PENNSYLVANIA BULLETIN

Volume 51 Number 47 Saturday, November 20, 2021 • Harrisburg, PA Pages 7163—7330

Agencies in this issue

The General Assembly
Capitol Preservation Committee
Department of Banking and Securities
Department of Conservation and Natural
Resources

Department of Environmental Protection

Department of Health

Department of Human Services

Department of Labor and Industry

Department of Revenue

Department of Transportation

Environmental Quality Board

Fish and Boat Commission

Insurance Department

Legislative Reference Bureau

Patient Safety Authority

Pennsylvania Public Utility Commission

Philadelphia Parking Authority

State Employees' Retirement Board

Susquehanna River Basin Commission

Detailed list of contents appears inside.

Latest Pennsylvania Code Reporter (Master Transmittal Sheet):

No. 564, November 2021

CHANGE NOTICE/NEW SUBSCRIPTION

If information on mailing label is incorrect, please email changes to info@pabulletin.com or mail to:

FRY COMMUNICATIONS, INC. Attn: Pennsylvania Bulletin 800 W. Chirch Ba

Mechanicsburg, PA 17055-3198

CUSTOMER NUMBER (6 digit number above name on mailing label)

NAME OF INDIVIDUAL

OFFICE NAME—TITLE

(±)

ADDRESS (Number and Street)

Code)

) diZ)

YPE OR PRINT LEGIBL

(State)

(City)

PENNSYLVANIA

BULLETIN

(ISSN 0162-2137)

Postmaster send address changes to:

FRY COMMUNICATIONS, Inc. Attn: Pennsylvania Bulletin 800 West Church Road Mechanicsburg, Pennsylvania 17055-3198 (717) 766-0211 ext. 2340 (800) 334-1429 ext. 2340 (toll free, out-of-State) (800) 524-3232 ext. 2340 (toll free, in State) Harrisburg, Pennsylvania.

Orders for subscriptions and other circulation matters should be sent to:

The Pennsylvania Bulletin is published weekly by Fry

Communications, Inc. for the Commonwealth of Pennsylvania, Legislative Reference Bureau, 641 Main Capitol Build-

ing, Harrisburg, Pennsylvania 17120, under the policy supervision and direction of the Joint Committee on Documents under 45 Pa.C.S. Part II (relating to publication and effectiveness of Commonwealth documents). The subscription rate is \$87.00 per year, postpaid to points in the United States. Individual copies are \$2.50. Checks for subscriptions and individual copies should be made payable to "Fry Communications, Inc." Periodicals postage paid at

Fry Communications, Inc. Attn: *Pennsylvania Bulletin* 800 West Church Road

Mechanicsburg, Pennsylvania 17055-3198

Copyright © 2021 Commonwealth of Pennsylvania

Editorial preparation, composition, printing and distribution of the *Pennsylvania Bulletin* is effected on behalf of the Commonwealth of Pennsylvania by FRY COMMUNICATIONS, Inc., 800 West Church Road, Mechanicsburg, Pennsylvania 17055-3198.

CONTENTS

THE GENERAL ASSEMBLY	Pennsylvania \$3 Million Xtreme Tripler instant
COMMISSION ON SENTENCING	lottery game 1555
Public and virtual meetings scheduled	tery game 1557
	Pennsylvania Fast Ca\$h instant lottery game 1558 7316
EVECUTIVE AND INDEPENDENT	DEPARTMENT OF TRANSPORTATION
EXECUTIVE AND INDEPENDENT	Notices State Transportation Advisory Committee virtual
AGENCIES	meeting
CAPITOL PRESERVATION COMMITTEE	ENVIRONMENTAL QUALITY BOARD
Notices	Rules and Regulations
Request for proposals (3 Documents)	Administration of Land Recycling Program 7173
DEPARTMENT OF BANKING AND SECURITIES	FISH AND BOAT COMMISSION
Notices	Notices
Actions on applications	Classification of wild trout streams; proposed addi-
DEPARTMENT OF CONSERVATION AND NATURAL	tions and revisions; January 2022
RESOURCES	waters; January 2022
Notices	INSURANCE DEPARTMENT
Execution of oil and gas lease for publicly-owned	Notices
streambeds	Alleged violation of insurance laws; George W. Gordon; doc. No. SC21-11-003
DEPARTMENT OF ENVIRONMENTAL PROTECTION	•
Notices	LEGISLATIVE REFERENCE BUREAU Notices
Air Quality Technical Advisory Committee meeting 7300	Documents filed but not published
Applications, actions and special notices	PATIENT SAFETY AUTHORITY
Recycling Fund and Solid Waste Advisory Committee joint meeting	Notices
DEPARTMENT OF HEALTH	Virtual public meeting
Notices	PENNSYLVANIA PUBLIC UTILITY COMMISSION
Decisions on requests for exceptions to health care	Notices
facility regulations	Damage Prevention Committee nominations 7324
Long-term care nursing facilities; requests for ex-	Service of notice of motor carrier applications 7324
ception	PHILADELPHIA PARKING AUTHORITY
DEPARTMENT OF HUMAN SERVICES	Notices Service of notice of motor carrier applications in the
Notices	City of Philadelphia
Supplemental payments to qualifying hospitals 7304	STATE EMPLOYEES' RETIREMENT BOARD
DEPARTMENT OF LABOR AND INDUSTRY	Notices
Proposed Rulemaking	Hearings scheduled
Minimum wage	SUSQUEHANNA RIVER BASIN COMMISSION
DEPARTMENT OF REVENUE	Notices
Notices	Commission meeting
Pennsylvania \$500,000 Crossword Mania instant lottery game 1556	Projects approved for consumptive uses of water 7326 Rescheduled public hearing

READER'S GUIDE TO THE PENNSYLVANIA BULLETIN AND THE PENNSYLVANIA CODE

Pennsylvania Bulletin

The *Pennsylvania Bulletin* is the official gazette of the Commonwealth of Pennsylvania. It is published weekly. A cumulative subject matter index is published quarterly.

The *Pennsylvania Bulletin* serves several purposes. It is the temporary supplement to the *Pennsylvania Code*, which is the official codification of agency rules and regulations, Statewide court rules, and other statutorily authorized documents. Changes in the codified text, whether by adoption, amendment, rescission, repeal or emergency action, must be published in the *Pennsylvania Bulletin*.

The following documents are published in the *Pennsylvania Bulletin*: Governor's Executive Orders; Summaries of Enacted Statutes; Statewide and Local Court Rules; Attorney General Opinions; Motor Carrier Applications before the Pennsylvania Public Utility Commission; Applications and Actions before the Department of Environmental Protection; Orders of the Independent Regulatory Review Commission; and other documents authorized by law.

The text of certain documents published in the *Pennsylvania Bulletin* is the only valid and enforceable text. Courts are required to take judicial notice of the *Pennsylvania Bulletin*.

Adoption, Amendment or Repeal of Regulations

Generally an agency wishing to adopt, amend or rescind regulations must first publish in the *Pennsylvania Bulletin* a Proposed Rulemaking. There are limited instances when the agency may omit the proposal step; it still must publish the adopted version.

The Proposed Rulemaking contains the full text of the change, the agency contact person, a fiscal note required by law and background for the action.

The agency then allows sufficient time for public comment before taking final action. A Final Rule-making must be published in the *Pennsylvania Bulletin* before the changes can take effect. If the agency wishes to adopt changes to the Proposed Rulemaking to enlarge the scope, it must repropose.

Citation to the Pennsylvania Bulletin

Cite material in the *Pennsylvania Bulletin* by volume number, a page number and date. Example: Volume 1, *Pennsylvania Bulletin*, page 801, January 9, 1971 (short form: 1 Pa.B. 801 (January 9, 1971)).

Pennsylvania Code

The *Pennsylvania Code* is the official codification of rules and regulations issued by Commonwealth agencies, Statewide court rules and other statutorily authorized documents. The *Pennsylvania Bulletin* is the temporary supplement to the *Pennsylvania Code*, printing changes when they are adopted. These changes are then permanently codified by the *Pennsylvania Code Reporter*, a monthly, loose-leaf supplement.

The *Pennsylvania Code* is cited by title number and section number. Example: Title 10 *Pennsylvania Code* § 1.1 (short form: 10 Pa. Code § 1.1).

Under the *Pennsylvania Code* codification system, each regulation is assigned a unique number by title and section. Titles roughly parallel the organization of Commonwealth government.

How to Find Rules and Regulations

Search for your area of interest in the *Pennsylva*nia Code. The *Pennsylvania Code* is available at www.pacodeandbulletin.gov.

Source Notes give the history of regulations. To see if there have been recent changes not yet codified, check the List of *Pennsylvania Code* Chapters Affected in the most recent issue of the *Pennsylvania Bulletin*.

A chronological table of the history of *Pennsylva-nia Code* sections may be found at www.legis.state.pa.us/cfdocs/legis/CH/Public/pcde_index.cfm.

A quarterly List of *Pennsylvania Code* Sections Affected lists the regulations in numerical order, followed by the citation to the *Pennsylvania Bulletin* in which the change occurred.

The *Pennsylvania Bulletin* is available at www. pacodeandbulletin.gov.

Subscription Information: (717) 766-0211 General Information and Finding Aids: (717) 783-1530

Printing Format

Rules, Regulations and Statements of Policy in Titles 1—107 of the Pennsylvania Code

Text proposed to be added is printed in <u>underscored bold face</u>. Text proposed to be deleted is enclosed in brackets [] and printed in **bold face**.

Proposed new chapters and sections are printed in regular type to enhance readability. Final rulemakings and statements of policy are printed in regular type.

Ellipses, a series of five asterisks, indicate text that is not amended.

In Proposed Rulemakings and proposed Statements of Policy, existing text corresponds to the official codified text in the *Pennsylvania Code*.

Court Rules in Titles 201—246 of the Pennsylvania Code

Added text in proposed and adopted court rules is printed in <u>underscored bold face</u>. Deleted text in proposed and adopted court rules is enclosed in brackets [] and printed in **bold face**.

Proposed new chapters and rules are printed in regular type to enhance readability.

Ellipses, a series of five asterisks, indicate text that is not amended.

Fiscal Notes

Section 612 of The Administrative Code of 1929 (71 P.S. § 232) requires the Governor's Budget Office to prepare a fiscal note for regulatory actions and administrative procedures of the administrative departments, boards, commissions and authorities receiving money from the State Treasury. The fiscal note states whether the action or procedure causes a loss of revenue or an increase in the cost of programs for the Commonwealth or its political subdivisions. The fiscal note is required to be published in the *Pennsylvania Bulletin* at the same time as the change is advertised.

A fiscal note provides the following information: (1) the designation of the fund out of which the appropriation providing for expenditures under the action or procedure shall be made; (2) the probable cost for the fiscal year the program is implemented; (3) projected cost estimate of the program for each of the 5 succeeding fiscal years; (4) fiscal history of the program for which expenditures are to be made; (5) probable loss of revenue for the fiscal year of its implementation; (6) projected loss of revenue from the program for each of the 5 succeeding fiscal years; (7) line item, if any, of the General Appropriation Act or other appropriation act out of which expenditures or losses of Commonwealth funds shall occur as a result of the action or procedures; and (8) recommendation, if any, of the Secretary of the Budget and the reasons therefor.

The omission of an item indicates that the agency text of the fiscal note states that there is no information available with respect thereto. In items (3) and (6) information is set forth for the first through fifth fiscal years, following the year the program is implemented, which is stated. In item (4) information is set forth for the current and two immediately preceding years. In item (8) the recommendation, if any, made by the Secretary of the Budget is published with the fiscal note. "No fiscal impact" means no additional cost or revenue loss to the Commonwealth or its local political subdivision is intended. See 4 Pa. Code Chapter 7, Subchapter R (relating to fiscal notes).

Reproduction, Dissemination or Publication of Information

Third parties may not take information from the *Pennsylvania Code* and *Pennsylvania Bulletin* and reproduce, disseminate or publish information except as provided by 1 Pa. Code § 3.44:

§ 3.44. General permission to reproduce content of Code and Bulletin.

Information published under this part, which information includes, but is not limited to, cross references, tables of cases, notes of decisions, tables of contents, indexes, source notes, authority notes, numerical lists and codification guides, other than the actual text of rules or regulations may be reproduced only with the written consent of the [Legislative Reference] Bureau. The information which appears on the same leaf with the text of a rule or regulation, however, may be incidentally reproduced in connection with the reproduction of the rule or regulation, if the reproduction is for the private use of a subscriber and not for resale. There are no other restrictions on the reproduction of information published under this part, and the Commonwealth hereby consents to a reproduction.

List of Pa. Code Chapters Affected

The following numerical guide is a list of the chapters of each title of the $Pennsylvania\ Code$ affected by documents published in the $Pennsylvania\ Bulletin$ during 2021.

