, 1,2-	DIBROMOBENZENE, 1,4-	DIBROMOETHANE, 1,2- (ETHYLENE DIBROMIDE)	DIBROMOMETHANE	DIBUTYL PHTHALATE, N-	DICAMBA	DICHLOROACETIC ACID	DICHLORO-2-BUTENE, 1,4-	DICHLORO-2-BUTENE, TRANS-1,4-	DICHLOROBENZENE, 1,2-	DICHLOROBENZENE, 1,3-	DICHLOROBENZENE, P-	DICHLOROBENZIDINE, 3,3'-	DICHLORODIFLUOROMETHANE (FREON 12)	DICHLOROETHANE, 1,1-	DICHLOROETHANE, 1,2-	DICHLOROETHYLENE, 1,1-	DICHLOROETHYLENE, CIS-1,2-	DICHLOROETHYLENE, TRANS-1,2-	DICHLOROMETHANE (METHYLENE CHLORIDE)	DICHI OROPHENOL 2 4-

IN = EPA NCEA Provisional Values] O = EPA Office of Pesticide Programs Human Handle Benchmarks for Pesticides

P = EPA Provisional Peer-Reviewed Toxicity Value S = surrogate Toxicity Value Sources: C = California EPA [Cancer Potency Factor]

[T = TEF]

D = ATSDR Minimal Risk Level H = Health Effects Assessment Summary Table (HEAST) I = Integrated Risk information System (IRIS) M = EPA Drinking Water Regulations and Health Advisories

Appendix A
Table 5 – Physical and Toxicological Properties
A. Organic Regulated Substances

ΞĔ	RfDo CSFo RfCi (mg/kg-d) ⁻¹ (mg/m³)	1UR (µg/m³)-1	7	Koc VOC?		Aqueous Aqu Sol Re (mg/L)	Aqueous Sol Reference ¹	TF Vol from Surface Soil	TF Vol from SubSurface Soil	Organic Liquid	Boiling Point (degrees C)	Degradation Coefficient (K)(yr¹)
0.01				29		229	4,5,6,7,10				215	1.39
[0.09] <u>0.04</u> [D] [0.036] [C] P	0.004	1 [0.00001]	립	X 74		2700	1,3,4	[13100] 13016	[15000] 14954	×	96	0.10
0.03 1 0.1 1	0.02	1 0.000004	_	27 X		2700	9	[13100] 13038	[15000] 14981	×	108	22.38
0.03				62 X		200000	2	[13000] 12949	[14900] 14860	×	190	2.11
0.0005 1 0.29 1	0.0005	0.000083	O	20		10000	2,4,5			×	234	
0.008 P	0.0003	×		810 X		40	2	[13000] 12957	[14900] 14870		167	
0.00005 1 16 1		0.0046		11000		0.17	4,5,6				385	0.12
0.002 P	0.0002	Ь		4	10	0000001	2,3,9			×	269	
0.8				81		1080	4,5,6			×	298	2.25
0.02				1,000		0.2	2				201	
0.08				10 X		160000	6	[13000] 12978	[14900] <u>14903</u>	×	190	
[0.0002] [1] 0.0022 O				110		25000	4				361	2.26
1.6 P				1,300		09	6				331	69.0
0.3 M				27,000	-	0.036	13				353	
4.6		0.0013	O	1000		13.6	7				335	4.50
0.002 l <u>0.027</u> <u>P</u>				180 X		1200	5,6,7,9	[13000] 12944	[14900] <u>14852</u>	×	192	0.69
11 P				22,000		1300	10				300	18.07
0.06 P 0.0017 P				2 X		1000000	14	[13000] 12998	[14900] 14930	×	181	
0.02				130		7869	1,4,6,7			×	211	18.07
0.0001				150		523	3,5,6,7				291	0.69
0.002				0.79		2600	2,4,5,6,7				332	0.48
0.002 I 0.31 C		0.000089	С	51		270	4,5,6				300	0.69
0.0003 X 1.5 P				74		200	9				300	69.0
0.001				120		20	5				223	1.03
0.03 1 0.1 1	[0.11] 0.03	[D] [0.0000077]	[C] <u>I</u>	7.8 X	`	1000000	2	[13000] 12996	[14900] 14928	×	101	0.69
0.03			l	000	L	050	L				210	

Toxicity Value Sources: C = California EPA [Cancer Potency Factor]

IN = EPA NCEA Provisional Values] <u>0</u> = EPA Office of Pesticide Programs Human Health Benchmarks for Pesticides P = EPA Provisional Peer-Reviewed Toxicity Value S = surrogate D = ATSDR Minimal Risk Level
H = Health Effects Assessment
Summary Table (HEAST)
1 = Integrated Risk information
System (IRIS)
M = EPA Drinking Water
Regulations and Health Advisories

[T = TEF]

Appendix A
Table 5 – Physical and Toxicological Properties
A. Organic Regulated Substances