4 Pa. Code (Administration)	227
Adopted Rules	227a
6	228
7 2761, 3594	806
602	1021
607425	
120	28 Pa. Code (Health and Safety)
Statements of Policy	Proposed Rules
1 3967	201
9 183, 569, 2065, 3757, 3857, 4353, 5445, 6417	
9 105, 509, 2005, 5757, 5057, 4555, 5445, 6417	203
7 Do Codo (Agriculturo)	204
7 Pa. Code (Agriculture)	205
Adopted Rules	207
143	211
	1131
Proposed Rules	1141
160	
	1141a 1141
10 Pa. Code (Banking and Securities)	1151
Adopted Rules	1151a 1141
19	1161
55	1161a
59	1171
09 0140	
12 Pa. Code (Commerce, Trade and Local Government)	1171a
Statements of Delicer	1181
Statements of Policy	1181a 1141
31	1191
	1191a
22 Pa. Code (Education)	1211
Adopted Rules	1211a
19 1653	
$235 \dots 5199$	1230
	1230a 1141
Proposed Rules	
rroposed rules	
	31 Pa. Code (Insurance)
4	Adopted Rules
4	Adopted Rules
4 3103 713 6032 741 1516	31 Pa. Code (Insurance) Adopted Rules 84a
4	Adopted Rules 84a 6600
4 3103 713 6032 741 1516 741a 1516	Adopted Rules 84a 6600 34 Pa. Code (Labor and Industry)
4	Adopted Rules 84a
4	Adopted Rules 84a 6600 34 Pa. Code (Labor and Industry)
4	Adopted Rules 6600 84a 6600 34 Pa. Code (Labor and Industry) Adopted Rules 3099
4	Adopted Rules 6600 84a 6600 34 Pa. Code (Labor and Industry) Adopted Rules 3099 Proposed Rules
4	Adopted Rules 6600 84a 6600 34 Pa. Code (Labor and Industry) Adopted Rules 3099 Proposed Rules 101 1318
4	Adopted Rules 6600 34 Pa. Code (Labor and Industry) Adopted Rules 3099 Proposed Rules 101 1318 111 1019
4	Adopted Rules 6600 84a 6600 34 Pa. Code (Labor and Industry) Adopted Rules 3099 Proposed Rules 101 1318
4	Adopted Rules 6600 34 Pa. Code (Labor and Industry) Adopted Rules 65 3099 Proposed Rules 101 101 1318 111 1019 231 7239
4	Adopted Rules 6600 34 Pa. Code (Labor and Industry) Adopted Rules 65 3099 Proposed Rules 101 101 1318 111 1019 231 7239
4	Adopted Rules 6600 34 Pa. Code (Labor and Industry) 34 Pa. Code (Labor and Industry) Adopted Rules 3099 Proposed Rules 101 1318 111 1019 231 7239 37 Pa. Code (Law) 1318
4 3103 713 6032 741 1516 741a 1516 25 Pa. Code (Environmental Protection) Adopted Rules 87 3449 88 3449 89 3449 90 3449 91 5361 92a 5361 93 3733 121 283	Adopted Rules 6600 34 Pa. Code (Labor and Industry) Adopted Rules 65 3099 Proposed Rules 101 101 1318 111 1019 231 7239 37 Pa. Code (Law) Adopted Rules
4 3103 713 6032 741 1516 741a 1516 25 Pa. Code (Environmental Protection) Adopted Rules 87 3449 88 3449 89 3449 90 3449 91 5361 92a 5361 93 3733 121 283 127 283	Adopted Rules 6600 34 Pa. Code (Labor and Industry) Adopted Rules 65 3099 Proposed Rules 101 101 1318 111 1019 231 7239 37 Pa. Code (Law) Adopted Rules 241 1136
4 3103 713 6032 741 1516 741a 1516 25 Pa. Code (Environmental Protection) Adopted Rules 87 3449 88 3449 89 3449 90 3449 91 5361 92a 5361 93 3733 121 283 127 283 250 7173	Adopted Rules 6600 34 Pa. Code (Labor and Industry) Adopted Rules 65 3099 Proposed Rules 101 101 1318 111 1019 231 7239 37 Pa. Code (Law) Adopted Rules
4 3103 713 6032 741 1516 741a 1516 25 Pa. Code (Environmental Protection) Adopted Rules 87 3449 88 3449 89 3449 90 3449 91 5361 92a 5361 93 3733 121 283 127 283 250 7173 806 6593	Adopted Rules 6600 34 Pa. Code (Labor and Industry) 34 Pa. Code (Labor and Industry) Adopted Rules 3099 Proposed Rules 101 101 1318 111 1019 231 7239 37 Pa. Code (Law) Adopted Rules 241 1136 261 1512
4 3103 713 6032 741 1516 741a 1516 25 Pa. Code (Environmental Protection) Adopted Rules 87 3449 88 3449 89 3449 90 3449 91 5361 92a 5361 93 3733 121 283 127 283 250 7173 806 6593 901 2629	Adopted Rules 6600 34 Pa. Code (Labor and Industry) 34 Pa. Code (Labor and Industry) Adopted Rules 3099 Proposed Rules 101 1318 111 1019 231 7239 37 Pa. Code (Law) Adopted Rules 1136 261 1512 40 Pa. Code (Liquor) 40 Pa. Code (Liquor) 1512 1512
4 3103 713 6032 741 1516 741a 1516 25 Pa. Code (Environmental Protection) Adopted Rules 87 3449 88 3449 89 3449 90 3449 91 5361 92a 5361 93 3733 121 283 127 283 250 7173 806 6593 901 2629 902 2629	Adopted Rules 6600 34 Pa. Code (Labor and Industry) 34 Pa. Code (Labor and Industry) Adopted Rules 3099 Proposed Rules 101 1318 111 1019 231 7239 37 Pa. Code (Law) Adopted Rules 241 1136 261 1512 40 Pa. Code (Liquor) Adopted Rules
4 3103 713 6032 741 1516 741a 1516 25 Pa. Code (Environmental Protection) Adopted Rules 87 3449 88 3449 89 3449 90 3449 91 5361 92a 5361 93 3733 121 283 127 283 250 7173 806 6593 901 2629	Adopted Rules 6600 34 Pa. Code (Labor and Industry) 34 Pa. Code (Labor and Industry) Adopted Rules 3099 Proposed Rules 101 1318 111 1019 231 7239 37 Pa. Code (Law) Adopted Rules 1136 261 1512 40 Pa. Code (Liquor) 40 Pa. Code (Liquor) 1500
4 3103 713 6032 741 1516 741a 1516 25 Pa. Code (Environmental Protection) Adopted Rules 87 3449 88 3449 90 3449 91 5361 92a 5361 93 3733 121 283 127 283 250 7173 806 6593 901 2629 902 2629 903 2629	Adopted Rules 6600 34 Pa. Code (Labor and Industry) 34 Pa. Code (Labor and Industry) Adopted Rules 3099 Proposed Rules 101 101 1318 111 1019 231 7239 37 Pa. Code (Law) Adopted Rules 241 1136 261 1512 40 Pa. Code (Liquor) Adopted Rules
4 3103 713 6032 741 1516 741a 1516 25 Pa. Code (Environmental Protection) Adopted Rules 87 3449 88 3449 90 3449 91 5361 92a 5361 93 3733 121 283 127 283 250 7173 806 6593 901 2629 902 2629 903 2629 Proposed Rules	Adopted Rules 6600 34 Pa. Code (Labor and Industry) 34 Pa. Code (Labor and Industry) Adopted Rules 3099 Proposed Rules 101 101 1318 111 1019 231 7239 37 Pa. Code (Law) 37 Adopted Rules 3241 1136 261 1512 40 Pa. Code (Liquor) 34 34 Adopted Rules 32927, 4228, 5374
4 3103 713 6032 741 1516 741a 1516 25 Pa. Code (Environmental Protection) Adopted Rules 87 3449 88 3449 90 3449 91 5361 92a 5361 93 3733 121 283 127 283 250 7173 806 6593 901 2629 902 2629 903 2629	Adopted Rules 6600 34 Pa. Code (Labor and Industry) 34 Pa. Code (Labor and Industry) Adopted Rules 3099 Proposed Rules 1318 101 1318 111 1019 231 7239 37 Pa. Code (Law) Adopted Rules 241 1136 261 1512 40 Pa. Code (Liquor) Adopted Rules 5 2927, 4228, 5374 11 6397
4 3103 713 6032 741 1516 741a 1516 25 Pa. Code (Environmental Protection) Adopted Rules 87 3449 88 3449 90 3449 91 5361 92a 5361 93 3733 121 283 127 283 250 7173 806 6593 901 2629 902 2629 903 2629 Proposed Rules	Adopted Rules 6600 34 Pa. Code (Labor and Industry) 34 Pa. Code (Labor and Industry) Adopted Rules 3099 Proposed Rules 1318 101 1318 111 1019 231 7239 37 Pa. Code (Law) 340 Adopted Rules 341 261 1512 40 Pa. Code (Liquor) 340 Adopted Rules 397 Proposed Rules 397
4 3103 713 6032 741 1516 741a 1516 25 Pa. Code (Environmental Protection) Adopted Rules 87 3449 88 3449 89 3449 90 3449 91 5361 92a 5361 93 3733 121 283 127 283 250 7173 806 6593 901 2629 902 2629 903 2629 Proposed Rules 77 1519 88 6914	Adopted Rules 6600 34 Pa. Code (Labor and Industry) 34 Pa. Code (Labor and Industry) Adopted Rules 3099 Proposed Rules 1318 101 1318 111 1019 231 7239 37 Pa. Code (Law) Adopted Rules 241 1136 261 1512 40 Pa. Code (Liquor) Adopted Rules 5 2927, 4228, 5374 11 6397
4 3103 713 6032 741 1516 741a 1516 25 Pa. Code (Environmental Protection) Adopted Rules 87 3449 88 3449 89 3449 90 3449 91 5361 92a 5361 93 3733 121 283 127 283 250 7173 806 6593 901 2629 902 2629 903 2629 Proposed Rules 77 1519 88 6914 90 6914	Adopted Rules 6600 34 Pa. Code (Labor and Industry) 3099 Adopted Rules 3099 Proposed Rules 101 101 1318 111 1019 231 7239 37 Pa. Code (Law) 3099 Adopted Rules 1019 241 1136 261 1512 40 Pa. Code (Liquor) 3099 Adopted Rules 2927, 4228, 5374 11 6397 Proposed Rules 1997
4 3103 713 6032 741 1516 741a 1516 25 Pa. Code (Environmental Protection) Adopted Rules 87 3449 88 3449 90 3449 91 5361 92a 5361 93 3733 121 283 127 283 250 7173 806 6593 901 2629 902 2629 903 2629 Proposed Rules 77 1519 88 6914 90 6914 90 6914 90 6914 90 6914 93 4062	Adopted Rules 6600 34 Pa. Code (Labor and Industry) 3099 Adopted Rules 3099 Proposed Rules 101 101 1318 111 1019 231 7239 37 Pa. Code (Law) 3099 Adopted Rules 1019 241 1136 261 1512 40 Pa. Code (Liquor) 3099 Adopted Rules 5 5 2927, 4228, 5374 11 6397 Proposed Rules 1 11 1997 49 Pa. Code (Professional and Vocational Standards)
4 3103 713 6032 741 1516 741a 1516 25 Pa. Code (Environmental Protection) Adopted Rules 87 3449 88 3449 90 3449 91 5361 92a 5361 93 3733 121 283 250 7173 806 6593 901 2629 902 2629 903 2629 Proposed Rules 77 1519 88 6914 90 6914 90 6914 93 4062 121 4333	Adopted Rules 6600 34 Pa. Code (Labor and Industry) 3099 Adopted Rules 3099 Proposed Rules 101 101 1318 111 1019 231 7239 37 Pa. Code (Law) 3099 Adopted Rules 1019 241 1136 261 1512 40 Pa. Code (Liquor) 3099 Adopted Rules 2927, 4228, 5374 11 6397 Proposed Rules 11 11 1997 49 Pa. Code (Professional and Vocational Standards) Adopted Rules
4 3103 713 6032 741 1516 741a 1516 25 Pa. Code (Environmental Protection) Adopted Rules 87 3449 88 3449 90 3449 91 5361 92a 5361 93 3733 121 283 127 283 250 7173 806 6593 901 2629 902 2629 903 2629 Proposed Rules 77 1519 88 6914 90 6914 90 6914 90 6914 93 4062 121 4333 129 4333	Adopted Rules 6600 34 Pa. Code (Labor and Industry) 3099 Adopted Rules 3099 Proposed Rules 101 1318 111 1019 231 7239 37 Pa. Code (Law) 3099 Adopted Rules 1019 241 1136 261 1512 40 Pa. Code (Liquor) 3099 Adopted Rules 1019 11 6397 Proposed Rules 11 11 1997 49 Pa. Code (Professional and Vocational Standards) Adopted Rules 23 23 2633
4 3103 713 6032 741 1516 741a 1516 25 Pa. Code (Environmental Protection) Adopted Rules 87 3449 88 3449 90 3449 91 5361 92a 5361 93 3733 121 283 250 7173 806 6593 901 2629 902 2629 903 2629 Proposed Rules 77 1519 88 6914 90 6914 90 6914 93 4062 121 4333	Adopted Rules 6600 34 Pa. Code (Labor and Industry) 3099 Adopted Rules 3099 Proposed Rules 101 101 1318 111 1019 231 7239 37 Pa. Code (Law) 3099 Adopted Rules 1019 241 1136 261 1512 40 Pa. Code (Liquor) 3099 Adopted Rules 2927, 4228, 5374 11 6397 Proposed Rules 11 11 1997 49 Pa. Code (Professional and Vocational Standards) Adopted Rules

Proposed Rules	686a
3	687a
13	687b
16	688a
17	688b
18	801a 5389
19	802a
$21 \dots 558$	803a 5389
23 6046	804a
37	805a
47	806a
48	807a
49	808a
52 Pa. Code (Public Utilities)	809a
Proposed Rulemaking	810a
51	811a
53	813a
63	814a
64	815a
65	816a 5389
66	817a
	830a
Statements of Policy	1001a
69	1101a
	1102a
55 Pa. Code (Human Services)	1103a 5207
Adopted Rules	1104a 5207
3290	1105a 5207
Proposed Rules	1106a 5207
1101	1107a
1101 0400	1108a
58 Pa. Code (Recreation)	1109a
Adopted Rules	1110a
	1111a
$51 \dots 426, 427$	1110-
61	1112a
61	1113a
61	1113a
61	1113a 5207 1114a 5207 1115a 5207
61	1113a 5207 1114a 5207 1115a 5207 1116a 5207
61	1113a 5207 1114a 5207 1115a 5207
61 428 63 429, 6028 65 430, 431, 433, 1799, 1800, 1801, 6028, 6030 131 5603, 6608 133 6609 137 1313 139 2929, 2937	1113a 5207 1114a 5207 1115a 5207 1116a 5207 1117a 5207
61 428 63 429, 6028 65 430, 431, 433, 1799, 1800, 1801, 6028, 6030 131 5603, 6608 133 6609 137 1313 139 2929, 2937 141 2940, 2942, 5603, 5605	1113a 5207 1114a 5207 1115a 5207 1116a 5207 1117a 5207 1118a 5207
61 428 63 429, 6028 65 430, 431, 433, 1799, 1800, 1801, 6028, 6030 131 5603, 6608 133 6609 137 1313 139 2929, 2937 141 2940, 2942, 5603, 5605 143 2937, 2944, 2945	1113a 5207 1114a 5207 1115a 5207 1116a 5207 1117a 5207 1118a 5207 1119a 5207
61 428 63 429, 6028 65 430, 431, 433, 1799, 1800, 1801, 6028, 6030 131 5603, 6608 133 6609 137 1313 139 2929, 2937 141 2940, 2942, 5603, 5605 143 2937, 2944, 2945 147 2947, 5606	1113a 5207 1114a 5207 1115a 5207 1116a 5207 1117a 5207 1118a 5207 1119a 5207 1120a 5207 1201a 4229 1202a 4229
61 428 63 429, 6028 65 430, 431, 433, 1799, 1800, 1801, 6028, 6030 131 5603, 6608 133 6609 137 1313 139 2929, 2937 141 2940, 2942, 5603, 5605 143 2937, 2944, 2945 147 2947, 5606 441a 2966	1113a 5207 1114a 5207 1115a 5207 1116a 5207 1117a 5207 1118a 5207 1119a 5207 1120a 5207 1201a 4229 1202a 4229 1203a 4229
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1113a 5207 1114a 5207 1115a 5207 1116a 5207 1117a 5207 1118a 5207 1119a 5207 1120a 5207 1201a 4229 1202a 4229 1203a 4229 1204a 4229
61 428 63 429, 6028 65 430, 431, 433, 1799, 1800, 1801, 6028, 6030 131 5603, 6608 133 6609 137 1313 139 2929, 2937 141 2940, 2942, 5603, 5605 143 2937, 2944, 2945 147 2947, 5606 441a 2966	1113a 5207 1114a 5207 1115a 5207 1116a 5207 1117a 5207 1118a 5207 1119a 5207 1120a 5207 1201a 4229 1202a 4229 1203a 4229 1204a 4229 1205a 4229 1205a 4229
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1113a 5207 1114a 5207 1115a 5207 1116a 5207 1117a 5207 1118a 5207 1119a 5207 1120a 5207 1201a 4229 1202a 4229 1203a 4229 1204a 4229 1205a 4229 1206a 4229
61 428 63 429, 6028 65 430, 431, 433, 1799, 1800, 1801, 6028, 6030 131 5603, 6608 133 6609 137 1313 139 2929, 2937 141 2940, 2942, 5603, 5605 143 2937, 2944, 2945 147 2947, 5606 441a 2966 465a 2966 501a 2966 503a 2966	1113a 5207 1114a 5207 1115a 5207 1116a 5207 1117a 5207 1118a 5207 1119a 5207 1120a 5207 1201a 4229 1202a 4229 1203a 4229 1204a 4229 1205a 4229 1206a 4229 1207a 4229
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1113a 5207 1114a 5207 1115a 5207 1116a 5207 1117a 5207 1118a 5207 1119a 5207 1120a 5207 1201a 4229 1202a 4229 1203a 4229 1204a 4229 1205a 4229 1206a 4229 1207a 4229 1208a 4229
61 428 63 429, 6028 65 430, 431, 433, 1799, 1800, 1801, 6028, 6030 131 5603, 6608 133 6609 137 1313 139 2929, 2937 141 2940, 2942, 5603, 5605 143 2937, 2944, 2945 147 2947, 5606 441a 2966 465a 2966 501a 2966 503a 2966 603a 2966 609a 2966 617b 5607 623b 5607	1113a 5207 1114a 5207 1115a 5207 1116a 5207 1117a 5207 1118a 5207 1119a 5207 1120a 5207 1201a 4229 1202a 4229 1203a 4229 1204a 4229 1205a 4229 1206a 4229 1207a 4229 1208a 4229 1208a 4229 1209a 4229 1209a 4229
61 428 63 429, 6028 65 430, 431, 433, 1799, 1800, 1801, 6028, 6030 131 5603, 6608 133 6609 137 1313 139 2929, 2937 141 2940, 2942, 5603, 5605 143 2937, 2944, 2945 147 2947, 5606 441a 2966 465a 2966 501a 2966 503a 2966 603a 2966 609a 2966 617b 5607 623b 5607 627b 5607	1113a 5207 1114a 5207 1115a 5207 1116a 5207 1117a 5207 1118a 5207 1119a 5207 1120a 5207 1201a 4229 1202a 4229 1203a 4229 1204a 4229 1205a 4229 1206a 4229 1207a 4229 1208a 4229 1209a 4229 1401a 5973
61 428 63 429, 6028 65 430, 431, 433, 1799, 1800, 1801, 6028, 6030 131 5603, 6608 133 6609 137 1313 139 2929, 2937 141 2940, 2942, 5603, 5605 143 2937, 2944, 2945 147 2947, 5606 441a 2966 465a 2966 501a 2966 503a 2966 603a 2966 609a 2966 617b 5607 623b 5607 627b 5607 629b 5607	1113a 5207 1114a 5207 1115a 5207 1116a 5207 1117a 5207 1118a 5207 1119a 5207 1120a 5207 1201a 4229 1202a 4229 1203a 4229 1205a 4229 1205a 4229 1206a 4229 1208a 4229 1208a 4229 1209a 4229 1401a 5973 1402a 5973
61 428 63 429, 6028 65 430, 431, 433, 1799, 1800, 1801, 6028, 6030 131 5603, 6608 133 6609 137 1313 139 2929, 2937 141 2940, 2942, 5603, 5605 143 2937, 2944, 2945 147 2947, 5606 441a 2966 465a 2966 501a 2966 503a 2966 609a 2966 609a 2966 617b 5607 623b 5607 627b 5607 629b 5607 631b 5607	1113a 5207 1114a 5207 1115a 5207 1116a 5207 1117a 5207 1118a 5207 1119a 5207 1120a 5207 1201a 4229 1202a 4229 1203a 4229 1204a 4229 1205a 4229 1206a 4229 1207a 4229 1208a 4229 1209a 4229 1401a 5973
61 428 63 429, 6028 65 430, 431, 433, 1799, 1800, 1801, 6028, 6030 131 5603, 6608 133 6609 137 1313 139 2929, 2937 141 2940, 2942, 5603, 5605 143 2937, 2944, 2945 147 2947, 5606 441a 2966 465a 2966 501a 2966 503a 2966 603a 2966 609a 2966 617b 5607 623b 5607 629b 5607 631b 5607 633b 5607	1113a 5207 1114a 5207 1115a 5207 1116a 5207 1117a 5207 1118a 5207 1119a 5207 1120a 5207 1201a 4229 1202a 4229 1203a 4229 1205a 4229 1206a 4229 1207a 4229 1208a 4229 1209a 4229 1401a 5973 1402a 5973 1403a 5973
61 428 63 429, 6028 65 430, 431, 433, 1799, 1800, 1801, 6028, 6030 131 5603, 6608 133 6609 137 1313 139 2929, 2937 141 2940, 2942, 5605 143 2937, 2944, 2945 147 2947, 5606 441a 2966 465a 2966 501a 2966 503a 2966 609a 2966 617b 5607 623b 5607 627b 5607 629b 5607 63b 5607 635b 5607	1113a 5207 1114a 5207 1115a 5207 1116a 5207 1117a 5207 1118a 5207 1119a 5207 1120a 5207 1201a 4229 1202a 4229 1203a 4229 1204a 4229 1205a 4229 1206a 4229 1207a 4229 1208a 4229 1209a 4229 1401a 5973 1402a 5973 1404a 5973 1404a 5973
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1113a 5207 1114a 5207 1115a 5207 1116a 5207 1117a 5207 1118a 5207 1119a 5207 1120a 5207 1201a 4229 1202a 4229 1203a 4229 1205a 4229 1205a 4229 1206a 4229 1208a 4229 1209a 4229 1401a 5973 1402a 5973 1404a 5973 1405a 5973
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1113a 5207 1114a 5207 1115a 5207 1116a 5207 1117a 5207 1118a 5207 1119a 5207 1120a 5207 1201a 4229 1202a 4229 1203a 4229 1204a 4229 1205a 4229 1206a 4229 1207a 4229 1208a 4229 1209a 4229 1401a 5973 1402a 5973 1404a 5973 1405a 5973 1406a 5973 1407a 5973 1408a 5973 1409a 5973 1410a 5973 1411a 5973 1411a 5973 1411a 5973 1411a 5973 1411a 5973
61 428 63 429, 6028 65 430, 431, 433, 1799, 1800, 1801, 6028, 6030 131 5603, 6608 133 6609 137 1313 139 2929, 2937 141 2940, 2942, 5603, 5605 143 2937, 2944, 2945 147 2947, 5606 441a 2966 465a 2966 501a 2966 503a 2966 609a 2966 617b 5607 623b 5607 627b 5607 63b 5607 63b 5607 63b 5607 643b 5607 645b 5607 645b 5607 645b 5607 647b 5607 649b 5607 649b 5607 653b 5607 649b 5607 653b 5607	1113a 5207 1114a 5207 1115a 5207 1116a 5207 1117a 5207 1118a 5207 1119a 5207 1120a 5207 1201a 4229 1202a 4229 1203a 4229 1204a 4229 1205a 4229 1206a 4229 1207a 4229 1208a 4229 1209a 4229 1401a 5973 1402a 5973 1404a 5973 1405a 5973 1406a 5973 1409a 5973 1409a 5973 1409a 5973 1410a 5973 1411a 5973
61 428 63 429, 6028 65 430, 431, 433, 1799, 1800, 1801, 6028, 6030 131 5603, 6608 133 6609 137 1313 139 2929, 2937 141 2940, 2942, 5603, 5605 143 2937, 2944, 2945 147 2947, 5606 441a 2966 465a 2966 501a 2966 503a 2966 603a 2966 609a 2966 617b 5607 627b 5607 629b 5607 635b 5607 635b 5607 635b 5607 643b 5607 643b 5607 643b 5607 645b 5607 657b 5607	1113a 5207 1114a 5207 1115a 5207 1116a 5207 1117a 5207 1118a 5207 1119a 5207 1120a 5207 120a 4229 120a 4229 1205a 4229 1206a 4229 1207a 4229 1208a 4229 1209a 4229 1401a 5973 1402a 5973 1405a 5973 1406a 5973 1408a 5973 1409a 5973 1410a 5973
61 428 63 429, 6028 65 430, 431, 433, 1799, 1800, 1801, 6028, 6030 131 5603, 6608 133 6609 137 1313 139 2929, 2937 141 2940, 2942, 5603, 5605 143 2937, 2944, 2945 147 2947, 5606 441a 2966 501a 2966 501a 2966 503a 2966 603a 2966 603a 2966 617b 5607 623b 5607 627b 5607 633b 5607 635b 5607 635b 5607 643b 5607 643b 5607 645b 5607 655b 5607 655b 5607	1113a 5207 1114a 5207 1115a 5207 1116a 5207 1117a 5207 1118a 5207 1119a 5207 1120a 5207 1201a 4229 1202a 4229 1203a 4229 1204a 4229 1205a 4229 1206a 4229 1207a 4229 1208a 4229 1209a 4229 1401a 5973 1402a 5973 1404a 5973 1405a 5973 1406a 5973 1409a 5973 1409a 5973 1409a 5973 1410a 5973 1411a 5973

695672, 5679, 5685	65
111 5687, 6049	D 1D1
131	Proposed Rules
133	1
139	11
141	17 1503
143	19
147	21 1783, 1788
Statements of Policy	27 1788
57	225 Pa. Code (Rules of Evidence)
	Adopted Rules
67 Pa. Code (Transportation)	Art. IV
Proposed Rules	A16. 17 0140
601	Proposed Rules
70 Pa. Code (Weights, Measures and Standards)	Art. 1 5532
Adopted Rules	
110	231 Pa. Code (Rules of Civil Procedure)
120	Adopted Rules
101 Pa. Code (General Assembly)	100
Statements of Policy	200
31	1900 6764
	1910
201 Pa. Code (Rules of Judicial Administration)	1915 6764
Adopted Rules	1920 6764
1	1930 6764
6	Part II3443, 4267, 4313
13 1044	Down and Dodge
Proposed Rules	Proposed Rules
1	100
	200
204 Pa. Code (Judicial System General Provisions)	1000
Adopted Rules	1300
29	1500
71	1900
81	
82	1915
831128, 5191	1930
85 781 89 781	1932
91 781	2950
93	3000
213	Part II
·	1 410 11 5002
Proposed Rules	234 Pa. Code (Rules of Criminal Procedure)
71	Adopted Rules
81	4
83	5
$213 \dots 2160$ $221 \dots 2770$	
221 2110	Proposed Rules
207 Pa. Code (Judicial Conduct)	1
Adopted Rules	4 5587
33	7
51	227 Do Codo (Inverilo Bulco)
	237 Pa. Code (Juvenile Rules)
210 Pa. Code (Appellate Procedure)	Adopted Rules 4
Adopted Rules	
1	5
3	6 6905
5	Proposed Rules
9	1 1307, 5532
11	4
13	11
16	
17 7050	13
21	14
25	15
63	16

246 Pa. Code (Minor Court Civil Rules)	249 Pa. Code (Philadelphia Rules)
Adopted Rules	Unclassified
100 2261	
200	255 Pa. Code (Local Court Rules)
500	Unclassified
	1134, 1135, 1309, 1510, 1511, 1798, 1983, 1984, 1986,
Proposed Rules	1987, 2163, 2164, 2265, 2273, 2274, 2380, 2488, 2627,
200	2794, 3445, 3598, 3602, 3732, 3855, 3964, 3965, 4056,
300	4057, 4059, 4323, 4843, 5195, 5599, 5823, 6022, 6023,
500	6026, 6254, 6394, 6395, 6589, 6590, 6592, 6773, 6774,
1200 3339	6911, 6912, 7054

THE GENERAL ASSEMBLY

COMMISSION ON SENTENCING

Public and Virtual Meetings Scheduled

The Commission on Sentencing (Commission) announces the following meetings to be held in Harrisburg, PA and by means of Zoom:

Wednesday, December 8, 2021	9 a.m.	Special Policy Meeting	523 Irvis Building, Capitol Complex, Harrisburg, PA Zoom Webinar https://bit.ly/PCSDec8PolicyMtg
	6 p.m.	Dinner Meeting	Harrisburg Hilton and Towers Hotel
Thursday, December 9, 2021	9 a.m.	Policy Committee Meeting	523 Irvis Building, Capitol Complex, Harrisburg, PA Zoom Webinar https://bit.ly/PCS2021DECEMBER
	11 a.m.	Quarterly Commission Meeting	523 Irvis Building, Capitol Complex, Harrisburg, PA Zoom Webinar https://bit.ly/PCS2021DECEMBER

 $\begin{array}{c} \text{MARK H. BERGSTROM,} \\ \text{\textit{Executive Director}} \end{array}$

 $[Pa.B.\ Doc.\ No.\ 21\text{-}1919.\ Filed\ for\ public\ inspection\ November\ 19,\ 2021,\ 9:00\ a.m.]$

RULES AND REGULATIONS

Title 25—ENVIRONMENTAL PROTECTION

ENVIRONMENTAL QUALITY BOARD [25 PA. CODE CH. 250]

Administration of Land Recycling Program

The Environmental Quality Board (Board) amends Chapter 250 (relating to administration of Land Recycling Program) to read as set forth in Annex A. This final-form rulemaking is required by § 250.11 (relating to periodic review of MSCs), which directs the Department of Environmental Protection (Department) to review new scientific information that relates to the basis of the Statewide health standard medium-specific concentrations (MSC) at least 36 months after the effective date of the most recently promulgated MSCs and to propose to the Board any changes to the MSCs as necessary. In addition to updating the existing MSCs, this final-form rulemaking adds MSCs for three new contaminants, namely Perfluorooctanoic Acid (PFOA), Perfluorooctane Sulfonate (PFOS) and Perfluorobutane Sulfonate (PFBS). These contaminants are within the Per-fluoroalkyl and Polyfluoroalkyl Acid Substances (PFAS) family of compounds for which the United States Environmental Protection Agency (EPA) has published toxicological data. This finalform rulemaking clarifies several other regulatory re-

This final-form rulemaking was adopted by the Board at its meeting of June 15, 2021.

A. Effective Date

This final-form rulemaking will be effective upon publication in the *Pennsylvania Bulletin*.

B. Contact Persons

For further information contact Michael Maddigan, Environmental Group Manager, Land Recycling Program, P.O. Box 8471, Rachel Carson State Office Building, Harrisburg, PA 17105-8471, (717) 772-3609; or Nikolina Smith, Assistant Counsel, Bureau of Regulatory Counsel, Rachel Carson State Office Building, P.O. Box 8464, Harrisburg, PA 17105-8464, (717) 783-8501. This final-form rulemaking is available on the Department's web site at www.dep.pa.gov (select "Public Participation," then "Environmental Quality Board").

C. Statutory Authority

This final-form rulemaking is authorized under sections 104(a) and 303(a) of the Land Recycling and Environmental Remediation Standards Act (Act 2) (35 P.S. §§ 6026.104(a) and 6026.303(a)), which direct the Board to adopt and amend periodically by regulation Statewide health standards for regulated substances for each environmental medium, including any health-based standards adopted by the Federal government by regulation or statute, and health advisory levels (HAL), and which direct the Board to promulgate appropriate mathematically valid statistical tests to define compliance with Act 2, and other regulations as necessary to implement the provisions of Act 2; and section 1920-A of The Administrative Code of 1929 (71 P.S. § 510-20), which authorizes the Board to formulate, adopt and promulgate rules and regulations that are necessary for the proper work of the Department.

D. Background and Purpose

Section 250.11 requires that the Department review new scientific information that is used to calculate MSCs under the Statewide health standard and propose appropriate changes at least every 36 months following the effective date of the most recently promulgated MSCs. The Board's most recently promulgated MSCs became effective upon publication at 46 Pa.B. 5655 (August 27, 2016). These changes, based on new information, will protect public health and the environment, and will provide the regulated community with clear information regarding the requirements of Act 2 and Chapter 250 related to the remediation of contaminated sites.

In addition to updating Chapter 250 MSCs, this final-form rulemaking includes changes that add groundwater and soil MSCs for three compounds in the PFAS family—PFBS, PFOS and PFOA. The standards for the three PFAS chemicals are based on data in toxicological studies published by the EPA. Under Act 2, the Department has directly incorporated the EPA's 2016 HALs regarding PFOS and PFOA as groundwater MSCs and has used the data developed by the EPA for those HALs to calculate soil MSCs for both compounds. With respect to PFBS, the Department has established soil and groundwater standards based on a 2014 EPA Provisional Peer-Reviewed Toxicity Value (PPRTV).

Finally, this final-form rulemaking clarifies several procedural issues related to the administrative requirements of Act 2. In particular, this final-form rulemaking clarifies requirements for remediators and municipalities regarding public participation and public involvement plans, updates requirements for acceptable "practical quantitation limits" related to the precision of laboratory testing, updates requirements for professional seals from professional geologists or engineers, provides resources to calculate MSCs, and clarifies the proper submission of various reports related to the Act 2 Site-Specific Standard.

This final-form rulemaking impacts any person addressing a release of a regulated substance at a property, whether voluntarily or because of an order by the Department. This final-form rulemaking does not impact one particular category of person with additional or new regulatory obligations. Under Act 2, a remediator may select the standard to which to remediate. To complete a remediation, the remediator must then comply with all relevant remediation and administrative standards.

As noted previously, this final-form rulemaking does not singularly affect one specific industry or person. This final-form rulemaking does impact the owners and operators of storage tank facilities that have had a release of a petroleum or hazardous substance. There are approximately 12,000 storage facilities in this Commonwealth. Some of these facilities are owned or operated, or both, by small businesses. Because of the broad potential reach of this final-form rulemaking, it is not possible to identify specifics on the types and numbers of small businesses that could potentially be affected by property contamination. In addition, Act 2 and Chapter 250 are unique from other statutes and regulations because they do not create permitting or corrective action obligations. Instead, Act 2 and Chapter 250 provide remediators with options to address contamination and any associated liability that arises under other statutes. For example, adding PFOS to the Chapter 250 Appendix does not create any liability or

obligation related to PFOS. Instead, a person's liability arises under The Clean Streams Law (35 P.S. §§ 691.1—691.1001) while Act 2 and Chapter 250 provide that person the means to resolve their Clean Streams Law liability and to address the contamination. In this way, Act 2 and Chapter 250 do not create new obligations that will impact a particular category of person like a new permitting obligation or corrective action regulation would.

The soil numeric values represent a decrease for approximately 83% of the values and an increase for 17% of the values. For groundwater, the changes reflect a decrease for approximately 92% of the values and an increase in approximately 8% of the values. Lowering the values may indicate a more stringent cleanup is required at a site and increasing the values may indicate a less stringent cleanup is required at a site. These changes reflect updated information related to exposure limitations to these substances and recognize that a higher or lower standard is better representative of those substances' exposure thresholds.

The number of completed remediations vary each year. On average, remediators apply the Act 2 remediation standard to approximately 800 contaminated properties across this Commonwealth. Generally, investigation and cleanup costs vary greatly based on the severity of the contamination, the size of the site, the complexity of the remediation strategy, and the cleanup standard selected. Thus, accurate costs and savings cannot be determined at this time because the cost analysis must be based on site-specific considerations evaluated on case-by-case bases.

The Department worked with the Cleanup Standards Scientific Advisory Board (CSSAB) during the development of this final-form rulemaking. The CSSAB, which was established by section 105 of Act 2 (35 P.S. § 6026.105), consists of persons representing a crosssection of experience, including engineering, biology, hydrogeology, statistics, medicine, chemistry, toxicology and other related fields. The purpose of the CSSAB is to assist the Department and the Board in developing Statewide health standards, determining the appropriate statistically and scientifically valid procedures and risk factors to be used, and providing other technical advice as needed to implement Act 2. During CSSAB meetings on August 1, 2018, February 13, 2019, June 12, 2019, and October 29, 2019, CSSAB members were given the opportunity to review and provide feedback on draft regulatory amendments to Chapter 250. CSSAB members were also given the opportunity to review and provide feedback on this final-form rulemaking at the July 30, 2020, and the December 16, 2020, meetings. The Department worked with the CSSAB to resolve concerns and agreed to evaluate additional suggestions during the next review cycle for this final-form rulemaking. Following the presentations and discussions in 2018 and 2019, the CSSAB issued a letter related to the regulatory amendments included in this final-form rulemaking. Specifically, the CSSAB noted concern related to the MSCs for vanadium.

A listing of CSSAB members and minutes of CSSAB meetings are available on the Department's web site at www.dep.pa.gov (select "Public Participation," then "Advisory Committees," then "Cleanup and Brownfields," then "Cleanup Standards Scientific Advisory Board").

E. Summary of Final-Form Rulemaking and Changes from Proposed to Final-Form Rulemaking

§ 250.1. Definitions

This final-form rulemaking adds a definition for the term "MDL—Method detection limit" because both "method detection limit" and "MDL" are used in Chapter 250 but are not defined. This definition is consistent with the EPA's definition (see U.S. EPA Office of Water Publication EPA 821-R-16-006, 2016).

This final-form rulemaking amends the definition of "volatile compound" to match the description in Section IV, Appendix IV-A.1 of the Department's Land Recycling Program Technical Guidance Manual (TGM) and to match the EPA's definition in their Office of Solid Waste and Emergency Response (OSWER) Technical Guide for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Vapor Sources to Indoor Air (OSWER Publication 9200.2-154, 2015). The previous definition excluded naphthalene as well as several other semi-volatiles that are considered volatiles in the vapor intrusion section of the TGM. The Department's TGM is available at https://www.dep.pa.gov/Business/Land/LandRecycling/Standards-Guidance-Procedures/Guidance-Technical-Tools/Pages/Technical-Guidance-Manual.aspx.

§ 250.4. Limits related to PQLs

Amendments to this section update the procedures for determining the practical quantitation limit (PQL), provide for a wider range of sources for PQLs and estimated quantitation limits (EQL), and remove confusing and outdated language. Improvements in laboratory instrument technology and the removal of PQLs and EQLs from revised laboratory methods resulted in the need to update this section. This change allows for the use of EPA analytical method manuals that may contain PQLs or EQLs other than the EPA RCRA Manual for SW-846.

§ 250.6. Public participation

The amendments to § 250.6(c) (relating to public participation) clarify that if a public involvement plan (PIP) has been initiated, the public has a right to be involved in the development and review of the remedial investigation report, risk assessment report, cleanup plan and final report consistent with section 304(o) of Act 2 (35 P.S. § 6026.304(o)), regarding community involvement, and outlines the necessary measures to involve the public.

The amendments to § 250.6(d) help to ensure that the Department and the municipality requesting the PIP are notified of the submission of the PIP and receive copies of the PIP. These amendments necessitate the deletion of § 250.6(d)(1) and (2) because it no longer makes sense to include them in subsection (d). Paragraphs (1) and (2) were deleted because they are already discussed in Chapter 250 in the final report requirements section for the site-specific standard in § 250.411(e) (relating to final report) and remediation requirements section for special industrial area (SIA) sites in § 250.503(f) (relating to remediation requirements). Finally, these two paragraphs were deleted because the current Chapter 250 regulations require that the public involvement plan be submitted with the remedial investigation report or baseline environmental report. The change is necessary because the Department needs notice of PIPs in advance of receipt of those reports.

§ 250.10. Measurement of regulated substances in media

The amendments to § 250.10(d) (relating to measurement of regulated substances in media) change the references from the Groundwater Monitoring Guidance

Manual to reference the most current version of Appendix A of the TGM or an alternative method that appropriately measures regulated substances in groundwater. Specific alternative methods are not provided in the rulemaking to allow for the use of various acceptable methods that may be developed after the publication of this final-form rulemaking. Laboratories are best suited to determine the appropriate analytical methods for their individual capabilities and to accommodate the variability of the samples submitted by their clients. The language in § 250.10(d) allows the flexibility remediators and laboratories need to determine the best method for a site. If the Department's staff question the methods chosen by a laboratory or remediator when reviewing data submitted with Act 2 reports, those questions will be addressed directly with the laboratory or remediator on a case-by-case basis.

§ 250.12. Professional seal

This section mirrors language from § 245.314 (relating to professional seals) of the storage tank regulations, requiring that reports submitted to the Department which include professional geologic or engineering work be sealed by a professional geologist or engineer.

§ 250.304. MSCs for groundwater

Under subsection (c), the EPA publication number is amended.