	0	6	Π	2		Г	σ.									0	_	_	_					4	
Degradation Coefficient (K)(yr¹)	4.50	69.0		6.02			2.78						4.50			4.50	18.07	18.07	1.11					10.54	4.50
Boiling Point (degrees C)	302	309	355	332	199	354	401	401	390	409	350	245	116	201	415	136	22	100	136	127	35	111	128	198	347
Organic Liquid				×									×		×	×	×	×	×	×	×	×	×	×	
TF Vol from SubSurface Soil		15446			[14900] 14899								[14900] 14893			[15000] 15040	[15000] 14881	[15100] 14863	15000	[14900] 15014	[15100] 14908	[15000] 14921	[14900] 14941	[15100] 14938	
TF Vol from Surface Soil		13375			[13000] 12976								[13000] 12972			[13200] 13100	[13100] 12963	[13100] 12951	[13100] 13004	[12900] 13056	[13100] 12982	[13100] 12991	[13000] 13006	[13100] 13004	
Aqueous Sol Reference ¹	3	9	2	4,5,6	15	2,4,5	4	9	9	6,7	2	4,6,7,9	1,3,4	12	4,6,9,10	2	1,2,3,4,5,6	1,2,6	1,3,4	2	-	9,10	6	2	2
Aqueous Sol (mg/L)	300	0.252	200000	52	3000	42	0.48	0.5	0.45	0.117	100000	0.23	65800	1240000	0.85	1000000	80800	15000	161	365	60400	4635.5	1000000	1000000	20000
VOC?		×I			×								×			×	×	×	×	×	×	×	×	×	
Koc	190	099	2.6	1000	22.7	300	2,000	2000	2300	2300	120	11000	35	2	8700	12	69	110	220	240	89	22	-	4.4	0.23
3)-1		-											-						O						C
IUR (µg/m³)-¹		0.00022											0.0000012						0.0000025						0.000013
i η³)																-	Д.	Д.	-			۵.		O -	
RfCi (mg/m³)													0.001			0.2	0.07	0.008	`			0.3		0.4	
CSFo (mg/kg-d) ⁻¹		0.8											- 6					Н 8	٦ د						5 C
CS (mg/k		0											0:0099					0.048	0.011						0.045
(p-f	<u>-</u>		1 2	-	-	- 2	1 9	S 9	s 9	S 9	2 1	3	9 9	- 2	1 2	9 6	- 6	2 2	0.1	<u> []</u>	- 2	Н 6	2 P	2	- 8
RfDo (mg/kg-d)	[0.025] 0.1		0.0022	0.00004	0.01	0.002	0.006	0.006	900'0	0.006	0.02	0.0003	0.006	0.005	0.0005	0.09	6:0	0.005	0	[0.025] 0.05	0.2	0.09	0.02		0.00008
CAS	122-39-4	122-66-7	2-00-58	298-04-4	505-29-3	330-54-1	115-29-7	8-86-656	33213-65-9	1031-07-8	145-73-3	72-20-8	106-89-8	16672-87-0	563-12-2	110-80-5	141-78-6	140-88-5	100414	759-94-4	60-29-7	97-63-2	107-07-3	107-21-1	96-45-7
Regulated Substance	DIPHENYLAMINE	DIPHENYLHYDRAZINE, 1,2-	DIQUAT	DISULFOTON	DITHIANE, 1,4-	DIURON	ENDOSULFAN	ENDOSULFAN I (ALPHA)	ENDOSULFAN II (BETA)	ENDOSULFAN SULFATE	ENDOTHALL	ENDRIN	EPICHLOROHYDRIN	ETHEPHON	NOIHLE	ETHOXYETHANOL, 2- (EGEE)	ЕТНҮL АСЕТАТЕ	ETHYL ACRYLATE	ETHYL BENZENE	ETHYL DIPROPYLTHIOCARBAMATE, S- [EPTC]	ЕТНҮГ ЕТНЕК	ETHYL METHACRYLATE	ETHYLENE CHLORHYDRIN	ETHYLENE GLYCOL	ETHYLENE THIOUREA (ETU)

Toxicity Value Sources: C = California EPA [Cancer Potency Factor]

IN = EPA NCEA Provisional Values JO = EPA Office of Positicide Programs Human Health Benchmarks for Pesticides
P = EPA Provisional Peer-Reviewed Toxicity Value S = surrogate D = ATSDR Minimal Risk Level H = Health Effects Assessment Summary Table (HEAST) I = Integrated Risk information System (IRIS) M = EPA Drinking Water Regulations and Health Advisories

[T = TEF]

Appendix A
Table 5 – Physical and Toxicological Properties
A. Organic Regulated Substances

c		l			စ	_	35		20	20		55			¥	33	9(6	0	66					20	20
Degradation Coefficient (K)(yr¹)					0.29	2.11	0.35		18.07	18.07		2.25			46.84	0.23	90.0	69.0	4.50	69.0					18.07	18.07
Boiling Point (degrees C)	215	390	300	318	375	298	24	324	-21	101	464	31	162	417	310	341	319	215	239	187	69	408	539	436	114	285
Organic Liquid			×				×	×	×	×		×	×					×	×		×				X	
TF Vol from SubSurface Soil						25294	[15000] 15060		[15100] 14990	[14900] 14846		[15000] 14956	[14900] 14930							[15000] 17421	[15000] 15056				[15000] 14966	
TF Vol from Surface Soil						20155	[13100] 13107		[13100] 13046	[13000] 12940		[13100] 13019	[13000] 12998							[13000] 14825	[13100] 13105				[13000] 13026	
Aqueous Sol Reference ¹	4	2	5	2,5,6,8	1,5,6	1	1,4,5,6	5,6,8	1	2	2	-	1,2,3	1,5,6	4,6,7	4,6,7,9	1,4,5	4,5,6,7	5,6,7	1	1,5,6	1,2	2	16	2	2,3,5
Aqueous Sol (mg/L)	3.1	329	0.085	97.5	0.26	1.9	1090	13	22000	1000000	120000	10000	91000	12000	0.18	0.311	900.0	2.89	1.8	20	9.5	330000	0.5	5	1000000	20000
V0C?						×	×		×	×		×	×							×	×				×	
Koc	1,200	300	4,400	89	49000	2900	130	1100	3.6	0.54	310	130	6.3	3200	0089	21000	3800	4700	7200	2200	3600	41	6,500	4	0.0053	10
3)-1									-						-	-				၁					1 6	
IUR (µg/m³)-1									0.000013						0.0013	0.0026	0.00046	0.000022		[0.00001]					0.0049	
(£							I		_ ⊡ o	×			Ι						_	_	-				Ь	
RfCi (mg/m³)							0.7		[0.008]	0.0003			0.05						0.0002	0.03	0.7				0.00003	
o [P									OI				ol		-	_	- 9	- 1		-						Б
CSFo (mg/kg-d) ⁻¹									0.021				0.0349		4.5	9.1	1.6	0.078		0.04					3	90.06
0	_	-	-	L	-	Ŀ	-	_	_	۵	Ξo	-	_	_	_	-	_	Д	_	_	I	_	_	_		۵
RfDo (mg/kg-d)	0.00001	0.00025	0.025	0.013	0.04	0.04	0.3	0.002	0.2	0.9	[3] 2.5	0.001	0.003	0.1	0.0005	0.000013	0.0008	0.001	900.0	0.0007	90.0	0.033	0.025	0.05		0.04
CAS	2104-64-5	22224-92-6	51630-58-1	2164-17-2	206-44-0	86-73-7	75-69-4	944-22-9	20-00-0	64-18-6	39148-24-8	110-00-9	98-01-1	1071-83-6	76-44-8	1024-57-3	118-74-1	87-68-3	77-47-4	67-72-1	110-54-3	51235-04-2	78587-05-0	2691-41-0	302-01-2	123-31-9
Regulated Substance	ETHYL P-NITROPHENYL PHENYLPHOSPHORO THIOATE	FENAMIPHOS	FENVALERATE (PYDRIN)	FLUOMETURON	FLUORANTHENE	FLUORENE	FLUOROTRICHLOROMETHANE (FREON 11)	FONOFOS	FORMALDEHYDE	FORMIC ACID	FOSETYL-AL	FURAN	FURFURAL	GLYPHOSATE	HEPTACHLOR	HEPTACHLOR EPOXIDE	HEXACHLOROBENZENE	HEXACHLOROBUTADIENE	HEXACHLOROCYCLOPENTADIENE	HEXACHLOROETHANE	HEXANE	HEXAZINONE	HEXYTHIAZOX (SAVEY)	HMX	HYDRAZINE/HYDRAZINE SULFATE	HYDROQUINONE

Toxicity Value Sources: C = California EPA [Cancer Potency Factor]

IN = EPA NCEA Provisional Values <u>10</u> = EPA Office of Pesticide Programs Human Health Benchmarks for Pesticides

P = EPA Provisional Peer-Reviewed Toxicity Value S = surrogate

[T = TEF]

TE = TERA ITER Peer-Reviewed Value X = EPA Provisional Peer-Reviewed Toxicity Value Appendix D = ATSDR Minimal Risk Level
H = Health Effects Assessment
Summary Table (HEAST)
1 = Integrated Risk information
System (IRIS)
M = EPA Drinking Water
Regulations and Health Advisories

Appendix A
Table 5 – Physical and Toxicological Properties
A. Organic Regulated Substances

																	FN	ı Or	Ο,	SE	וט	ΚU		1417
Degradation Coefficient (K)(yr¹)	0.17		17.57	4.5		0.17	2.46						36.14		69.0	4.50		18.07	4.50	2.57	5.27	18.07		
Boiling Point (degrees C)	536	545	108	215	230	350	351	260	351	392	06	223	65	228	346	124	25	20	-24	80	88	117	40	128
Organic Liquid			×	×	×		×			×	×		×			×	×	×	×	×	×	×	×	×
TF Vol from SubSurface Soil			[14900] 14866								[15100] 14925		[15100] 14964			[15000] 15115	[15100] 14908	[15100] 14892	[15000] 15038	[15100] 14897	[14900] 14947	[15100] 14910	[15000] 14959	[15100] 14868
TF Vol from Surface Soil			[13000] 12954								[13100] 12994		[13100] 13025			[13100] 13141	[13100] 12982	[13100] 12971	[13200] 13103	[13100] 12974	[1300]	[13100] 12983	[13000] 13021	[13100] 12955
Aqueous Sol Reference ¹	5	2	1,2,3,4,5	2,4,5	13	4	4	4	9,13	8,10,12	-	2	2	2	4,5,6	2	4,5,6	1,2,5	1,2,3,4	1,2,3,4,5	2	1,2,4,5	7	1
Aqueous Sol (mg/L)	0.062	13	81000	12000	20000	9.7	143	0009	23	2.3	25700	2000000	1000000	28000	0.045	1000000	243500	52000	6180	275000	1000000	19550	100000	17500
VOC?			×								×		×			×	×	×	×	×	×	×	×	×
Koc	31000000	1,100	09	31	1.84	22000	1300	2.8	1	23,000	21	2	2.8	20	00069	1	30	22	9	32	-	17	10	54
1-6	ပ					S													н		×			
IUR (µg/m³)-¹	0.00011					0.0046													0.0000018		0.001			
. _{(E}				2 C							۵		[_			-		۵.	-	- 2	×	- 8	O	-
RfCi (mg/m³)											0.03		[4] 20			0.02		0.02	60:00	4)	0.00002	(1)	0.001	0.03
CSFo (mg/kg-d) ⁻¹	1.2 C	0		1 26		10 1			0										H E					
SS (mg/l/	_	0.0439		0.00095					0.0601										0.013					
3- d)		-	- 8	- 2	1	- 8	- 2	- 2	2	Ξo	-	- 2	-	-	-	Б	Ξ×	Ξ		-	٦	π		- 2
RfDo (mg/kg-d)		0.04	0.3	0.2	0.1	0.0003	0.02	0.5	0.005	[0.00003] 0.001	0.0001	0.00005	[0.5] 2	0.025	0.005	0.005		0.03		9.0	0.001	0.08		0.005
CAS	193-39-5	36734-19-7	78-83-1	78-59-1	1832-54-8	143-50-0	121-75-5	123-33-1	12427-38-2	78-48-8	126-98-7	10265-92-6	67-56-1	16752-77-5	72-43-5	109-86-4	79-20-9	96-33-3	74-87-3	78-93-3	60-34-4	108-10-1	624-83-9	591-78-6
Regulated Substance	INDENO[1,2,3-CD]PYRENE	PRODIONE	ISOBUTYL ALCOHOL	SOPHORONE	SOPROPYL METHYLPHOSPHONATE	KEPONE	MALATHION	MALEIC HYDRAZIDE	MANEB	MERPHOS OXIDE	METHACRYLONITRILE	METHAMIDOPHOS	METHANOL	METHOMYL	METHOXYCHLOR	METHOXYETHANOL, 2-	METHYL ACETATE	METHYL ACRYLATE	METHYL CHLORIDE	METHYL ETHYL KETONE	METHYL HYDRAZINE	METHYL ISOBUTYL KETONE	METHYL ISOCYANATE	METHYL N-BUTYL KETONE (2- HEXANONE)

Toxicity Value Sources: C = California EPA [Cancer Potency Factor]

IN = EPA NCEA Provisional Values] <u>0</u> = EPA Office of Pesticide Programs Human Health Benchmarks for Pesticides P = EPA Provisional Peer-Reviewed Toxicity Value S = surrogate D = ATSDR Minimal Risk Level H = Health Effects Assessment Summary Table (HEAST) I = Integrated Risk information System (IRIS) M = EPA Drinking Water Regulations and Health Advisories