Under subsection (g), this final-form rulemaking lists additional sources of aqueous solubility information to support the new compounds to be added to the MSC tables in this final-form rulemaking. The following aqueous solubility sources have been added to subsection (g):

- 19. ATSDR (Agency for Toxic Substances and Disease Registry). 2015. Toxicological Profile for Perfluoroalkyls. Draft for Public Comment. Agency for Toxic Substances and Disease Registry, Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA. Accessed May 2016. http://www.atsdr.cdc.gov/ToxProfiles/tp200.pdf.
- 20. Hekster, F.M., R.W. Laane, and P. de Voogt. 2003. Environmental and toxicity effects of perfluoroalkylated substances. Reviews of Environmental Contamination and Toxicology 179:99—121.
- 21. HSDB (Hazardous Substances Data Bank). 2012. U.S. National Library of Medicine, Bethesda, MD. Accessed May 2016. http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB.
- 22. Kauck, E.A., and A.R. Diesslin. 1951. Some properties of perfluorocarboxylic acids. Industrial & Engineering Chemistry Research 43(10):2332—2334.
- 23. SRC (Syracuse Research Corporation). 2016. PHYSPROP Database. Accessed May 2016. http://www.srcinc.com/what-we-do/environmental/scientific-databases.html.
- 24. OECD (Organisation for Economic Co-operation and Development). 2002. Hazard Assessment of Perfluorooctane Sulfonate (PFOS) and its Salts. ENV/JM/RD (2002) 17/FINAL. Report of the Environment Directorate, Joint Meeting of the Chemicals Committee and the Working Party on Chemicals, Pesticides and Biotechnology, Co-operation on Existing Chemicals, Paris, November 21, 2002.

§ 250.305. MSCs for soil

Under subsection (c), a minor correction is made to a cross-reference.

The amendments to § 250.305(g) (relating to MSCs for soil) alleviate confusion as to the need to evaluate the soil-to-groundwater pathway for compounds that have secondary maximum contaminant levels (SMCL) and either a primary Maximum Containment Level (MCL) or a HAL. These changes allow for the determination of soil MSC values for substances with SMCLs but no toxicological information in Appendix A, Table 5B, of Chapter 250. This determination is based on the physical capacity of the soil to contain a regulated substance as described in § 250.305(b). This change, along with other changes to subsection (g), result in the ability of remediators to determine soil MSCs for chloride and sulfate that also incorporate impacts to ecological receptors as described in § 250.311(a)—(f) (relating to evaluation of ecological receptors).

§ 250.306. Ingestion numeric values

Due to new information published by the EPA in Exposure Factors Handbook 2011 Edition, EPA/600/R-090/052F, the residential groundwater ingestion rate is increased from 2 liters a day (L/day) to 2.4 L/day. This amendment results in additional changes to other exposure factors listed in the table and footnotes in § 250.306(d) (relating to ingestion numeric values). Formatting errors in the table footnotes in this section are corrected. Some equations in the footnotes contained brackets that should not be confused with brackets used to delineate changes in this final-form rulemaking. Bolded text within bolded brackets represents text that is deleted while unbolded brackets encompass existing text not removed.

Proposed amendments to § 250.306(e) reflect updated models used to calculate blood lead levels that are applied to the corresponding lead numeric value calculations. The new model references are updated in this subsection. As discussed further in section F of this preamble, this final-form rulemaking deletes the proposed changes to the lead models and will leave the existing regulation in place. The Department intends to propose a separate rulemaking addressing the calculation of the ingestion numeric values for lead in soil to ensure the Department is using the most current science regarding lead toxicity. This will allow the public the opportunity to comment on these changes.

§ 250.307. Inhalation numeric values

An amendment to the equation in § 250.307(g)(1) (relating to inhalation numeric values) adds a "x 24 hr/day" multiplier to the numerator. This component was inadvertently omitted from this equation in the previous rule-making.

§ 250.308. Soil to groundwater pathway numeric values

In § 250.308(a)(2)(ii) (relating to soil to groundwater pathway numeric values), the word "standard" is replaced with "generic numeric value" to avoid the implication that the 1/10th value is always the soil MSC for saturated soil and to avoid the implication that the comparison process should be bypassed.

§ 250.311. Evaluation of ecological receptors

Amendments to § 250.311(b) directly reference the changes to § 250.305(g) and reference the physical capacity of the soil to contain a regulated substance as described in § 250.305(b).

§ 250.402. Human health and environmental protection goals

Amendments to § 250.402(d) (relating to human health and environmental protection goals) resolve confusion and

ensure the correct application of $\S 250.311(e)$ to protect ecological receptors under the site-specific standard. An amendment to $\S 250.402(d)(3)$ corrects and replaces the reference to $\S 230.311(f)$ with $\S 250.311(f)$.

§ 250.404. Pathway identification and elimination

Under subsection (a), the words "Department or" are added to allow for the use of Department guidance in identifying exposure pathways.

§ 250.409. Risk assessment report

An amendment to § 250.409(1) (relating to risk assessment report) clarifies that an approved remedial investigation report is needed in advance of submitting an approvable risk assessment report when the reports are submitted separately. This amendment is part of a clarification regarding the appropriate sequence of reports submitted under Subchapter D (relating to site-specific standard), including a new section for "combined reports," in § 250.412 (relating to combined reports), described as follows.

§ 250.410. Cleanup plan

New subsection (d) removes any ambiguity regarding the need for a cleanup plan in situations in which a remedy is already present. The previous language in subsection (d) is moved into a newly created subsection (e).

§ 250.412. Combined reports

This new section explains that prior approval of a remedial investigation report is not necessary when combined with either a risk assessment report or a cleanup plan. This section is necessary because of the changes made to § 250.410 (relating to cleanup plan).

§ 250.503. Remediation requirements

The amendments to § 250.503(e) clarify that a revised baseline environmental report, not just a new remediation plan, may need to be submitted when land use changes from nonresidential to residential at an SIA site.

§ 250.603. Exposure factors for site-specific standards

The amendment to § 250.603(a) (relating to exposure factors for site-specific standards) updates the citation of the 1992 version of the EPA's Final Guidelines for Exposure Assessment to EPA's 2011 Exposure Factors Handbook.

§ 250.605. Sources of toxicity information

The updates to § 250.605(a)(3) (relating to sources of toxicity information) add the EPA's Office of Pesticide Programs Human Health Benchmarks for Pesticides and the EPA's PPRTV Appendix databases to the toxicity value source hierarchy.

§ 250.707. Statistical tests

The term "Statewide health standard" is changed to "MSC" in the amendment to $\S 250.707(b)(1)(ii)$ (relating to statistical tests) for clarification.

A new clause (D) is added to § 250.707(b)(1)(iii) clarifying when or whether a vapor intrusion analysis is necessary for sites with small petroleum releases where full site characterization is not performed.

Appendix A, Tables 1—7

Amendments to the "Medium-Specific Concentrations" tables update the MSCs for certain regulated substances. Updates to footnotes are necessary to help explain some of the changes to the MSCs. Numeric values are calculated for several new substances, including PFOS, PFOA

and PFBS in groundwater and soil, and total polychlorinated biphenyls in soil. Ingestion-based numeric values all decreased slightly due to the increase in water ingestion rate under § 250.306(d) from 2 L/day to 2.4 L/day. Other numeric value changes are mostly attributed to updates in toxicity values in Tables 5A and 5B. However, corrections to the numeric value calculation process caused some numeric values to change.

The update to the definition of a "volatile compound" caused some of the values to change because the new definition includes the consideration of Henry's law constant and molecular weight. Additionally, some of the numeric value changes are due to rounding adjustments. When the Department calculates the numeric MSC values for inclusion in Chapter 250, some values are rounded during one of the early calculation steps instead of at the end of the calculation. To be consistent, the rounding procedure is updated so that all rounding occurs at the final value calculation step. Elimination of the rounding of transfer factors also causes changes to the numeric values. Transfer factors used for the calculation of inhalation numeric values from soil are calculated and listed in Table 5A. The transfer factors previously in Table 5A were rounded inconsistently. To be consistent with the other rounding corrections, these values are no longer rounded because they are calculated and used in the early stages of the numeric value calculation process.

In the amendments, information is updated on the "Threshold of Regulation Compounds" table (Table 6) by the removal of compounds that now have numeric values calculated on other tables.

In the proposed rulemaking, amendments to the "Default Values for Calculating MSCs for Lead" table (Table 7) would have updated the input parameters for use in the Integrated Exposure Uptake Biokinetic (IEUBK) Model for Lead in Children for residential exposure. Amendments for nonresidential exposure updated the model input parameters for the Adult Lead Model. References for both models were also updated. These amendments resulted in proposed updates to the lead residential and nonresidential direct contact values provided in Table 4A. However, as discussed in the summary for § 250.306 and further in section F of this preamble, this final-form rulemaking is rescinding the proposed changes to the lead models and will leave the existing regulation in place. Accordingly, this final-form rulemaking is rescinding the proposed changes to Table 7 and the proposed updates to the lead residential and nonresidential direct contact values in Table 4A and will leave the existing values in place. The Department intends to propose a separate rulemaking addressing the calculation of the ingestion numeric values for lead in soil to ensure the Department is using the most current science regarding lead toxicity. This will allow the public the opportunity to comment on these changes.

For this final-form rulemaking, an error was identified in Table 3B regarding use of the footnote "NA" for the generic values for PFAS chemicals. This footnote refers to the soil buffer distance option which is not related to the PFAS values. To correct this, the footnote symbol for the PFOS, PFOA and PFBS generic values was changed from "NA" to "N/A" and described it as "soil to groundwater values cannot be calculated for these compounds."

Several changes are made to Table 5A for this finalform rulemaking. First, five Aroclors were inadvertently proposed to be removed from Table 5A. This error is corrected. Secondly, it was noted that although surrogate toxicity values are noted in Table 5A, the chemical used

as the surrogate was not identified. The names of the surrogates used in Table 5A are added as footnotes. Additionally, after the publication of the proposed rulemaking, the Department noted that the EPA removed the MERPHOS OXIDE oral reference dose (RfDO) from its IRIS toxicity value database. Consequentially, the Department replaced the MERPHOS OXIDE IRIS value in Table 5A with the toxicity value from ATSDR. This resulted in changes to the MERPHOS OXIDE numeric values in Tables 1, 3A and 3B. Lastly, the EPA announced the publication of a new toxicity assessment for PFBS on April 8, 2021, which included an updated toxicity value that differed from what was used in the proposed rulemaking. Consequently, the PFBS toxicity value is amended in this final-form rulemaking to use the most current and accurate science to calculate the newly proposed MSC values, as required by § 250.11. This change substantially lowered the proposed MSCs for PFBS between the proposed rulemaking and final-form rulemaking. This change in toxicity values in Table 5A follows the established hierarchy and process the Department uses for selecting toxicity values described in § 250.605. This change in Table 5A resulted in the MSCs for PFBS in Tables 1, 3A and 3B to decrease between the proposed rulemaking and final-form rulemaking.

It was noted that in Table 5B, a surrogate footnote was provided even though no surrogates are used in this table. Therefore, the surrogate footnote is removed from Table 5B for this final-form rulemaking.

F. Summary of Comments and Responses on the Proposed Rulemaking

Notice of the Chapter 250 proposed rulemaking, and the accompanying public comment period, was published at 50 Pa.B. 1011, 1016 (February 15, 2020). The Board's public comment period opened on February 15, 2020, and closed on April 30, 2020.

During the public comment period, the Board received 140 comment documents from 128 individuals/ organizations including the Independent Regulatory Review Commission (IRRC) which submitted comments on June 1, 2020. Ninety-seven percent of the commentators expressed concern with the proposed increase in the non-residential numeric value for lead in surface soil in Table 4A. This increase was a result of the proposed amendments to § 250.306(e) which updated the models used to calculate blood lead levels that are applied to the corresponding lead numeric value calculations and updates to the model input parameters in Table 7. Commentators provided various reasons for their concerns, but the main theme of their concerns was that the Department was using outdated science to calculate the soil lead numeric values, specifically the use of a target blood lead level (TBLL) of 10 µg/dL. Many of the commentators recommended changing the TBLL from 10 µg/dL to 5 μg/dL.

While the Department agrees that a TBLL of 5 $\mu g/dL$ represents the most current science regarding lead toxicity, changing the value from 10 $\mu g/dL$ to 5 $\mu g/dL$ in this final-form rulemaking without having presented this change in the proposed rulemaking denies the public the necessary opportunity to provide comment on this change. However, in recognition of the recent scientific research indicating the potential for significant adverse health effects of a blood lead level of 10 $\mu g/dL$, the Board has rescinded the proposed changes to the lead models and the resulting changes in the residential and non-residential direct contact numeric values for lead and plans to recalculate these numeric values using a target

blood lead level of 5 μ g/dL in a separate proposed rulemaking. This recalclation will bring the direct contact numeric values more in line with the current lead toxicity science and with other State and Federal public health agencies. Providing this change in a separate proposed rulemaking will allow for the necessary public comment process required by the Commonwealth Documents Law (45 P.S. §§ 1102—1208).

Other comments regarding the MSC table values were provided to the Department including concerns with increasing numeric values, concerns with decreasing numeric values, potential impacts to plants and wildlife, concerns with the minimum threshold MSCs, potential increases in the cost of cleanups, concerns with the current vanadium soil numeric values and concerns with transparency in the MSC calculation process. The Department's responses to these comments explain the various reasons why MSC values can increase or decrease during rulemakings and how the Department makes a concerted effort to make the MSC calculation process as clear and transparent as possible. Other concerns from commentators are discussed in detail in the Comment and Response Document that accompanies this final-form rulemaking.

Several commentators expressed concerns with the addition of the PFAS numeric values for groundwater and soil. The general consensus was that it will be difficult for remediators to address PFAS contamination when there is so much uncertainty with the current science of these contaminants and a lack of consensus among states and the Federal agencies as to the appropriate accurate cleanup standard or standards. Although the science is still evolving, the Department believes these new MSCs will provide remediators a means of addressing PFOS, PFOA and PFBS groundwater and soil contamination in this Commonwealth. This change benefits the public by reducing exposure to these harmful contaminants. This change also benefits remediators because it provides flexible options for them to navigate through the Act 2 cleanup process.

Detailed responses to all the public comments are provided in the Comment and Response Document that accompanies this final-form rulemaking.

H. Benefits, Costs and Compliance

Benefits

In enacting Act 2, the General Assembly found and declared among its policy goals that "[p]ublic health and environmental hazards cannot be eliminated without clear, predictable environmental remediation standards and a process for developing those standards," that "[a]ny remediation standards adopted by this Commonwealth must provide for the protection of public health and the environment," and that "[c]leanup plans should be based on actual risk that contamination on the site may pose to public health and the environment, taking into account its current and future use and the degree to which contamination can spread offsite and expose the public or the environment to risk." See 35 P.S. § 6026.102 regarding declaration of policy.

To effectuate this, the General Assembly authorized the Board and the Department to develop standards and methods to effectuate those goals. 35 P.S. §§ 6026.104 and 6026.303. The Department's regulatory structure, as authorized under Act 2 and as implemented by Chapter 250, provides those important benefits articulated in the General Assembly's declaration of policy.

The amendments to the MSCs in this final-form rulemaking serve both the public and the regulated community because they provide MSCs based on the most up-to-date health and scientific information for substances that cause cancer or have other toxic effects on human health. The Board first published Chapter 250 regulations in 1997 at 27 Pa.B. 4181 (August 16, 1997). The General Assembly recognized in section 104(a) of Act 2 (35 P.S. § 6026.104(a)), that these standards must be updated over time as better science becomes available and as the need for clarification or enhancement of the program becomes apparent.

Potential contamination of soil and groundwater from accidental spills and unlawful disposal can impact almost any resident of this Commonwealth. Many of the chemical substances addressed in this final-form rulemaking are systemic toxicants or carcinogens as defined under Act 2 and, in some cases, are widespread in use. Examples of substances that contain toxic or carcinogenic properties include gasoline and other petroleum products, solvents, elements used in the manufacture of metals and alloys, pesticides and some dielectric fluids previously contained in transformers and capacitors. Releases of regulated substances not only pose a threat to the environment, but also could affect the health of the general public if inhaled or ingested. New research on many of these substances is ongoing and provides the basis for protection of the residents of this Commonwealth through site cleanup requirements.

Although most of the changes to soil numeric values in this final-form rulemaking decrease the numeric values, 17% of the values have increased. Increases in values reflect updated information related to exposure limitations to the substances and acknowledge that a higher standard is better representative of those substances' exposure threshold.

An additional benefit of this final-form rulemaking is the promulgation of soil and groundwater MSCs for PFOS, PFOA and PFBS. Establishing these MSCs allows remediators to address groundwater and soil contamination and thereby lessen public exposure to the contaminants. This also benefits remediators wishing to remediate contaminated sites, who tend to be owners, operators or purchasers—or their contractors—of properties and facilities including, or at or near, military bases, municipalities and other locations that used or stored firefighting foam. The EPA reports that contamination from these chemicals has also been associated with manufacturing textiles, food packaging, personal care products, and other materials such as cookware that are resistant to water, grease and stains. See Fact Sheet, EPA, PFOA & PFOS Drinking Water Health Advisories (November 2016) (available at https://www.epa.gov/sites/production/ files/2016-06/documents/drinkingwaterhealthadvisories pfoa_pfos_updated_5.31.16.pdf).

Finally, remediators will benefit from the amendments that clarify many of the administrative elements of Act 2, making for a more efficient and streamlined Act 2 remediation process.

The benefits of this final-form rulemaking are difficult to quantify because, unlike other statutory or permitting schemes, Act 2 does not prevent contamination but instead provides remediators with a variety of options to address sites that have already been contaminated. In that sense, this final-form rulemaking, consistent with Act 2, benefits the public because it can lead to more efficient and more expedient remediation and reuse of contaminated areas.