[T = TEF]

Appendix A
Table 5 – Physical and Toxicological Properties
A. Organic Regulated Substances

Degradation Coefficient (K)(yr¹)	4.50		3.61		69:0	1.39								86.0	69:0	69.0				0.64		9.01	25.81	69:0
Boiling Point (degrees C)	100	203	348	163	55	287	379	241	165	100	367		189	218	301	306	399	284	332	211	231	215	279	120
Organic Liquid	×	×		×	×				×	×										×				×
TF Vol from SubSurface Soil	[15100] 14934			[15000] 14853	[15100] 14950			14870	[15100] 14850	[15000] 14985		14856	[14900] 14943	15323	18386			14886		14847		14884	14878	[14900] 14911
TF Vol from Surface Soil	[13100]			[13100] 12945	[13100]			12955	[13100] 12942	[13000] 13035		12947	[13000] 13008	13284	15517			12967		12940		12966	12960	[13000] 12984
Aqueous Sol Reference ¹	-	2	4,5,6	6	1,2,4,6	5,6,8,9	10	1	6	1,5	1,5	9	17	3	2	9	2	9	2	2	6	1,2,3,4,5,6	2	1,3,4,5
Aqueous Sol (mg/L)	15600	200000	22	68	45000	1000	13.9	25	260	230	1200	000009	858000	30	1690	6.4	02	1200	800	2000	4400	2100	16000	16700
V0C?	×			×	×			×I	×	×		×	×	×	×I			×		×		×	×I	×
Koc	10	5.2	190	2,200	12	112	3,000	16000	099	182	95	44	0.24	950	3200	87	880	27	15	130	0.13	37	230	20
s)-1		0			O		O							0	[S]	[0]				-				н
IUR (µg/m³)-¹		0.000028			0.00000026		0.00043							0.000034	[0.00051]	[0.00051]				0.00004				0.0027
(6	_			I	_			S						_				×	Ь	_				-
RfCi (mg/m³)	0.7			0.04	ε			0.003						0.003				0.00005	900'0	600'0				0.02
, (Q		ပ			ပ		۵							ပ	ကြ	_			۵					
CSFo (mg/kg-d)⁴		0.099			0.0018		0.1							0.12	1.8	1.8			0.02					
ृ 🛱	_		-	Τ		_	۵	-	I	_	-	ol	I	_			Ξo	×	Д	-	-	S	ΞΞ	
RfDo (mg/kg-d)	1.4		0.00025	900'0		0.0005	0.002	0.004	20'0	0.15	0.025	0.000025	0.002	0.02			[0.1] 0.12	0.01	0.004	0.002	0.1	800'0	800'0	
CAS	80-62-6	66-27-3	298-00-0	25013-15-4	1634-04-4	94-74-6	101-14-4	91-57-6	98-83-9	51218-45-2	21087-64-9	7786-34-7	79-11-8	91-20-3	134-32-7	91-59-8	15299-99-7	88-74-4	100-01-6	98-95-3	226-88-7	88-75-5	100-02-7	79-46-9
Regulated Substance	METHYL METHACRYLATE	METHYL METHANESULFONATE	METHYL PARATHION	METHYL STYRENE (MIXED ISOMERS)	METHYL TERT-BUTYL ETHER (MTBE)	METHYLCHLOROPHENOXYACETIC ACID (MCPA)	METHYLENE BIS(2-CHLOROANILINE), 4,4-	METHYLNAPHTHALENE, 2-	METHYLSTYRENE, ALPHA	METOLACHLOR	METRIBUZIN	MEVINPHOS	MONOCHLOROACETIC ACID	NAPHTHALENE	NAPHTHYLAMINE, 1-	NAPHTHYLAMINE, 2-	NAPROPAMIDE	NITROANILINE, O-	NITROANILINE, P-	NITROBENZENE	NITROGUANIDINE	NITROPHENOL, 2-	NITROPHENOL, 4-	NITROPROPANE, 2-

Toxicity Value Sources: C = California EPA [Cancer Potency Factor]

IN = EPA NCEA Provisional Values JO = EPA Office of Positicide Programs Human Health Benchmarks for Pesticides
P = EPA Provisional Peer-Reviewed Toxicity Value S = surrogate

D = ATSDR Minimal Risk Level
H = Health Effects Assessment
Summary Table (HEAST)
1 = Integrated Risk information
System (IRIS)
M = EPA Drinking Water
Regulations and Health Advisories

Appendix A
Table 5 – Physical and Toxicological Properties
A. Organic Regulated Substances

Toxicity Value Sources: C = California EPA [Cancer Potency Factor]

IN = EPA NCEA Provisional Values] O = EPA Office of Posticide Programs Human Health Benchmarks for Pesticides
P = EPA Provisional Peer-Reviewed Toxicity Value S = surrogate

D = ATSDR Minimal Risk Level
H = Health Effects Assessment
Summary Table (HEAST)
1 = Integrated Risk information
System (IRIS)
M = EPA Drinking Water
Regulations and Health Advisories

Appendix A
Table 5 – Physical and Toxicological Properties
A. Organic Regulated Substances