Compliance costs

Financially and economically, the Department believes that any potential impact to the regulated community would be insignificant. Under this final-form rulemaking, the MSC values for many regulated substances are amended for a variety of reasons. The two most common reasons for amendments are Federal agency (including the EPA and United States Department of Health Agency for Toxic Substances and Disease Registry) changes in toxicity values that are used in calculating MSCs and a change in the EPA's underlying assumption of a person's average daily consumption of water from 2 L/day to 2.4 L/day. The soil numeric values represent a decrease for approximately 83% of the values and an increase for 17% of the values. For groundwater, the changes reflect a decrease for approximately 92% of the values and an increase in approximately 8% of the values. Lowering the values may indicate a more stringent cleanup is required at a site and increasing the values may indicate a less stringent cleanup is required at a site. The number of completed remediations vary each year. On average, remediators apply the Act 2 remediation standard to approximately 800 contaminated properties across this Commonwealth. The Department does not expect that these amendments will impact the number of remediations voluntarily completed or the number that must be completed as a result of Department enforcement actions.

The amendments to Statewide health standard MSCs will not affect the cleanup options available to remediators under other cleanup standards. Persons conducting remediation under Act 2 may choose from three different cleanup standards: background, Statewide health or site-specific.

The Department does not expect that this final-form rulemaking, as it relates to new MSCs for PFOA, PFOS and PFBS, will create additional costs. Act 2 does not create liability for, or the obligation to, address contamination for these and other chemicals. Instead, that obligation comes from other environmental statutes, including The Clean Streams Law and the Solid Waste Management Act (35 P.S. §§ 6018.101—6018.1003). Act 2 provides remediators with options to remediate contamination. Having these new MSCs will allow remediators to address PFOS, PFOA and PFBS groundwater and soil contamination. This will benefit the public by lessening their exposure to these contaminants.

Compliance assistance plan

The Land Recycling Program will disseminate information concerning these updates using the Department web site and e-mails to environmental consultants involved in the program.

Paperwork requirements

This final-form rulemaking will not result in any additional forms or reports, beyond those that are already required by Act 2 and Chapter 250.

I. Pollution Prevention

The Federal Pollution Prevention Act of 1990 (42 U.S.C.A. §§ 13101—13109) established a National policy that promotes pollution prevention as the preferred means for achieving state environmental protection goals. The Department encourages pollution prevention, which is the reduction or elimination of pollution at its source, through the substitution of environmentally friendly materials, more efficient use of raw materials and the incorporation of energy efficiency strategies. Pollution prevention practices can provide greater environmental

protection with greater efficiency because they can result in significant cost savings to facilities that permanently achieve or move beyond compliance.

Act 2 encourages cleanup plans that have as a goal, remedies which treat, destroy or remove regulated substances whenever technically and economically feasible. This final-form rulemaking will provide the necessary Statewide health standard MSCs for remediators to remove contamination or eliminate exposure, where appropriate. This final-form rulemaking reflects the most up-to-date science, especially as it relates to the characterization and removal of contamination that exceeds Act 2 MSCs. During the remediation of a contaminated site, potential sources of pollution are often removed to attain the Act 2 standards, eliminating or minimizing the potential for continued migration of the sources of pollution to other areas.

J. Sunset Review

The Board is not establishing a sunset date for this final-form rulemaking because it is needed for the Department to carry out its statutory authority.

K. Regulatory Review

Under section 5(a) of the Regulatory Review Act (71 P.S. § 745.5(a)), on January 27, 2020, the Department submitted a copy of the notice of proposed rulemaking, published at 50 Pa.B. 1011, to IRRC and the Chairpersons of the House and Senate Environmental Resources and Energy Committees for review and comment.

Under section 5(c) of the Regulatory Review Act, IRRC and the Committees were provided with copies of the comments received during the public comment period, as well as other documents when requested. In preparing the final-form rulemaking, the Department has considered all comments from IRRC, the House and Senate Committees and the public.

Under section 5.1(j.2) of the Regulatory Review Act (71 P.S. § 745.5a(j.2)), on September 22, 2021, the final-form rulemaking was deemed approved by the House and Senate Committees. Under section 5.1(e) of the Regulatory Review Act, IRRC met on September 23, 2021, and approved the final-form rulemaking.

L. Findings of the Board

The Board finds that:

- (1) Public notice of the proposed rulemaking was given under sections 201 and 202 of the act of July 31, 1968 (P.L. 769, No. 240) (45 P.S. §§ 1201 and 1202), referred to as the Commonwealth Documents Law, and regulations promulgated thereunder at 1 Pa. Code §§ 7.1 and 7.2 (relating to notice of proposed rulemaking required; and adoption of regulations).
- (2) A public comment period was provided as required by law, and all comments were considered.
- (3) This final-form rulemaking does not enlarge the purpose of the proposed rulemaking published at 50 Pa.B. 1011.
- (4) These regulations are necessary and appropriate for the administration and enforcement of the authorizing acts identified in section C of this order.

M. Order of the Board

The Board, acting under the authorizing statutes, orders that:

(a) The regulations of the Department, 25 Pa. Code Chapter 250, are amended by amending §§ 250.1, 250.4,

 $250.6,\ 250.10,\ 250.304—250.308,\ 250.311,\ 250.402,\ 250.404,\ 250.409,\ 250.410,\ 250.503,\ 250.603,\ 250.605$ and 250.707 and adding §§ 250.12 and 250.412 to read as set forth in Annex A, with ellipses referring to the existing text of the regulations.

- (b) The Chairperson of the Board shall submit this final-form regulation to the Office of General Counsel and the Office of Attorney General for review and approval as to legality and form, as required by law.
- (c) The Chairperson of the Board shall submit this final-form regulation to the IRRC and the Senate and House Environmental Resources and Energy Committees as required by the Regulatory Review Act.
- (d) The Chairperson of the Board shall certify this final-form regulation and deposit it with the Legislative Reference Bureau, as required by law.
- (e) This final-form regulation shall take effect immediately upon publication in the *Pennsylvania Bulletin*.

 $\begin{array}{c} \text{PATRICK McDONNELL,} \\ Chairperson \end{array}$

(*Editor's Note*: See 51 Pa.B. 6494 (October 9, 2021) for IRRC's approval order.)

Fiscal Note: Fiscal note 7-552 remains valid for the final adoption of the subject regulations.

Annex A

TITLE 25. ENVIRONMENTAL PROTECTION PART I. DEPARTMENT OF ENVIRONMENTAL PROTECTION

Subpart D. ENVIRONMENTAL HEALTH AND SAFETY

ARTICLE VI. GENERAL HEALTH AND SAFETY CHAPTER 250. ADMINISTRATION OF LAND RECYCLING PROGRAM

Subchapter A. GENERAL PROVISIONS

§ 250.1. Definitions.

* * * * *

MCL—Maximum contaminant level.

MDL—Method detection limit—The instrument-specific minimum measured concentration of a substance that can be reported with 99% confidence to be distinguishable from the method blank result.

MSC—Medium-specific concentration.

* * * * *

TF—Transfer factor.

Volatile compound—A chemical compound with either a boiling point less than 200° centigrade at 1 atmosphere or a Henry's law constant greater than or equal to 1×10^{-5} atm-m³/mol and a molecular weight less than 200 g/mol, where:

atm = standard atmosphere

 m^3 = cubic meter

mol = mole

g = gram

g/mol = molar mass

§ 250.4. Limits related to PQLs.

(a) The PQLs shall be selected from the PQLs or EQLs specified by the EPA in the most current version of the EPA's drinking water or solid waste analytical methods.

- (b) For regulated substances when PQLs or EQLs set by the EPA exceed an MCL or HAL or have a health risk that is greater (less protective) than the risk levels set in sections 303(c) and 304(b) and (c) of the act (35 P.S. §§ 6026.303(c) and 6026.304(b) and (c)) and for substances when no EQL has been established by the EPA, the PQL shall be established by the methodologies in paragraph (1) or (2).
- (1) A level set by multiplying 3.18 by the published method detection limit (MDL) of the most recently approved EPA methodology.
- (2) A level set by multiplying 3.18 by the instrument-specific MDL. If multiple instruments are used, then the PQL is set by averaging the instrument-specific MDLs and multiplying that value by 3.18.
- (c) For regulated substances which have no limits related to PQLs identified in subsection (b)(1) or (2), a person shall demonstrate attainment under the site-specific standard or the background standard.
- (d) When a minimum threshold MSC is used as a Statewide health standard, the minimum threshold MSC is the Statewide health standard regardless of whether it is higher or lower than a quantitation limit established by this section.
- (e) Nothing in this section restricts the selection of valid and generally accepted methods to be used to analyze samples of environmental media.

§ 250.6. Public participation.

* * * * *

- (c) If a public involvement plan has been initiated, the person proposing remediation shall, at a minimum, include the following three measures in the plan to involve the public in the development and review of the remedial investigation report, risk assessment report, cleanup plan and final report:
- (1) Provide public access at convenient locations for document review.
- (2) Designate a single contact person to address questions from the community.
- (3) Use a location near the remediation site for any public hearings and meetings that may be part of the public involvement plan.
- (d) If a public involvement plan has been requested, the person proposing the remediation shall notify the Department and submit the plan to the municipality and the Department prior to its implementation.

§ 250.10. Measurement of regulated substances in media.

* * * * *

(d) For groundwater where monitoring is being performed at a drinking water well, samples for metals analysis shall be field acidified and unfiltered in accordance with the most current version of Land Recycling Program Technical Guidance Manual, Appendix A: Groundwater Monitoring Guidance, Department of Environmental Protection, document number 261-0300-101, or in accordance with an alternative sampling method that accurately measures regulated substances in groundwater.

* * * * *

§ 250.12. Professional seal.

Reports submitted to satisfy this subchapter containing information or analysis that constitutes professional geologic or engineering work as defined by the Engineer, Land Surveyor and Geologist Registration Law (63 P.S.

§§ 148—158.2) must be sealed by a professional geologist or engineer who is in compliance with that statute.

Subchapter C. STATEWIDE HEALTH STANDARDS § 250.304. MSCs for groundwater.

* * * * *

- (c) The MSCs for regulated substances contained in groundwater in aquifers used or currently planned to be used for drinking water or for agricultural purposes are the MCLs as established by the Department or the EPA in § 109.202 (relating to State MCLs, MRDLs and treatment technique requirements). For regulated substances where no MCL has been established, the MSCs are the Lifetime Health Advisory Levels (HAL) set forth in Drinking Water Standards and Health Advisories (DWSHA), EPA Office of Water Publication No. EPA 822-F-18-001 (March 2018 or as revised), except for substances designated in the DWSHA with cancer descriptor (L) "Likely to be carcinogenic to humans" or (L/N) "Likely to be carcinogenic above a specific dose but not likely to be carcinogenic below that dose because a key event in tumor formation does not occur below that dose." New or revised MCLs or HALs promulgated by the Department or the EPA shall become effective immediately for any demonstration of attainment completed after the date the new or revised MCLs or HALs become effective.
 - (g) The references referred to in subsection (f) are:

*

(1) Lide, D. R., ed. 1996. CRC Handbook of Chemistry and Physics, 77th Edition. CRC Press.

- (18) Riddick, J. A., et al. 1986. Organic Solvents; Physical Properties & Methods of Purification. Techniques of Chemistry. 11th Edition. New York, NY: Wiley-Interscience.
- (19) ATSDR (Agency for Toxic Substances and Disease Registry). 2015. Toxicological Profile for Perfluoroalkyls. Draft for Public Comment. Agency for Toxic Substances and Disease Registry, Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA. Accessed May 2016. http://www.atsdr.cdc.gov/ToxProfiles/tp200.pdf.
- (20) Hekster, F.M., R.W. Laane, and P. de Voogt. 2003. Environmental and toxicity effects of perfluoroalkylated substances. Reviews of Environmental Contamination and Toxicology 179:99—121.
- (21) HSDB (Hazardous Substances Data Bank). 2012. U.S. National Library of Medicine, Bethesda, MD. Accessed May 2016. http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB.
- (22) Kauck, E.A., and A.R. Diesslin. 1951. Some properties of perfluorocarboxylic acids. Industrial & Engineering Chemistry Research 43(10):2332—2334.
- (23) SRC (Syracuse Research Corporation). 2016. PHYSPROP Database. Accessed May 2016. http://www.srcinc.com/what-we-do/environmental/scientific-databases.html.
- (24) OECD (Organisation for Economic Co-operation and Development). 2002. *Hazard Assessment of Perfluor-ooctane Sulfonate (PFOS) and its Salts*. ENV/JM/RD (2002) 17/FINAL. Report of the Environment Directorate, Joint Meeting of the Chemicals Committee and the Working Party on Chemicals, Pesticides and Biotechnology, Co-operation on Existing Chemicals, Paris, November 21, 2002.

§ 250.305. MSCs for soil.

* * * * *

- (c) For the residential standard, the MSC for regulated substances contained in soil is one of the following:
 - (1) The lowest of the following:
- (i) The ingestion numeric value throughout the soil column to a depth of up to 15 feet from the existing ground surface as determined by the methodology in § 250.306 (relating to ingestion numeric values), using the appropriate default residential exposure assumptions contained in § 250.306(d).

* * * * *

(g) A person conducting a remediation of soils contaminated with one or more substances having a secondary MCL, but no toxicological properties listed in Appendix A, Table 5B, will not be required to comply with either the direct contact pathway or the soil-to-groundwater pathway requirements for those substances. The substances shall be subject to the requirements of § 250.311(a) through (f) (relating to evaluation of ecological receptors) with respect to evaluation of ecological receptors.

§ 250.306. Ingestion numeric values.

* * * * *

(d) The default exposure assumptions used to calculate the ingestion numeric values are as follows:

Term		Residential Systemic ¹	Carcinogens ^{2,6}	Nonresidential (Onsite Worker)
THQ	Target Hazard Quotient	1	N/A	1
RfD_o	Oral Reference Dose (mg/kg-day)	Chemical-specific	N/A	Chemical-specific
BW	Body Weight (kg) Soil Groundwater	15 80	N/A	80 80
AT_{nc}	Averaging Time for systemic toxicants (yr) Soil Groundwater	6 30	N/A N/A	25 25
Abs	Absorption (unitless) ³	1	1	1
EF	Exposure Frequency (d/yr) Soil Groundwater	250 350	250 350	180 250
ED	Exposure Duration (yr) Soil Groundwater	6 30	N/A N/A	25 25
IngR	Ingestion Rate Soil (mg/day) GW (L/day)	100 2.4	N/A N/A	50 1.2
CF	Conversion Factor Soil (kg/mg) GW (unitless)	1 × 10 ⁻⁶	1 × 10 ⁻⁶	1 × 10 ⁻⁶
TR	Target Risk	N/A	1 ×10 ⁻⁵	1 × 10 ⁻⁵
CSF _o	Oral Cancer Slope Factor (mg/kg-day)-1	N/A	Chemical-specific	Chemical-specific
AT_c	Averaging Time for carcinogens (yr)	N/A	70	70
IFadj ⁴	Ingestion Factor Soil (mg-yr/kg-day) GW (L-yr/kg day)	N/A	55 1.2	15.6 0.38
AIFadj ⁵	Combined Age-Dependent Adjustment Factor and Ingestion Factor Soil (mg-yr/kg-day) GW (L-yr/kg-day)	N/A	241 3.45	N/A
$\mathrm{CSFo_k}$	TCE oral cancer slope factor for kidney cancer (mg/kg/day)-1		9.3×10^{-3}	
$CSFo_1$	TCE oral cancer slope factor for non-Hodgkin lymphoma and liver cancer (mg/kg/day) ⁻¹		3.7×10^{-2}	

Notes:

 $^{^4}$ The Ingestion Factor for the residential scenario is calculated using the equation If adj = ED_c × IR_c/BW_c + ED_a × IR_a/BW_a, where ED_c = 6 yr, IR_c = 100 mg/day for soils and 1 L/day for groundwater, BW_c = 15 kg, ED_a = 24 yr, IR_a = 50 mg/day for soils and 2.4 L/day for groundwater, and BW_a = 80 kg. The ingestion factor for the nonresidential scenario is calculated using the equation If adj = ED × IR/BW, where ED = 25 yr, IR = 50 mg/day for soils and 1.2 L/day for groundwater, and BW = 80 kg.

 5 The Combined Age-Dependent Adjustment Factor and Ingestion Factor (AIFadj) for the residential scenario is calculated using the equation AIFadj = [(ADAF $_{<2}\times ED_{<2})$ + (ADAF $_{2-6}\times ED_{2-6})] \times IR_c$ / BW_c + [(ADAF $_{>6-16}\times ED_{>6-16}$ + (ADAF $_{>16}\times ED_{>16})] \times IR_a$ / BW_a , where ADAF $_{<2}$ = 10, $ED_{<2}$ = 2 yr, ADAF $_{2-6}$ = 3, ED_{2-6} = 4 yr, IR $_c$ = 100mg/day for soils and 1 L/day for groundwater, BW_c = 15 kg, ADAF $_{>6-16}$ = 3, $ED_{>6-16}$ = 10 yr, ADAF $_{>16}$ = 1, $ED_{>16}$ = 14 yr, IR $_a$ = 50 mg/day for soils and 2.4 L/day for groundwater, and BW_a = 80 kg.

* * * * *

(e) The residential ingestion numeric value for lead in soil was developed using the Uptake Biokinetic (UBK) Model for Lead (version 0.4) developed by the EPA (U.S. Environmental Protection Agency. (1990) Uptake Biokinetic (UBK) Model for Lead (version 0.4). U.S. EPA/ECAO. August 1990, in lieu of the algorithms presented in subsections (a) and (b). Default input values are identified in Appendix A, Table 7. Because the UBK model is applicable only to children, the nonresidential ingestion numeric value was calculated according to the method developed by the Society for Environmental Geochemistry and Health (Wixson, B. G. (1991)). The Society for Environmental Geochemistry and Health (SEGH) Task Force Approach to the Assessment of Lead in Soil. Trace Substances in Environmental Health. (11-20), using the following equations:

$$S = 1000 \left[\left(\begin{array}{c} T \\ \hline G^n \end{array} \right) - B \right]$$

Table 7 identifies each of the variables in this equation.

§ 250.307. Inhalation numeric values.

* * * * *

- (g) For a regulated substance which is a carcinogen and is a volatile compound, the numeric value for the inhalation of volatiles from groundwater shall be calculated by using the appropriate residential or nonresidential exposure assumptions from subsection (h) according to the following equations:
- (1) For regulated substances not identified as a mutagen in § 250.301(b):

$$\mathrm{MSC} = \ \frac{\mathrm{TR} \times \mathrm{AT_c} \times 365 \ \mathrm{days/year} \times 24 \ \mathrm{hr/day}}{\mathrm{IUR} \times \mathrm{ET} \times \mathrm{EF} \times \mathrm{ED} \times \mathrm{TF} \times \mathrm{CF}}$$

§ 250.308. Soil to groundwater pathway numeric values.

- (a) A person may use the soil-to-groundwater pathway numeric values listed in Appendix A, Tables 3B and 4B, as developed using the methods contained in paragraph (1), (2) or (4), may use a concentration in soil at the site which does not produce a leachate in excess of the MSC for groundwater contained in Appendix A, Tables 1 and 2, when subjected to the Synthetic Precipitation Leaching Procedure (Method 1312 of SW-846, Test Methods for Evaluating Solid Waste, promulgated by the U.S. EPA), or may use the soil-to-groundwater pathway soil buffer criteria in subsection (b) or may use the soil-to-groundwater pathway equivalency demonstration in subsection (d).
- (1) A value which is 100 times the applicable MSC for groundwater identified in § 250.304(c) or (d) (relating to MSCs for groundwater), expressed as milligrams per kilogram of soil.
- (2) For organic compounds, a generic value determined not to produce a concentration in groundwater in the aquifer in excess of the MSC for groundwater as calculated by the equation in paragraph (3).

- (i) For soil not in the zone of groundwater saturation, the generic value shall be calculated by the equation in paragraph (3).
- (ii) For soil in the zone of groundwater saturation, the generic numeric value is 1/10th of the generic value calculated by the equation in paragraph (3).

* * * * *

\$ 250.311. Evaluation of ecological receptors. * * * * * * *

(b) For purposes of determining impacts on ecological receptors, no additional evaluation is required if the remediation attains a level equal to 1/10th of the value in Appendix A, Tables 3 and 4 or, for substances identified in § 250.305(g), 1/10th of the physical limitation identified in § 250.305(b), except for constituents of potential ecological concern identified in Table 8, or if the criteria in paragraph (1), (2) or (3) are met. Information that

* * * * *

required shall be documented in the final report.

supports a determination that no additional evaluation is

Subchapter D. SITE-SPECIFIC STANDARD § 250.402. Human health and environmental protection goals.

* * * * *

- (d) If a person is using the site-specific standard to protect ecological receptors under this subchapter or as a result of selecting § 250.311(e)(4) when ecological receptors cannot be evaluated under the Statewide health standard, the following shall be performed:
- * * * * * * include mitigation measures under § 250.311(f), that is protective of the ecological receptors.

§ 250.404. Pathway identification and elimination.

(a) The person shall use Department or Department-approved EPA or ASTM guidance to identify any potential current and future exposure pathways for both human receptors and environmental receptors identified in § 250.402 (relating to human health and environmental protection goals).

§ 250.409. Risk assessment report.

The risk assessment report shall conform to this subchapter and Subchapter F (relating to exposure and risk determinations), and shall include the following unless not required under § 250.405 (relating to when to perform a risk assessment):

(1) Except when submitted in combination with a remedial investigation report, a risk assessment report that uses site characterization information from an approved remedial investigation report to describe the potential adverse effects, including the evaluation of ecological receptors, under both current and planned future conditions caused by the presence of regulated substances in the absence of any further control, remediation or mitigation measures.

§ 250.410. Cleanup plan.

* * * * *

- (c) When a person proposes a remedy that relies on access to properties owned by third parties, for remediation or monitoring, documentation of cooperation or agreement shall be submitted as part of the cleanup plan.
- (d) A cleanup plan is required when an institutional or engineering control is used as a remedy to address current and future exposure pathways or exposure pathways that existed prior to submitting an NIR.
- (e) A cleanup plan is not required and no remedy is required to be proposed or completed if no current or future exposure pathways exist.

§ 250.412. Combined reports.

A person does not need prior Department approval of a remedial investigation report if the remedial investigation report is submitted together with either a risk assessment report or a cleanup plan.

Subchapter E. SIA STANDARDS

§ 250.503. Remediation requirements.

* * * * *

(e) A person that changes the use of the property from nonresidential to residential, or changes the use of the property to create substantial changes in exposure conditions to contamination that existed prior to the person's reuse shall notify the Department of the changes and may be required to amend the baseline environmental report and implement a remediation plan to address any new imminent, direct or immediate threats to human health and the environment resulting from the changes.

Subchapter F. EXPOSURE AND RISK DETERMINATIONS

§ 250.603. Exposure factors for site-specific standards.

(a) A risk assessment for the site-specific standard shall use site-specific exposure factors under the EPA's *Exposure Factors Handbook: 2011 Edition*, 2011 (EPA/600/R-090/052F) or exposure factors used in the development of the Statewide health standards identified in Subchapter C (relating to Statewide health standards).

* * * * *

§ 250.605. Sources of toxicity information.

- (a) For site-specific standards, the person shall use appropriate reference doses, reference concentrations, cancer slope factors and unit risk factors identified in Subchapter C (relating to Statewide health standards), unless the person can demonstrate that published data, available from one of the following sources, provides more current reference doses, reference concentrations, cancer slope factors or unit risk factors:
 - (1) Integrated Risk Information System (IRIS).
- (2) United States Environmental Protection Agency, National Center for Environmental Assessment (NCEA) Provisional Peer-Reviewed Toxicity Values (PPRTV).
 - (3) Other sources:
- (i) Health Effects Assessment Summary Tables (HEAST).
- (ii) Agency for Toxic Substances and Disease Registry (ATSDR) Toxicological Profiles.

- (iii) California EPA, California Cancer Potency Factors and Chronic Reference Exposure Levels.
- (iv) EPA criteria documents, including drinking water criteria documents, drinking water health advisory summaries, ambient water quality criteria documents and air quality criteria documents.
- (v) EPA Human Health Benchmarks for Pesticides (HHBP).
 - (vi) EPA PPRTV Appendix.
- (b) If no toxicity values are available from sources identified in subsection (a), the person may use the background standard or meet one of the following:
- (1) Develop for the Department's review in the risk assessment report one of the following:
- (i) Chemical-specific toxicity values in accordance with the methods in the most current EPA guidelines or protocols, approved by the Department, using corroborated peer-reviewed data published in a scientific journal, if they exist.
- (ii) Toxicity values developed from appropriately justified surrogates.
- (2) Use the minimum threshold medium-specific concentration, as the site-specific standard, with an assumed risk of 1 x 10^{-5} for purposes of calculating cumulative risk for the regulated substances identified in Appendix A, Table 6.

Subchapter G. DEMONSTRATION OF ATTAINMENT

§ 250.707. Statistical tests.

- (b) The following statistical tests may be accepted by the Department to demonstrate attainment of the Statewide health standard. The statistical test for soil shall apply to each distinct area of contamination. The statistical test for groundwater will apply to each compliance monitoring well. Testing shall be performed individually for each regulated substance identified in the final report site investigation as being present at the site for which a person wants relief from liability under the act. The application of a statistical method must meet the criteria in subsection (d).
- (1) For soil attainment determination at each distinct area of contamination, subparagraph (i), (ii) or (iii) shall be met in addition to the attainment requirements in §§ 250.702 and 250.703 (relating to attainment requirements; and general attainment requirements for soil).
- (i) Seventy-five percent of all samples, which shall be randomly collected in a single event from the site, shall be equal to or less than the Statewide health standard or the limit related to PQLs with no individual sample exceeding ten times the Statewide health standard.
- (ii) As applied in accordance with EPA approved methods on statistical analysis of environmental data, as identified in subsection (e), the 95% UCL of the arithmetic mean shall be at or below the MSC.
- (iii) For sites with a petroleum release where full site characterization, as defined in § 250.204(b) (relating to final report), has not been done in association with an excavation remediation, attainment of the Statewide health standard shall be demonstrated using the following procedure:
- (A) For sites regulated under Chapter 245 (relating to administration of the storage tank and spill prevention program) where there is localized contamination as de-

fined in the document "Closure Requirements for Underground Storage Tank Systems" (DEP technical document 2530-BK-DEP2008), samples shall be taken in accordance with that document.

- (B) For sites not covered by clause (A), including all sites being remediated under an NIR under this chapter, samples shall be taken from the bottom and sidewalls of the excavation in a biased fashion that concentrates on areas where any remaining contamination above the Statewide health standard would most likely be found. The samples shall be taken from these suspect areas based on visual observation and the use of field instruments. If a sufficient number of samples has been collected from all suspect locations and the minimum number of samples has not been collected, or if there are no suspect areas, the locations to meet the minimum number of samples shall be based on a random procedure. The number of sample points required shall be determined in the following way:
- (I) For 250 cubic yards or less of excavated contaminated soil, five samples shall be collected.
- (II) For each additional 100 cubic yards of excavated contaminated soil, one sample shall be collected.
- (III) For excavations involving more than 1,000 cubic yards of contaminated soil, the remediator shall identify the number and locations of samples in a confirmatory sampling plan submitted to the Department. The remediator shall obtain the Department's approval of the confirmatory sampling plan prior to conducting attainment sampling.
- (IV) Where water is encountered in the excavation and no obvious contamination is observed or indicated, soil samples collected just above the soil/water interface shall be equal to or less than the applicable Statewide health

- MSC determined by § 250.308(a)(2)(ii) (relating to soil to groundwater pathway numeric values).
- (V) Where water is encountered in the excavation and no obvious contamination is observed or indicated, a minimum of two samples shall be collected from the water surface in the excavation.
- (VI) For sites where there is a release to surface soils resulting in excavation of 50 cubic yards or less of contaminated soil, samples shall be collected as described in this clause, except that two samples shall be collected.
- (C) All sample results shall be equal to or less than the applicable Statewide health MSC as determined using Tables 1—4 and 6 in Appendix A.
- (D) A vapor intrusion analysis is not necessary if the requirements of $\S 250.707(b)(1)(iii)$ are met in addition to the following:
- (I) At least one soil sample is collected on the sidewall nearest an inhabited building within the appropriate proximity distance to a potential vapor intrusion source and there are not substantially higher field instrument readings elsewhere.
- (II) Observations of obvious contamination and the use of appropriate field screening instruments verify that contamination has not contacted or penetrated the foundation of an inhabited building.
- (III) Groundwater contamination has not been identified as a potential vapor intrusion concern.
- (2) For groundwater attainment determination at each compliance monitoring well, subparagraph (i) or (ii) shall be met in addition to the attainment requirements in § 250.702 and § 250.704 (relating to general attainment requirements for groundwater).

Table 1—Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater Appendix A

			Used	Used Aquifers			
Regulated Substance	CASRN	7DS ≤ 2	2500 mg/L	7DS > 2	TDS > 2500 mg/L	Nonuse Aquiters	quiters
		α	NR	В	NR	R	NR
ACENAPHTHENE	83-32-9	2,100 G	3,800 S	3,800 S	3,800 S	3,800 S	3,800 S
ACENAPHTHYLENE	208-96-8	2,100 G	5,800 G	16,000 S	16,000 S	16,000 S	16,000 S
ACEPHATE	30560-19-1	42 G	120 G	4,200 G	12,000 G	42 G	120 G
ACETALDEHYDE	75-07-0	19 N	N 62	N 006,1	N 006'2	19 N	N 62
ACETONE	67-64-1	31,000 G	88,000 G	3,100,000 G	8,800,000 G	310,000 G	880,000 G
ACETONITRILE	75-05-8	130 N	230 N	13,000 N	53,000 N	1,300 N	5,300 N
ACETOPHENONE	98-86-2	3,500 G	9,700 G	350,000 G	970,000 G	3,500 G	9,700 G
ACETYLAMINOFLUORENE, 2- (2AAF)	53-96-3	0.17 G	0.72 G	17 G	72 G	170 G	720 G
ACROLEIN	107-02-8	0.042 N	0.18 N	4.2 N	18 N	0.42 N	1.8 N
ACRYLAMIDE	79-06-1	0.19 N	2.5 N	N 61	250 N	0.19 N	2.5 N
ACRYLIC ACID	79-10-7	2.1 N	8.8 N	210 N	N 088	210 N	N 088
ACRYLONITRILE	107-13-1	0.72 N	3.7 N	72 N	370 N	72 N	370 N
ALACHLOR	15972-60-8	2 M	2 M	M 200	M 200	2 M	2 M
ALDICARB	116-06-3	3 M	ω 8	300 M	300 M	3,000 M	3,000 M
ALDICARB SULFONE	1646-88-4	2 M	2 M	M 002	X00 M	2 M	2 M
ALDICARB SULFOXIDE	1646-87-3	4 M	4 M	M 004	400 M	4 M	4 M
ALDRIN	309-00-2	0.038 G	0.16 G	3.8 G	16 G	20 S	20 S
ALLYL ALCOHOL	107-18-6	0.21 N	0.88 N	21 N	N 88	21 N	88 N
AMETRYN	834-12-8	H 09	H 09	H 000'9	Н 000'9	H 09	H 09
AMINOBIPHENYL, 4-	92-67-1	0.031 G	0.13 G	3.1 G	13 G	31 G	130 G
AMITROLE	61-82-5	9 69 ⁰	2.9 G	5 69	290 G	5 069	2,900 G
AMMONIA	7664-41-7	30,000 H	30,000 H	3,000,000 H	3,000,000 H	30,000 H	30,000 H
AMMONIUM SULFAMATE	7773-06-0	2,000 H	2,000 H	200,000 H	200,000 H	2,000 H	2,000 H
ANILINE	62-53-3	2.1 N	8.8 N	210 N	N 088	2.1 N	8.8 N
ANTHRACENE	120-12-7	S 99	S 99	S 99	S 99	S 99	S 99
ATRAZINE	1912-24-9	3 M	3 M	M 008	300 M	3 M	3 M
AZINPHOS-METHYL (GUTHION)	86-50-0	52 G	150 G	5,200 G	15,000 G	52 G	150 G
BAYGON (PROPOXUR)	114-26-1	3 H	3 H	H 008	300 H	3,000 H	3,000 H
BENOMYL	17804-35-2	270 G	1,100 G	2,000 S	2,000 S	270 G	1,100 G
BENTAZON	25057-89-0	200 H	200 H	20,000 H	20,000 H	200 H	200 H
BENZENE	71-43-2	2 M	2 M	500 M	200 M	200 M	200 M
BENZIDINE	92-87-2	0.00092 G	0.012 G	0.092 G	1.2 G	0.92 G	12 G

N = Inhalation S = Aqueous solubility cap All concentrations in µg/L
R = Residential
R = Residential
N = Inhalation
H = Lifetime health advisory level
S = Aqueous so
NR = Non-Residential
G = Ingestion
THMs—The values listed for trihalomethanes (THMs) are the total for all THMs combined.
HAAs—The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.
PFOA and PFOS values listed are for individual or total combined.

Table 1—Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater Appendix A

			Post	Used Aquifers			
Regulated Substance	CASRN	Z ≥ SQT	2500 mg/L	1	TDS > 2500 mg/L	Nonuse Aquifers	Aquifers
	•	~	NR	R	NR	R	NR
BENZO[A]ANTHRACENE	56-55-3	0.3 G	3.9 G	11 S	11 S	11 S	11 S
BENZO[A]PYRENE	50-32-8	0.2 M	0.2 M	3.8 S	3.8 S	3.8 S	3.8 S
BENZO[B]FLUORANTHENE	205-99-2	0.18 G	1.2 S	1.2 S	1.2 S	1.2 S	1.2 S
BENZO[GHI]PERYLENE	191-24-2	0.26 S	0.26 S	0.26 S	0.26 S	0.26 S	0.26 S
BENZO[K]FLUORANTHENE	207-08-9	0.18 G	0.55 S	0.55 S	0.55 S	0.55 S	0.55 S
BENZOIC ACID	65-85-0	140,000 G	390,000 G	2,700,000 S	2,700,000 S	140,000 G	390,000 G
BENZOTRICHLORIDE	7-20-86	0.05 G	0.21 G	5 G	21 G	5 G	21 G
BENZYL ALCOHOL	100-51-6	3,500 G	9,700 G	350,000 G	970,000 G	3,500 G	9,700 G
BENZYL CHLORIDE	100-44-7	Z	5.1 N	100 N	510 N	100 N	510 N
BETA PROPIOLACTONE	57-57-8	0.012 N	0.063 N	1.2 N	6.3 N	0.12 N	0.63 N
BHC, ALPHA-	319-84-6	0.1 G	0.43 G	10 G	43 G	100 G	430 G
BHC, BETA-	319-85-7	0.36 G	1.5 G	98 9	100 S	100 S	100 S
BHC, GAMMA (LINDANE)	58-89-9	0.2 M	0.2 M	20 M	20 M	200 M	200 M
BIPHENYL, 1,1-	92-52-4	0.84 N	3.5 N	84 N	350 N	84 N	350 N
BIS(2-CHLOROETHOXY)METHANE	111-91-1	100 G	290 G	10,000 G	29,000 G	100 G	290 G
BIS(2-CHLOROETHYL)ETHER	111-44-4	0.15 N	0.76 N	15 N	N 9/	15 N	N 92
BIS(2-CHLORO-ISOPROPYL)ETHER	108-60-1	300 H	300 H	30,000 H	H 000'08	30,000 H	30,000 H
BIS(CHLOROMETHYL)ETHER	542-88-1	N 62000.0	0.004 N	N 620'0		N 620.0	0.4 N
BIS[2-ETHYLHEXYL] PHTHALATE	117-81-7	W 9	W 9	S 06Z	S 06Z	290 S	290 S
BISPHENOL A	80-05-7	1,700 G	4,900 G	120,000 S	120,000 S	120,000 S	120,000 S
BROMACIL	314-40-9	H 0/	H 02	H 000'2	H 000'2	H 0/	70 H
BROMOBENZENE	108-86-1	H 90.0	H 90.0	H 9	H 9	H 90.0	H 90.0
BROMOCHLOROMETHANE	74-97-5	H 06	H 06	H 000'6	H 000'6	H 06	H 06
BROMODICHLOROMETHANE (THM)	75-27-4	80 M	W 08	8,000 M	8,000 M	80 M	80 M
BROMOMETHANE	74-83-9	10 H	10 H	1,000 H	1,000 H	1,000 H	1,000 H
BROMOXYNIL	1689-84-5	6.3 G	26 G	5 089	2,600 G	6.3 G	26 G
BROMOXYNIL OCTANOATE	1689-99-2	6.3 G	26 G	S 08	S 08	S 08	80 S
BUTADIENE, 1,3-	106-99-0	1.1 G	4.5 G	110 G	450 G	110 G	450 G
BUTYL ALCOHOL, N-	71-36-3	3,500 G	9,700 G	350,000 G	9 000'026	35,000 G	97,000 G
BUTYLATE	2008-41-5	400 H	400 H		40,000 H	400 H	400 H
BUTYLBENZENE, N-	104-51-8	1,700 G	4,900 G			1,700 G	4,900 G
BUTYLBENZENE, SEC-	135-98-8	3,500 G	9,700 G	17,000 S	17,000 S	3,500 G	9,700 G