		ı	_	_							_															
Degradation Coefficient (K)(yr¹)			4.50	0.63	36.14		4.50	18.07		13490.40					1.73							0.07		18.07	12.65	
Boiling Point (degrees C)	258	192	341	341	182	170	286	280	319	285	373	[360]	347	321	110	355	82	318	257	159	34	393	170	115	238	220
Organic Liquid						×			×								×	×		×	×		×	×	×	
TF Vol from SubSurface Soil				70721	[14900] 14901	[15000] 14989				14956					14865		[14900] 14906			[15100] 14891	[15000] 15057			[15000] 15114		
TF Vol from Surface Soil				41808	[13000] 12977	[13000] 13039				13018					12952		[13000] 12981			[13100] 12971	[13100] 13239			[13100] 13142		
Aqueous Sol Reference ¹	19,20,21,22,23	24	2,3,9	1,4,5	1,2,3,4	5,9	3	2	2	2	2	[10,13]	2,5	2		2	2	1,5	5	9	-	1	13	2	1,3,5	2
Aqueous Sol (mg/L)	089	9500	763	1.1	84300	653	351000	200	20	6170	430	[0.0505]	150	15		225	1000000	9.8	250	29	405000	0.132	0.35	1000000	00009	0.3
۷٥С?				×I	×	×				×					×		×			×	×		×	×		
Koc	2.57	2.06	110	38000	22	562	12	5,700	810	62	15		346	200	139	160	25	155	51	720	25	68000	5.62	9900.0	1,300	280
IUR (µg/m³)-¹			0.000000063 C									[0.00057]									0.0000037					
					O					O							Д			×	_					
RfCi (mg/m³)					0.2					0.02							0.2			1	0.03					
d)-1	ΣĮ		ပ					I				Ξ									-				-	
CSFo (mg/kg-d) ⁻¹	0.07		0.0022					[0.0019] 0.00194				[2]									0.24				3	
•	Σİ	Σ		S	-	۵	_		돈이	_	_		_	_	_	_	Ь	_	-	×	ō	_	ō	-		_
RfDo (mg/kg-d)	0.00002	0.00002		0.3	0.3	0.001	900.0		0.0002	2	0.07		0.015	0.075	0.013	0.005	2	0.02	0.02	0.1	0.001	0.03	0.044	0.001		0.009
CAS	1763-23-1	335-67-1	62-44-2	85-01-8	108-95-2	108-98-5	108-45-2	90-43-7	298-02-2	85-44-9	1918-02-1	[1336-36-3]	1610-18-0	23950-58-5	1918-16-7	8-86-602	67-63-0	139-40-2	122-42-9	103-65-1	75-56-9	129-00-0	8003-34-7	110-86-1	91-22-5	76578-14-8
Regulated Substance	PERFLUOROOCTANE SULFONATE (PFOS)	PERFLUOROOCTANOIC ACID (PFOA)	PHENACETIN	PHENANTHRENE	PHENOL	PHENYL MERCAPTAN	PHENYLENEDIAMINE, M-	PHENYLPHENOL, 2-	PHORATE	PHTHALIC ANHYDRIDE	PICLORAM	[POLYCHLORINATED BIPHENYLS (AROCLORS) (PCBS)]	PROMETON	PRONAMIDE	PROPACHLOR	PROPANIL	PROPANOL, 2- (ISOPROPYL ALCOHOL)	PROPAZINE	PROPHAM	PROPYLBENZENE, N-	PROPYLENE OXIDE	PYRENE	PYRETHRUM	PYRIDINE	QUINOLINE	QUIZALOFOP (ASSURE)

Toxicity Value Sources: C = California EPA [Cancer Potency Factor]

IN = EPA NCEA Provisional Values <u>10</u> = EPA Office of Pesticide Programs Human Health Benchmarks for Pesticides

P = EPA Provisional Peer-Reviewed Toxicity Value S = surrogate

D = ATSDR Minimal Risk Level H = Health Effects Assessment Summary Table (HEAST) I = Integrated Risk information System (IRIS) M = EPA Drinking Water Regulations and Health Advisories

Appendix A
Table 5 – Physical and Toxicological Properties
A. Organic Regulated Substances

Toxicity Value Sources: C = California EPA [Cancer Potency Factor]

IN = EPA NCEA Provisional Values] <u>0</u> = EPA Office of Pesticide Programs Human Health Benchmarks for Pesticides P = EPA Provisional Peer-Reviewed Toxicity Value S = surrogate D = ATSDR Minimal Risk Level H = Health Effects Assessment Summary Table (HEAST) I = Integrated Risk information System (IRIS) M = EPA Drinking Water Regulations and Health Advisories

Appendix A
Table 5 – Physical and Toxicological Properties
A. Organic Regulated Substances

	===								_						_		_	_		_		_	_
Degradation Coefficient (K)(yr¹)	69:0	0.35		69.0		0.05	0.03	0.02	0.14	0.14	1.39			0.35					4.50		18.07		
Boiling Point (degrees C)	149	48	196	213	208	74	114	28	246	246	579	353	111	157	142	06	285	382	169	165	190	240	23
Organic Liquid	×	×		×		×	×	×					×	×	×	×	×		×	×	×		×
TF Vol from SubSurface Soil	[15100] 14849	[15000]	15077	15233	18611	[15000] 15082	[15100]	[15000] 15022					[15000] 15119	[15100] 14896	[15000] 14992	[15100] 14862			[15000] 14904	[15100] 14876	[15000] 14848		[15000] 14955
TF Vol from Surface Soil	[13100] 12942	[13100] 13064	13291	13217	15677	[13100] 13116	[13100] 12982	[13100] 13070					[13100] 13145	[13100] 12974	[13100] 13047	[13100] 12951			[13100] 12978	[13100] 12961	[13000] 12941		[13200] 13017
Aqueous Sol Reference ¹	1,2,3,4	-	2,3,5,9	1,4,6,7	2	1,4,5,6	-	←	1,2,4	1,2,4,5	2,4,5	2	14	1,4,6	14	1,4	12	2,5,6,7	~	-	2,3,5	2	-
Aqueous Sol (mg/L)	3050	170	1200000	44.4	2.8	1495	4420	1100	1000	820	278	140	2700	1896	2700	22000	1000000	4	26	48.9	1800	100	20000
V0C?	×	×	×	×I	×	×	×	×					×	×	×	×			×	×	×		×
Koc	130	1,200	20	1500	3100	100	92	66	2400	1100	43	1700	24	280	190	51	9	720	2,200	099	116	1	2.8
19)-1							- 8	-		-													
IUR (µg/m³)-¹	0.0000011						0.000016	0.000004		0.0000031													
		Ξ⊾		Д	S		×	_						_	Ь				⊑_				_
RfCi (mg/m³)		[30] 2		0.002	0.002	2	0.0002	0.002						0.0003	0.0003	200'0			[0:007] [0:06	0.06			0.2
o (((_		_	۵			-	-		L				-				-			۵	-	
CSFo (mg/kg-d)	0.0079		0.07	0.029			0.057	[0.05] 0.046		0.011				30				0.0077			0.017	0.03	
o P	-	-	-	_	M	-	-	-	-	Д.	_	-	-	-	×		a l	- 1		⊠	۵.	- 1	I _
RfDo (mg/kg-d)	0.02	30	0.02	0.01	900'0		0.004	0.0005	0.1	0.001	0.01	0.008	900.0	0.004	0.003		2	0.0075	0.01	0.01	0.0001	0.0005	
CAS	75-25-2	76-13-1	76-03-9	120-82-1	108-70-3	71-55-6	2-00-62	79-01-6	95-95-4	88-06-2	93-76-5	93-72-1	9-22-969	96-18-4	96-19-5	121-44-8	112-27-6	1582-09-8	92-63-6	108-67-8	55-63-0	118-96-7	108-05-4
Regulated Substance	TRIBROMOMETHANE (BROMOFORM)	TRICHLORO-1,2,2-TRIFLUOROETHANE, 1,1,2-	TRICHLOROACETIC ACID	TRICHLOROBENZENE, 1,2,4-	TRICHLOROBENZENE, 1,3,5-	TRICHLOROETHANE, 1,1,1-	TRICHLOROETHANE, 1,1,2-	TRICHLOROETHYLENE (TCE)	TRICHLOROPHENOL, 2,4,5-	TRICHLOROPHENOL, 2,4,6-	TRICHLOROPHENOXYACETIC ACID, 2,4,5- (2,4,5-T)	TRICHLOROPHENOXYPROPIONIC ACID, 2,4,5- (2,4,5-TP)(SILVEX)	TRICHLOROPROPANE, 1,1,2-	TRICHLOROPROPANE, 1,2,3-	TRICHLOROPROPENE, 1,2,3-	TRIETHYLAMINE	TRIETHYLENE GLYCOL	TRIFLURALIN	TRIMETHYLBENZENE, 1,3,4- (TRIMETHYLBENZENE, 1,2,4-)	TRIMETHYLBENZENE, 1,3,5-	TRINITROGLYCEROL (NITROGLYCERIN)	TRINITROTOLUENE, 2,4,6-	VINYL ACETATE

Toxicity Value Sources: C = California EPA [Cancer Potency Factor]

IN = EPA NCEA Provisional Values] O = EPA Office of Posticide Programs Human Health Benchmarks for Pesticides
P = EPA Provisional Peer-Reviewed Toxicity Value S = surrogate

[T = TEF]

TE = TERA ITER Peer-Reviewed Value X = EPA Provisional Peer-Reviewed Toxicity Value Appendix D = ATSDR Minimal Risk Level H = Health Effects Assessment Summary Table (HEAST) I = Integrated Risk information System (IRIS) M = EPA Drinking Water Regulations and Health Advisories

Appendix A
Table 5 – Physical and Toxicological Properties
A. Organic Regulated Substances

Regulated Substance	CAS	RfDo (mg/kg-d)	CSFo (mg/kg-d) ⁻¹	RfCi (mg/m³)	IUR (µg/m³)⁻¹	Koc	V0C?	Aqueous Sol (mg/L)	Aqueous Sol Reference ¹	TF Vol from Surface Soil	TF Vol from SubSurface Soil	Organic Liquid	Boiling Point (degrees C)	Degradation Coefficient (K)(yr¹)
NYL BROMIDE (BROMOETHENE)	2-09-66			0.003	0.000032 H	150	×	4180	12	[13100] 13086	[15000] 15043	×	16	0.09
INYL CHLORIDE	75-01-4	0.003	1.5	0.1	[0.000009]	10	×	2700	-	[13200] 13109	[15000] 15040	×	-13	0.09
ARFARIN	81-81-2	0.0003				910		17	4				356	4.50
'LENES (TOTAL)	1330-20-7	0.2		0.1		320	×	175	13	[13100] 12982	[15000]	×	140	69:0
	12122-67-7	0.05				19		10	4				474	

IN = EPA NCEA Provisional Values <u>10</u> = EPA Office of Pesticide Programs Human Health Benchmarks for Pesticides

P = EPA Provisional Peer-Reviewed Toxicity Value S = surrogate [T = TEF] D = ATSDR Minimal Risk Level
H = Health Effects Assessment
Summary Table (HEAST)
1 = Integrated Risk information
System (IRIS)
M = EPA Drinking Water
Regulations and Health Advisories Toxicity Value Sources: C = California EPA [Cancer Potency Factor]

Appendix A Table 5 – Physical and Toxicological Properties B. Inorganic Regulated Substances

Regulated Substance	CAS	RfDo (mg/kg-c	d)	CSFo (mg/kg-d	l) ⁻¹	RfCi (mg/m³)		IUR (ug/m³)	1	Kd
ALUMINUM	7429-90-5	1	Р			0.005	Р			9.9
ANTIMONY	7440-36-0	0.0004	ı							45
ARSENIC	7440-38-2	0.0003	ı	1.5	1	0.000015	С	0.0043	Ι	29
BARIUM AND COMPOUNDS	7440-39-3	0.2	ı			0.0005	Н			41
BERYLLIUM	7440-41-7	0.002	ı			0.00002	I	0.0024	Ι	790
BORON AND COMPOUNDS	7440-42-8	0.2	ı			0.02	Н			3
CADMIUM	7440-43-9	0.0005	ı			0.00001	D	0.0018	Ι	75
CHROMIUM III	16065-83- 1	1.5	I							1,800,000
CHROMIUM VI	18540-29- 9	0.003	I	[0.42] <u>0.5</u>	С	0.000008	I	[0.084] 0.012	I	19
COBALT	7440-48-4	0.0003	Р			0.000006	Р	0.009	Р	45
COPPER	7440-50-8	[0.037] 0.0325	Н							430
CYANIDE, FREE	57-12-5	0.0006	ı			0.0008	I			9.9
FLUORIDE	16984-48- 8	0.04	С			0.013	С			
IRON	7439-89-6	0.7	Р							25
LEAD	7439-92-1			0.0085	С			0.000012	С	900
LITHIUM	7439-93-2	0.002	Р							300
MANGANESE	7439-96-5	[0.047] 0.14	I			0.00005	I			65
MERCURY	7439-97-6	0.00016	С			0.0003	Ι			52
MOLYBDENUM	7439-98-7	0.005	ı							20
NICKEL	7440-02-0	0.02	I			0.00009	D	0.00024	ls	65
NITRATE NITROGEN	14797-55- 8	1.6	I							
NITRITE NITROGEN	14797-65- 0	0.1	I							
PERCHLORATE	7790-98-9	0.0007	I							0
SELENIUM	7782-49-2	0.005	ı			0.02	С			5
SILVER	7440-22-4	0.005	ı							8.3
STRONTIUM	7440-24-6	[0.06] <u>0.6</u>	ı							
THALLIUM	7440-28-0	0.00001	Χ							71
TIN	7440-31-5	0.6	Н							250
VANADIUM	7440-62-2	0.00007	Р			0.0001	D			1,000
ZINC	7440-66-6	0.3	I			-		_		62