Table 1—Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater Appendix A

			/ pas/)	Used Aquifers			
Regulated Substance	CASRN	7DS ≤ 2	2500 mg/L	1	TDS > 2500 mg/L	Nonuse Aquifers	Aquifers
		٣	NR	æ	NR	R	NR
BUTYLBENZENE, TERT-	9-90-86	3,500 G	9,700 G	30,000 S	30,000	3,500 G	9,700 G
BUTYLBENZYL PHTHALATE	85-68-7	340 G	1,400 G	2,700 S	2,700 S	2,700 S	2,700 S
CAPTAN	133-06-2	280 G	S 009	S 009	200 S	200 S	200 S
CARBARYL	63-25-2	3,500 G	9,700 G	120,000 S	120,000 S	120,000 S	120,000 S
CARBAZOLE	86-74-8	33 G	140 G	1,200 S	1,200 S	33 G	140 G
CARBOFURAN	1563-66-2	40 M	40 M	4,000 M	4,000 M	40 M	40 M
CARBON DISULFIDE	75-15-0	1,500 N	6,200 N	150,000 N	620,000 N	1,500 N	6,200 N
CARBON TETRACHLORIDE	56-23-5	5 M	2 M	200 M	200 M	20 M	20 M
CARBOXIN	5234-68-4	H 002	H 002	70,000 H	70,000 H	H 002	H 002
CHLORAMBEN	133-90-4	100 H	100 H	10,000 H	10,000 H	100 H	100 H
CHLORDANE	57-74-9	2 M	2 M	S 99	S 99	S 99	S 99
CHLORO-1,1-DIFLUOROETHANE, 1-	75-68-3	110,000 N	440,000 N	1,400,000 S	1,400,000 S	110,000 N	440,000 N
CHLORO-1-PROPENE, 3- (ALLYL CHLORIDE)	107-05-1	2.1 N	8.8 N	210 N	N 088	210 N	N 088
CHLOROACETALDEHYDE	107-20-0	2.4 G	10 G	240 G	1,000 G	2.4 G	10 G
CHLOROANILINE, P-	106-47-8	3.3 G	14 G	9 088	1,400 G	3.3 G	14 G
CHLOROBENZENE	108-90-7	100 M	100 M	10,000 M	10,000 M	10,000 M	10,000 M
CHLOROBENZILATE	510-15-6	5.9 G	25 G	S 069	2,500 G	5'006'5	13,000 S
CHLOROBUTANE, 1-	109-69-3	1,400 G	3,900 G	140,000 G	390,000 G	1,400 G	3,900 G
CHLORODIBROMOMETHANE (THM)	124-48-1	80 M	80 M	8,000 M		8,000 M	8,000 M
CHLORODIFLUOROMETHANE	75-45-6	110,000 N	440,000 N	2,900,000 S	2,900,000 S	110,000 N	440,000 N
CHLOROETHANE	75-00-3	21,000 N	88,000 N	2,100,000 N	5,700,000 S	2,100,000 N	5,700,000 S
CHLOROFORM (THM)	67-66-3	80 M	80 M	M 000'8	8,000 M	M 008	800 M
CHLORONAPHTHALENE, 2-	91-58-7	2,800 G	7,800 G	12,000 S	12,000 S	2,800 G	7,800 G
CHLORONITROBENZENE, P-	100-00-5	4.2 N	18 N	420 N	1,800 N	4.2 N	18 N
CHLOROPHENOL, 2-	8-22-26	40 H	40 H	4,000 H	4,000 H	40 H	40 H
CHLOROPRENE	126-99-8	0.16 N	N 83 N	N 91	83 N	N 91	N 83 N
CHLOROPROPANE, 2-	75-29-6	210 N	N 088	21,000 N	88,000 N	210 N	N 088
CHLOROTHALONIL	1897-45-6	38 G	160 G	S 009	S 009	38 G	160 G
CHLOROTOLUENE, O-	92-49-8	100 H	100 H	10,000 H	10,000 H	100 H	100 H
CHLOROTOLUENE, P-	106-43-4	100 H	100 H	10,000 H	10,000 H	100 H	100 H
CHLORPYRIFOS	2921-88-2		2 H				2 H
CHLORSULFURON	64902-72-3	5 069	1,900 G	S 000'69	190,000 G	5 069	1,900 G

Table 1—Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater Appendix A

			Used	Used Aquifers			
Regulated Substance	CASRN	TDS < 2	2500 mg/L	TDS > 2	TDS > 2500 mg/L	Nonuse Aquiters	Iquifers
		æ	NR	R	NR	R	NR
CHLORTHAL-DIMETHYL (DACTHAL) (DCPA)	1861-32-1	H 0/	H 0/	S 009	S 009	S 009	S 009
CHRYSENE	218-01-9	1.8 G	1.9 S	1.9 S	1.9 S	1.9 S	1.9 S
CRESOL(S)	1319-77-3	1,300 N	5,300 N	130,000 N	530,000 N	130,000 N	530,000 N
CRESOL, DINITRO-O-,4,6-	534-52-1	2.8 G	7.8 G	280 G	780 G	280 G	780 G
CRESOL, O- (METHYLPHENOL, 2-)	95-48-7	1,700 G	4,900 G	170,000 G	490,000 G	170,000 G	490,000 G
CRESOL, M (METHYLPHENOL, 3-)	108-39-4	1,700 G	4,900 G	170,000 G	490,000 G	1,700,000 G	2,500,000 S
CRESOL, P (METHYLPHENOL, 4-)	106-44-5	170 G	490 G	17,000 G	49,000 G	170,000 G	490,000 G
CRESOL, P-CHLORO-M-	29-20-7	3,500 G	9,700 G	350,000 G	970,000 G	3,500 G	9,700 G
CROTONALDEHYDE	4170-30-3	0.34 G	1.4 G	34 G	140 G	34 G	140 G
CROTONALDEHYDE, TRANS-	123-73-9	0.34 G	1.4 G	34 G	140 G	34 G	140 G
CUMENE (ISOPROPYL BENZENE)	98-82-8	840 N	3,500 N	S 000'09	S 000'03	S 000'03	S 000'09
CYANAZINE	21725-46-2	1 H	1 H	100 H	100 H	1 H	1 H
CYCLOHEXANE	110-82-7	13,000 N	53,000 N	S 000'55	22,000 S	13,000 N	53,000 N
CYCLOHEXANONE	108-94-1	1,500 N	6,200 N	150,000 N	620,000 N	1,500 N	6,200 N
CYFLUTHRIN	68359-37-5	1 S	1 S	1 S	1 S	1 S	1 S
CYROMAZINE	66215-27-8	17,000 G	49,000 G	1,700,000 G	4,900,000 G	17,000 G	49,000 G
DDD, 4,4'-	72-54-8	2.7 G	11 G	160 S	160 S	160 S	160 S
DDE, 4,4'-	72-55-9	1.9 G	8 G	40 S	40 S	40 S	40 S
DDT, 4,4'-	50-29-3	1.9 G	5.5 S	5.5 S	5.5 S	5.5 S	5.5 S
DI(2-ETHYLHEXYL)ADIPATE	103-23-1	400 M	400 M	40,000 M	40,000 M	200,000 S	200,000
DIALLATE	2303-16-4	11 G	45 G	1,100 G	4,500 G	11,000 G	40,000 S
DIAMINOTOLUENE, 2,4-	95-80-7	0.16 G	0.68 G	16 G	68 G	160 G	9 089 C
DIAZINON	333-41-5	1 H	1 H	100 H	100 H	1 H	1 H
DIBENZO[A, H]ANTHRACENE	53-70-3	0.052 G	0.6 S	0.6 S	S 9:0	S 9:0	S 9.0
DIBENZOFURAN	132-64-9	35 G	97 G	3,500 G	4,500 S	3,500 G	4,500 S
DIBROMO-3-CHLOROPROPANE, 1,2-	96-12-8	0.2 M	0.2 M	20 M	20 M	20 M	20 M
DIBROMOBENZENE, 1,4-	106-37-6	320 G	970 G	20,000 S	20,000 S	320 G	9 0 C
DIBROMOETHANE, 1,2- (ETHYLENE DIBROMIDE)	106-93-4	0.05 M	0.05 M	5 M	2 M	5 M	5 M
DIBROMOMETHANE	74-95-3	8.4 N	35 N	840 N	3,500 N	840 N	3,500 N
DIBUTYL PHTHALATE, N-	84-74-2	3,500 G	9,700 G	350,000 G	400,000 S	400,000 S	400,000 S
DICAMBA	1918-00-9	4,000 H	4,000 H	400,000 H	400,000 H	4,000 H	4,000 H
DICHLOROACETIC ACID (HAA)	79-43-6	09 W	09 W	6,000 M	6,000 M	09 W	W 09

Table 1—Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater Appendix A

			Used /	Used Aquifers		:	
Regulated Substance	CASRN	TDS ≤ 2,	2500 mg/L	TDS > 2500 mg/L	500 mg/L	Nonuse Aquiters	Aquiters
		~	NR	R	NR	R	NR
DICHLORO-2-BUTENE, 1,4-	764-41-0	0.012 N	N 90.0	1.2 N	N 9	0.012 N	N 90.0
DICHLORO-2-BUTENE, TRANS-1,4-	110-57-6	0.012 N	N 90.0	1.2 N	N 9	0.012 N	0.06 N
DICHLOROBENZENE, 1,2-	95-50-1	W 009	W 009	60,000 M	60,000 M	60,000 M	60,000 M
DICHLOROBENZENE, 1,3-	541-73-1	H 009	H 009	H 000'09	H 000'09	H 000'09	H 000'09
DICHLOROBENZENE, P-	106-46-7	75 M	75 M	7,500 M	7,500 M	7,500 M	7,500 M
DICHLOROBENZIDINE, 3,3'-	91-94-1	1.4 G	9 9	140 G	9 009 C	1,400 G	3,100 S
DICHLORODIFLUOROMETHANE (FREON 12)	75-71-8	1,000 H	1,000 H	100,000 H	100,000 H	100,000 H	100,000 H
DICHLOROETHANE, 1,1-	75-34-3	31 N	160 N	3,100 N	16,000 N	310 N	1,600 N
DICHLOROETHANE, 1,2-	107-06-2	2 M	5 M	200 M	200 M	20 M	50 M
DICHLOROETHYLENE, 1,1-	75-35-4	M 2	M 2	M 002	M 007	M 02	70 M
DICHLOROETHYLENE, CIS-1,2-	156-59-2	M 02	M 02	7,000 M	7,000 M	M 002	700 M
DICHLOROETHYLENE, TRANS-1,2-	156-60-5	100 M	100 M	10,000 M	10,000 M	1,000 M	1,000 M
DICHLOROMETHANE (METHYLENE CHLORIDE)	75-09-2	2 M	2 M	200 M	200 M	200 M	200 M
DICHLOROPHENOL, 2,4-	120-83-2	20 H	20 H	2,000 H	2,000 H	20,000 H	20,000 H
DICHLOROPHENOXYACETIC ACID, 2,4- (2,4-D)	94-75-7	M 02	70 M	7,000 M	7,000 M	70,000 M	70,000 M
DICHLOROPROPANE, 1,2-	78-87-5	2 M	2 M	200 M	200 M	20 M	50 M
DICHLOROPROPENE, 1,3-	542-75-6	6.5 G	27 G	9 0 2 9	2,700 G	9 0 <u>2</u> 9	2,700 G
DICHLOROPROPIONIC ACID, 2,2- (DALAPON)	0-66-92	200 M	200 M	20,000 M	20,000 M	20,000 M	20,000 M
DICHLORVOS	62-73-7	2.2 G	9.4 G	220 G	940 G	2.2 G	9.4 G
DICYCLOPENTADIENE	77-73-6	0.63 N	2.6 N	83 N	260 N	N E9.0	2.6 N
DIELDRIN	60-57-1	0.041 G	0.17 G	4.1 G	17 G	41 G	170 <u>S</u>
DIETHYL PHTHALATE	84-66-2	28,000 G	78,000 G	1,100,000 S	1,100,000 S	1,100,000 S	1,100,000 S
DIFLUBENZURON	35367-38-5	200 S	200 S	200 S	200 S		200 S
DIISOPROPYL METHYLPHOSPHONATE	1445-75-6	Н 009	H 009	Н 000'09	00°09	Н 009	Н 009
DIMETHOATE	60-51-5	5 9 <i>L</i>	210 G	5 009'L	21,000 G	76,000 G	210,000 G
DIMETHOXYBENZIDINE, 3,3-	119-90-4	0.41 G	1.7 G	41 G	170 G	410 G	1,700 G
DIMETHRIN	70-38-2	36 S	S 98	36 S	36 S	S 98	36 S
DIMETHYLAMINOAZOBENZENE, P-	60-11-7	0.14 G	0.59 G	14 G	29 G	140 G	590 G
DIMETHYLANILINE, N,N-	121-69-7	24 G	100 G	2,400 G	10,000 G	2,400 G	10,000 G
DIMETHYLBENZIDINE, 3,3-	119-93-7	0.059 G	0.25 G	5.9 G	25 G	59 G	250 G
DIMETHYL METHYLPHOSPHONATE	756-79-6	100 H	100 H	10,000 H	10,000 H	100 H	100 H
DIMETHYLPHENOL, 2,4-	105-67-9	S 069	1,900 G	69,000 G	190,000 G	e90,000 G	1,900,000 G

Table 1—Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater Appendix A

			, pasn	Used Aquifers			
Regulated Substance	CASRN	TDS ≤ 2	2500 mg/L	ľ	TDS > 2500 mg/L	Nonuse Aquiters	Aquiters
		R	NR	R	NR	R	NR
DINITROBENZENE, 1,3-	0-99-66	1 H	- Н	100 H	100 H	1,000 H	1,000 H
DINITROPHENOL, 2,4-	51-28-5	5 69	190 G	6,900 G	19,000 G	9 000'69	190,000 G
DINITROTOLUENE, 2,4-	121-14-2	2.1 G	8.8 G	210 G	9 088 C	2,100 G	8,800 G
DINITROTOLUENE, 2,6- (2,6-DNT)	606-20-2	0.43 G	1.8 G	43 G	180 G	430 G	1,800 G
DINOSEB	88-85-7	M 2	M 2	700 M	M 007	7,000 M	7,000 M
DIOXANE, 1,4-	123-91-1	6.5 G	27 G	9 050 G	2,700 G	65 G	270 G
DIPHENAMID	957-51-7	200 H	200 H	20,000 H	20,000 H	200 H	200 H
DIPHENYLAMINE	122-39-4	3,500 G	9,700 G	300,000	300,000	300,000	300,000
DIPHENYLHYDRAZINE, 1,2-	122-66-7	0.22 N	L.1 N	22 N	110 N	22 N	110 N
DIQUAT	85-00-7	20 M	20 M	2,000 M	2,000 M	20 M	20 M
DISULFOTON	298-04-4	0.7 H	0.7 H	H 02	H 02	H 002	700 H
DITHIANE, 1,4-	505-29-3	H 08	H 08	8,000 H	8,000 H	H 08	80 H
DIURON	330-54-1	5 69	190 G	9 006'9	19,000 G	5 69	190 G
ENDOSULFAN	115-29-7	210 G	480 S	480 S	480 S	480 S	480 S
ENDOSULFAN I (APLHA)	8-86-656	210 G	S 009	S 009	S 009	210 G	S 009
ENDOSULFAN II (BETA)	33213-65-9	210 G	450 S	450 S	450 S	210 G	450 S
ENDOSULFAN SULFATE	1031-07-8	120 S	120 S	120 S	120 S	120 S	120 S
ENDOTHALL	145-73-3	100 M	100 M	10,000 M	10,000 M	100 M	100 M
ENDRIN	72-20-8	2 M	2 M	200 M	200 M	2 M	2 M
EPICHLOROHYDRIN	106-89-8	2.1 N	8.8 N	210 N	N 088	210 N	880 N
ETHEPHON	16672-87-0	170 G	490 G	17,000 G	49,000 G	170 G	490 G
ETHION	563-12-2	17 G	49 G	8 058	S 058	17 G	49 G
ETHOXYETHANOL, 2- (EGEE)	110-80-5	420 N	1,800 N	42,000 N	180,000 N	42,000 N	180,000 N
ETHYL ACETATE	141-78-6	150 N	620 N	15,000 N	62,000 N	15,000 N	62,000 N
ETHYL ACRYLATE	140-88-5	14 G	57 G	1,400 G	5,700 G	1,400 G	5,700 G
ETHYL BENZENE	100-41-4	M 002	700 M	70,000 M	70,000 M	70,000 M	70,000 M
ETHYL DIPROPYLTHIOCARBAMATE, S- (EPTC)	759-94-4	1,700 G	4,900 G	170,000 G	370,000 S	1,700 G	4,900 G
ETHYL ETHER	60-29-7	6,900 G	19,000 G	9 000,069	1,900,000 G	6,900 G	19,000 G
ETHYL METHACRYLATE	97-63-2	e30 N	2,600 N	83,000 N	260,000 N	830 N	2,600 N
ETHYLENE CHLORHYDRIN	107-07-3	9 069 C	1,900 G	9 000°69	190,000 G	90 G	1,900 G
ETHYLENE GLYCOL	107-21-1	14,000 H	14,000 H	1,400,000 H	1,400,000 H	1,400,000 H	1,400,000 H
ETHYLENE THIOUREA (ETU)	96-45-7	2.8 G	7.8 G	280 G	780 G	2,800 G	7,800 G