Toxicity Value Sources:

C = California EPA Cancer Potency Factor

D = ATSDR Minimal Risk Level

H = Health Effects Assessment Summary Table (HEAST)

I = Integrated Risk Information System (IRIS)

P = EPA Provisional Peer-Reviewed Toxicity Value

X = EPA Provisional Peer-Reviewed Toxicity Value Appendix

s = surrogate

Appendix A
Table 6 – Threshold of Regulation Compounds

			Residential	Non-Resi M	Non-Residential Soil MSCs	
REGULATED	CASRN	ALL AQUIFER GROUNDWATER MSC	Soil MSC	Surface	Subsurface	Soil to Groundwater ¹
		(\mu_g/L)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
			0-15 teet	0-2 feet	2-15 feet	
ACETIC ACID	64-19-7	5	100	100	100	0.5
ACETIC ANHYDRIDE	108-24-7	5	100	100	100	0.5
AMYL ACETATE, N-	628-63-7	5	100	100	100	0.5
AMYL ACETATE, SEC-	626-38-0	5	100	100	100	0.5
ANTU (ALPHA-NAPHTHYLTHIOUREA)	86-88-4	5	100	100	100	0.5
BHC, DELTA	319-86-8	5	100	100	100	0.5
BROMOPHENYL PHENYL ETHER, 4-	101-55-3	5	100	100	100	0.5
BUTYL ACETATE, N-	123-86-4	5	100	100	100	0.5
BUTYL ACETATE, SEC-	105-46-4	5	100	100	100	0.5
BUTYL ACETATE, TERT-	540-88-5	5	100	100	100	0.5
BUTYLAMINE, N-	109-73-9	5	100	100	100	0.5
CALCIUM CHROMATE	13765-19-0	5	100	100	100	0.5
CALCIUM CYANAMIDE	156-62-7	5	100	100	100	0.5
CARBONYL FLUORIDE	353-50-4	5	100	100	100	0.5
CATECHOL	120-80-9	5	100	100	100	0.5
CHLOROETHYL VINYL ETHER, 2-	110-75-8	5	100	100	100	0.5
CHLOROPHENYL PHENYL ETHER, 4-	7005-72-3	5	100	100	100	0.5
DECABORANE	17702-41-9	5	100	100	100	0.5
DIETHYLAMINE	109-89-7	5	100	100	100	0.5
DIGLYCIDYL ETHER (DGE)	7/5/2238	5	100	100	100	0.5
DIMETHYL PHTHALATE	131-11-3	5	100	100	100	0.5
DIMETHYL SULFATE	77-78-1	5	100	100	100	0.5
DIMETHYLPHENETHYLAMINE, ALPHA, ALPHA.	122-09-8	5	100	100	100	0.5
DIOXATHION	78-34-2	5	100	100	100	0.5
ETHYL METHANESULFONATE	62-50-0	5	100	100	100	0.5
ETHYLAMINE	75-04-7	5	100	100	100	0.5
[ETHYLENE CHLORHYDRIN]	[107-07-3]	[5]	[100]	[100]	[100]	[0.5]
FAMPHUR	52-85-7	5	100	100	100	0.5

Appendix A
Table 6 – Threshold of Regulation Compounds

		A DIMEED	Residential	Non-Resi M.	Non-Residential Soil MSCs	
REGULATED SUBSTANCE	CASRN	GROUNDWATER MSC	Soil MSC	Surface Soil	Subsurface Soil	Soil to Groundwater¹
		(1/b/L)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
			U-15 reet	0-2 feet	2-15 feet	
FENSULFOTHION	115-90-2	2	100	100	100	0.5
HEXACHLOROPROPENE	1888-71-7	5	100	100	100	0.5
IODOMETHANE	74-88-4	2	100	100	100	0.5
ISOAMYL ACETATE	123-92-2	5	100	100	100	0.5
ISOBUTYL ACETATE	110-19-0	5	100	100	100	0.5
ISODRIN	465-73-6	5	100	100	100	0.5
ISOPHORONE DIISOCYANATE	4098-71-9	5	100	100	100	0.5
ISOSAFROLE	120-58-1	5	100	100	100	0.5
LITHIUM HYDRIDE	2280-67-8	5	100	100	100	0.5
MANGANESE CYCLOPENTADIENYL TRICARBONYL	12079-65-1	5	100	100	100	0.5
METHYL ISOAMYL KETONE	110-12-3	5	100	100	100	0.5
METHYL MERCAPTAN	74-93-1	2	100	100	100	0.5
METHYLAMINE	74-89-5	5	100	100	100	0.5
[MEVINPHOS]	[7786-34-7]	[2]	[100]	[100]	[100]	[0.2]
MONOCROTOPHOS	6923-22-4	5	100	100	100	0.5
NAPHTHOQUINONE, 1,4-	130-15-4	2	100	100	100	0.5
NITRIC ACID	7697-37-2	2	100	100	100	0.5
NITROQUINOLINE-1-OXIDE, 4-	56-57-5	5	100	100	100	0.5
OSMIUM TETROXIDE	20816-12-0	2	100	100	100	0.5
PENTABORANE	19624-22-7	5	100	100	100	0.5
PERCHLOROMETHYL MERCAPTAN	594-42-3	5	100	100	100	0.5
PICOLINE, 2-	109-06-8	5	100	100	100	0.5
PROPANOL, 1-	71-23-8	5	100	100	100	0.5
PROPIONIC ACID	79-09-4	5	100	100	100	0.5
PROPIONITRILE (ETHYL CYANIDE)	107-12-0	5	100	100	100	0.5
PROPYLENE IMINE	75-55-8	2	100	100	100	0.5
[PYRETHRUM]	[8003-34-7]	[2]	[100]	[100]	[100]	[0.5]
QUINONE (p-BENZOQUINONE)	106-51-4	5	100	100	100	0.5

Appendix A
Table 6 – Threshold of Regulation Compounds

		a de la companya de l	Residential	Non-Resi M.	Non-Residential Soil MSCs	
REGULATED SUBSTANCE	CASRN	GROUNDWATER MSC (µg/L)	Soil MSC (mg/kg) 0-15 feet	Surface Soil (mg/kg)	Subsurface Soil (mg/kg) 2-15 feet	Soil to Groundwater¹ (mg/kg)
SELENIUM HEXAFLUORIDE	7783-79-1	5	100	100	100	0.5
SODIUM BISULFITE	7631-90-5	2	100	100	100	0.5
SULFIDE	18496-25-8	2	100	100	100	0.5
SULFUR MONOCHLORIDE	10025-67-9	5	100	100	100	0.5
SULFURIC ACID	7664-93-9	2	100	100	100	0.5
TELLURIUM	13494-80-9	2	100	100	100	0.5
TELLURIUM HEXAFLUORIDE	7783-80-4	2	100	100	100	0.5
TEPP (TETRAETHYL PYROPHOSPHATE)	107-49-3	5	100	100	100	0.5
TETRANITROMETHANE	509-14-8	2	100	100	100	0.5
THIONAZIN	297-97-2	5	100	100	100	0.5
TRIETHYLPHOSPHOROTHIOATE, 0,0,0.0-	126-68-1	5	100	100	100	9:0

	APPENDIX	A			
	Table 7				
DEFAULT VALUES FOR CALCUI			RATIONS FOR LEAD		
[Input Values Used in UBK Model for Lead [(for residential exposure scenario)					
(GSD)	(default)	intake			
Outdoor air lead concentration	$0.2 \mu g/m^3$				
	(default)	Soil lead level	495 μg/g		
Indoor air lead concentration	30	Indoor dust lead	495 μg/g		
(% of outdoor)		level	,		
Time spent outdoors	Model default	Soil/dust ingestion	45		
		weighting factor			
		(%)			
Ventilation rate	Model default	Paint lead intake	Model default		
Lung absorption	Model default	Maternal	Infant model		
_		contribution			
		method			
Dietary lead intake	Model default	Mother's blood	7.5 µg/dL blood		
•		lead at birth	(model default)		
GI method/bioavailability	Non-linear	Target blood lead	10 μg/dL blood		
•		level	, 0		
Lead concentration in drinking	4.00 μg/L				

[Input Values Used in SEGH Equation (for nonresidential exposure scenario)				
Concentration of lead in soil (S)	987 μg/g			
Target blood lead level in adults (T)	20 μg/dL blood			
Geometric standard deviation of blood lead distribution (G)	1.4			
Baseline blood lead level in target population (B)	4 μg/dL blood			
Number of standard deviations corresponding to degree of protection required for the target population (n)	1.645 (for 95% of population)			
Slope of blood lead to soil lead relationship (δ)	7.5 µg/dL blood per µg/g soil]			

(default)]

water

[REFERENCE

WIXSON, B.G. (1991). The Society for Environmental Geochemistry and Health (SEGH) Task Force Approach to the Assessment of Lead in Soil. <u>Trace Substances in Environmental Health</u>. 11-20.]

Input Values Used in IEUBK Model for Lead (for residential exposure scenario)				
Parameter	lue			
Outdoor Air Pb Concentration (µg/m³)	Value Constant Value: 0.1			
Dietary Lead Intake (μg/day)	Age (Years)	Input		
	0-1	2.26		
	1-2	1.96		
	2-3	2.13		
	3-4	2.04		
	<u>4-5</u>	<u>1.95</u>		
	<u>5-6</u>	<u>2.05</u>		
	<u>6-7</u>	2.22		
Water Consumption (L/day)	Age (Years)	Input		
	<u>0-1</u>	0.2		
	<u>1-2</u>	0.5		
	<u>2-3</u>	0.52		
	3-4	0.53		
	<u>4-5</u>	<u>0.55</u>		
	<u>5-6</u>	0.58		
	<u>6-7</u>	<u>0.59</u>		
Use Alternate Water Value?	<u>NO</u>			
Lead concentration in drinking water (µg/L)	4			
<u>MEDIA</u>	ABSORPTION FRACTION			
	PERCENT			
<u>Soil</u>	<u>30</u>			
<u>Dust</u>	30			
<u>Water</u>	<u>50</u>			
<u>Diet</u>	<u>50</u>			
<u>Alternate</u>	<u>0</u>			
<u>Calculate PRG</u>				
Select Age Group for Graph	0 to 84 months			
Change Cutoff	<u>TBD</u>			
Change GSD				
Probability of Exceeding the Cutoff	5	5		

Input Values Used in the Adult Lead Model (ALM)				
(for non-residential exposure scenario)				
<u>Variable</u>	Description of Variable	<u>Units</u>	<u>Value</u>	
PbB _{fetal} , 0.95	Target PbB in fetus	<u>μg/dL</u>	TBD	
R _{fetal/maternal}	Fetal/maternal PbB ratio	<u></u>	0.9	
BKSF	Biokinetic Slope Factor	μg/dL per μg/day	0.4	
$\underline{GSD_i}$	Geometric standard deviation PbB	<u></u>	<u>1.8</u>	
PbB_0	Baseline PbB	μg/dL	0.6	
<u>IRs</u>	Soil ingestion rate	g/day	0.050	
$AF_{S,D}$	Absorption fraction	<u></u>	<u>0.12</u>	
EFs, D	Exposure frequency	days/yr	<u>219</u>	
$\overline{\mathbf{ATs},\mathbf{D}}$	Averaging time	days/yr	365	

[Pa.B. Doc. No. 20-238. Filed for public inspection February 14, 2020, 9:00 a.m.]