Table 1—Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater Appendix A

			(past)	Used Aquifers			
Regulated Substance	CASRN	Z > SQT	2500 mg/L	1	TDS > 2500 mg/L	Nonuse Aquifers	4quifers
		~	NR	R	NR	R	NR
ETHYLP-NITROPHENYL PHENYLPHOSPHOROTHIOATE	2104-64-5	0.35 G	0.97 G	35 G	97 G	0.35 G	0.97 G
FENAMIPHOS	22224-92-6	0.7 H	0.7 H	H 02	H 0/	H 2.0	0.7 H
FENVALERATE (PYDRIN)	51630-58-1	85 S	85 S	85 S	85 S	85 S	85 S
FLUOMETURON	2164-17-2	H 06	H 06	H 000'6	9,000 H	H 06	H 06
FLUORANTHENE	206-44-0	260 S	260 S	260 S	260 S	260 S	260 S
FLUORENE	86-73-7	1,400 G	1,900 S	1,900 S	1,900 S	1,900 S	1,900 S
FLUOROTRICHLOROMETHANE (FREON 11)	75-69-4	2,000 H	2,000 H	200,000 H	200,000 H	200,000 H	200,000 H
FONOFOS	944-22-9	10 H	10 H	1,000 H	1,000 H	10 H	10 H
FORMALDEHYDE	20-00-0	1,000 H	1,000 H	100,000 H	100,000 H	100,000 H	100,000 H
FORMIC ACID	64-18-6	0.63 N	2.6 N	93 N	260 N	6.3 N	26 N
FOSETYL-AL	39148-24-8	87,000 G	240,000 G	8,700,000 G	24,000,000 G	87,000 G	240,000 G
FURAN	110-00-9	35 G	97 G	3,500 G	9,700 G	3,500 G	9,700 G
FURFURAL	98-01-1	19 G	78 G	1,900 G	7,800 G	19 G	78 G
GLYPHOSATE	1071-83-6	700 M	700 M	70,000 M	70,000 M	700 M	700 M
HEPTACHLOR	76-44-8	0.4 M	0.4 M	40 M	40 M	180 S	180 S
HEPTACHLOR EPOXIDE	1024-57-3	0.2 M	0.2 M	20 M	20 M	200 M	200 M
HEXACHLOROBENZENE	118-74-1	1 M	1 M	S 9	6 S	8 9	S 9
HEXACHLOROBUTADIENE	87-68-3	8.4 G	35 G	840 G	2,900 S	2,900 S	2,900 S
HEXACHLOROCYCLOPENTADIENE	77-47-4	20 M	20 M	1,800 S	1,800 S	1,800 S	1,800 S
HEXACHLOROETHANE	67-72-1	1 H	1 H	100 H	100 H	100 H	100 H
HEXANE	110-54-3	1,500 N	5,800 G	9,500 S	9,500 S	1,500 N	5,800 G
HEXAZINONE	51235-04-2	400 H	400 H	40,000 H	40,000 H	400 H	400 H
HEXYTHIAZOX (SAVEY)	78587-05-0	200 S	200 S	500 S	500 S	500 S	200 S
HMX	2691-41-0	400 H	400 H	5,000 S	5,000 S	400 H	400 H
HYDRAZINE/HYDRAZINE SULFATE	302-01-2	0.01 N	0.051 N	1 N	5.1 N	0.1 N	0.51 N
HYDROQUINONE	123-31-9	11 G	45 G	1,100 G	4,500 G	11,000 G	45,000 G
INDENO[1,2,3-CD]PYRENE	193-39-5	0.18 G	2.3 G	18 G	62 S	62 S	62 S
IPRODIONE	36734-19-7	15 G	62 G	1,500 G	6,200 G	15 G	62 G
ISOBUTYL ALCOHOL	78-83-1	10,000 G	29,000 G	1,000,000 G	2,900,000 G	1,000,000 G	2,900,000 G
ISOPHORONE	78-59-1	100 H	100 H	10,000 H	10,000 H	100,000 H	100,000 H
ISOPROPYL METHYLPHOSPHONATE	1832-54-8	700 H	700 H	70,000 H	70,000 H	700 H	700 H
KEPONE	143-50-0	0.065 G	0.27 G	6.5 G	27 G	9 99 C	270 G

N = Inhalation S = Aqueous solubility cap

All concentrations in µg/L

R = Residential

R = Residential

N = Lifetime health advisory level

NR = Non-Residential

G = Ingestion

THMs—The values listed for trihalomethanes (THMs) are the total for all THMs combined.

HAAs—The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.

PFOA and PFOS values listed are for individual or total combined.

Table 1—Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater Appendix A

			Used /	Used Aquifers		:	
Regulated Substance	CASRN	<i>TDS</i> ≤ 2	2500 mg/L	TDS > 2	TDS > 2500 mg/L	Nonuse Aquifers	Aquifers
		٣	NR	R	NR	R	NR
MALATHION	121-75-5	900 H	900 H	50,000 H	50,000 H	140,000 S	140,000 S
MALEIC HYDRAZIDE	123-33-1	4,000 H	4,000 H	400,000 H	400,000 H	4,000 H	4,000 H
MANEB	12427-38-2	11 G	45 G	1,100 G	4,500 G	11 G	45 G
MERPHOS OXIDE	78-48-8	17 G	49 G	1,700 G	2,300 S	17 G	49 G
METHACRYLONITRILE	126-98-7	3.5 G	9.7 G	350 G	9 026	3.5 G	9.7 G
METHAMIDOPHOS	10265-92-6	1.7 G	4.9 G	170 G	490 G	1.7 G	4.9 G
METHANOL	67-56-1	42,000 N	180,000 N	4,200,000 N	18,000,000 N	4,200,000 N	18,000,000 N
METHOMYL	16752-77-5	200 H	200 H	20,000 H	20,000 H	200 H	200 H
METHOXYCHLOR	72-43-5	40 M	40 M	45 S	45 S	45 S	45 S
METHOXYETHANOL, 2-	109-86-4	42 N	180 N	4,200 N	18,000 N	420 N	1,800 N
METHYL ACETATE	79-20-9	35,000 G	97,000 G	3,500,000 G	9,700,000 G	35,000 G	97,000 G
METHYL ACRYLATE	96-33-3	42 N	180 N	4,200 N	18,000 N	4,200 N	18,000 N
METHYL CHLORIDE	74-87-3	30 H	30 H	н 000'є	3,000 H	3,000 H	3,000 H
METHYL ETHYL KETONE	78-93-3	4,000 H	4,000 H	400,000 H	400,000 H	400,000 H	400,000 H
METHYL HYDRAZINE	60-34-4	0.042 N	0.18 N	4.2 N	18 N	0.42 N	1.8 N
METHYL ISOBUTYL KETONE	108-10-1	2,800 G	7,800 G	280,000 G	780,000 G	280,000 G	780,000 G
METHYL ISOCYANATE	624-83-9	2.1 N	8.8 N	210 N	N 088	2.1 N	8.8 N
METHYL N-BUTYL KETONE	591-78-6	e3 N	260 N	8,300 N	26,000 N	63 N	260 N
METHYL METHACRYLATE	80-62-6	1,500 N	6,200 N	150,000 N	620,000 N	150,000 N	620,000 N
METHYL METHANESULFONATE	66-27-3	9.9 9.9	27 G	5 099	2,700 G	9.9 9.9	27 G
METHYL PARATHION	298-00-0	1 H	1 H	100 H	100 H	1,000 H	1,000 H
METHYL STYRENE (MIXED ISOMERS)	25013-15-4	84 N	350 N	8,400 N	35,000 N	84 N	350 N
METHYL TERT-BUTYL ETHER (MTBE)	1634-04-4	20	20	2,000	2,000	200	200
METHYLCHLOROPHENOXYACETIC ACID (MCPA)	94-74-6	30 H	30 H	3,000 H	3,000 H	30,000 H	30,000 H
METHYLENE BIS(2-CHLOROANILINE), 4,4'-	101-14-4	2.1 G	27 G	210 G	2,700 G	2.1 G	27 G
METHYLNAPHTHALENE, 2-	91-21-6	N E.9	26 N	N 0E9	2,600 N	N E.9	26 N
METHYLSTYRENE, ALPHA	6-83-6	2,400 G	6,800 G	240,000 G	S 000'095	2,400 G	6,800 G
METOLACHLOR	51218-45-2	H 002	700 H	H 000'02	H 000'02	700 H	700 H
METRIBUZIN	21087-64-9	H 02	H 0/	H 000'L	7,000 H	10 H	70 H
MEVINPHOS	7786-34-7	0.87 G	2.4 G	87 G	240 G	0.87 G	2.4 G
MONOCHLOROACETIC ACID (HAA)	79-11-8	Н 09	H 09	Н 000'9	9 (000 Н	H 09	H 09
NAPHTHALENE	91-20-3	100 H	100 H	10,000 H	10,000 H	10,000 H	10,000 H

M = Maximum Contaminant Level H = Lifetime health advisory level G = Ingestion All concentrations in µg/L R = Residential

N = Inhalation S = Aqueous solubility cap

Table 1—Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater Appendix A

			Used Aauifers	auifers			
Regulated Substance	CASRN	<i>TDS</i> ≤ 2	2500 mg/L	TDS > 2500 mg/L	00 mg/L	Nonuse Aquifers	quifers
		٣	NR	X	NR	R	NR
NAPHTHYLAMINE, 1-	134-32-7	0.36 G	1.5 G	3e G	150 G	3e G	150 G
NAPHTHYLAMINE, 2-	91-59-8	0.36 G	1.5 G	36 G	150 G	360 G	1,500 G
NAPROPAMIDE	15299-99-7	4,200 G	12,000 G	S 000'02	S 000'02	4,200 G	12,000 G
NITROANILINE, O-	88-74-4	0.11 N	0.44 N	11 N	44 N	0.11 N	0.44 N
NITROANILINE, P-	100-01-6	33 G	140 G	3,300 G	14,000 G	33 G	140 G
NITROBENZENE	98-95-3	1.2 N	6.3 N	120 N	030 N	120 N	830 N
NITROGUANIDINE	256-88-7	H 002	H 002	70,000 H	H 000,07	H 002	H 002
NITROPHENOL, 2-	88-75-5	280 G	780 G	28,000 G	78,000 G	28,000 G	78,000 G
NITROPHENOL, 4-	100-02-7	H 09	H 09	Н 000'9	Н 000'9	Н 000'9	H 000'9
NITROPROPANE, 2-	79-46-9	0.018 N	N 860.0	1.8 N	9.3 N	0.18 N	0.93 N
NITROSODIETHYLAMINE, N-	55-18-5	0.00045 N	0.0058 N	0.045 N	0.58 N	0.0045 N	0.058 N
NITROSODIMETHYLAMINE, N-	62-75-9	0.0014 N	0.018 N	0.14 N	1.8 N	0.014 N	0.18 N
NITROSO-DI-N-BUTYLAMINE, N-	924-16-3	0.031 N	0.16 N	3.1 N	16 N	3.1 N	16 N
NITROSODI-N-PROPYLAMINE, N-	621-64-7	0.025 N	0.13 N	2.5 N	13 N	0.25 N	1.3 N
NITROSODIPHENYLAMINE, N-	9-08-30-6	N 61	N 96	1,900 N	N 009'6	1,900 N	N 009'6
NITROSO-N-ETHYLUREA, N-	759-73-9	0.0079 G	0.1 G	0.79 G	10 G	7.9 G	100 G
OCTYL PHTHALATE, DI-N-	117-84-0	350 G	970 G	3,000 S	3,000 S	3,000 S	3,000 S
OXAMYL (VYDATE)	23135-22-0	200 M	200 M	20,000 M	20,000 M	200 M	200 M
PARAQUAT	1910-42-5	30 H	30 H	3,000 H	3,000 H	30 H	30 H
PARATHION	56-38-2	1 G	2.9 G	100 G	290 G	1 G	2.9 G
PCBS, TOTAL (POLYCHLORINATED BIPHENYLS) (AROCLORS)	1336-36-3	0.5 M	0.5 M	20 M	20 M	0.5 M	0.5 M
PCB-1016 (ÁROCLOR)	12674-11-2	2.4 G	6.8 G	240 G	250 S	2.4 G	6.8 G
PCB-1221 (AROCLOR)	11104-28-2	0.33 G	1.4 G	33 G	140 G	0.33 G	1.4 G
PCB-1232 (AROCLOR)	11141-16-5	0.33 G	1.4 G	33 G	140 G	0.33 G	1.4 G
PCB-1242 (AROCLOR)	53469-21-9	0.33 G	1.4 G	33 G	100 S	0.33 G	1.4 G
PCB-1248 (AROCLOR)	12672-29-6	0.33 G	1.4 G	33 G	54 S	0.33 G	1.4 G
PCB-1254 (AROCLOR)	11097-69-1	0.69 G	1.9 G	S 25	57 S	0.69 G	1.9 G
PCB-1260 (AROCLOR)	11096-82-5	0.33 G	1.4 G	33 G	80 S	0.33 G	1.4 G
PEBULATE	1114-71-2	1,700 G	4,900 G	92,000 S	92,000 S	1,700 G	4,900 G
PENTACHLOROBENZENE	608-93-5	28 G	78 G	740 S	740 S	740 S	740 S
PENTACHLOROETHANE	76-01-7	7.2 G	30 G	720 G	3,000 G	7.2 G	30 G
PENTACHLORONITROBENZENE	82-68-8	2.5 G	10 G	250 G	440 S	440 S	440 S

N = Inhalation S = Aqueous solubility cap All concentrations in µg/L

R = Residential

R = Residential

N = Lifetime health advisory level

NR = Non-Residential

G = Ingestion

THMs—The values listed for trihalomethanes (THMs) are the total for all THMs combined.

HAAs—The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.

PFOA and PFOS values listed are for individual or total combined.

Table 1—Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater Appendix A

			pasti	Head Aquifers			
Regulated Substance	CASRN	7DS ≤ 2	2500 mg/L	Ι΄.	TDS > 2500 mg/L	Nonuse Aquifers	Aquifers
		٣	NR	æ	NR	R	NR
PENTACHLOROPHENOL	87-86-5	1 M	L M	100 M	100 M	1,000 M	1,000 M
PERFLUOROBUTANE SULFONATE (PFBS)	375-73-5	10 G	29 G	1,000 G	2,900 G	10 G	29 G
PERFLUOROOCTANE SULFONATE (PFOS)	1763-23-1	H 20.0	H 70.0	H /	H 2	H 20.0	0.07 H
PERFLUOROOCTANOIC ACID (PFOA)	335-67-1	H 20.0	H 70.0	H /	H /	H 20.0	H 20.0
PHENACETIN	62-44-2	300 G	1,200 G	30,000 G	120,000 G	300,000 G	Z 000,097
PHENANTHRENE	85-01-8	1,100 S	1,100 S	1,100 S	1,100 S	1,100 S	1,100 S
PHENOL	108-95-2	2,000 H	2,000 H	200,000 H	200,000 H	200,000 H	200,000 H
PHENYL MERCAPTAN	108-98-5	35 G	97 G	3,500 G	9,700 G	35 G	97 G
PHENYLENEDIAMINE, M-	108-45-2	210 G	580 G	21,000 G	58,000 G	210,000 G	580,000 G
PHENYLPHENOL, 2-	90-43-7	340 G	1,400 G	34,000 G	140,000 G	340,000 G	S 000'002
PHORATE	298-02-2	9 6.9	19 G	S 069	1,900 G	9 6.9 9	19 G
PHTHALIC ANHYDRIDE	85-44-9	42 N	180 N	4,200 N	18,000 N	4,200 N	18,000 N
PICLORAM	1918-02-1	200 M	200 M	50,000 M	50,000 M	200 M	200 M
PROMETON	1610-18-0	400 H	400 H	40,000 H	40,000 H	400 H	400 H
PRONAMIDE	23950-58-5	2,600 G	7,300 G	15,000 S	15,000 S	2,600 G	7,300 G
PROPACHLOR	1918-16-7	0.1 H	0.1 H	H 01	10 H	10 H	10 H
PROPANIL	8-86-602	170 G	490 G	17,000 G	49,000 G	170 G	490 G
PROPANOL, 2- (ISOPROPYL ALCOHOL)	67-63-0	420 N	1,800 N	42,000 N	180,000 N	420 N	1,800 N
PROPAZINE	139-40-2	10 H	10 H	1,000 H	1,000 H	10 H	10 H
PROPHAM	122-42-9	100 H	100 H	10,000 H	10,000 H	100 H	100 H
PROPYLBENZENE, N-	103-65-1	2,100 N	8,800 N	52,000 S	52,000 S	2,100 N	8,800 N
PROPYLENE OXIDE	75-56-9	2.7 G	11 G	270 G	1,100 G	2.7 G	11 G
PYRENE	129-00-0	130 S	130 S	130 S	130 S	130 S	130 S
PYRETHRUM	8003-34-7	320 S	S 03E	S 058	320 S	320 S	320 S
PYRIDINE	110-86-1	35 G	97 G	3,500 G	9,700 G	350 G	970 G
QUINOLINE	91-22-5	0.22 G	0.91 G	22 G	91 G	220 G	910 G
QUIZALOFOP (ASSURE)	76578-14-8	300 S	S 00E	S 00E	300 S	300 S	300 S
RDX	121-82-4	2 H	2 H	200 H	200 H	2 H	2 H
RESORCINOL	108-46-3	69,000 G	190,000 G	9 000'006'9	19,000,000 G	9 000'69	190,000 G
RONNEL	299-84-3	1,700 G	4,900 G	40,000 S	40,000 S	1,700 G	4,900 G
SIMAZINE	122-34-9	4 M	4 M			4 M	
STRYCHNINE	57-24-9	10 G	29 G	1,000 G	2,900 G	10,000 G	29,000 G

Table 1—Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater Appendix A

			Used	Used Aquifers			
Regulated Substance	CASRN	Z > SQT	2500 mg/L	TDS > 2500 mg/L	00 mg/L	Nonuse Aquifers	quifers
		~	NR	æ	NR	R	NR
STYRENE	100-42-5	100 M	100 M	10,000 M	10,000 M	10,000 M	10,000 M
TEBUTHIURON	34014-18-1	200 H	H 009	50,000 H	50,000 H	200 H	500 H
TERBACIL	5902-51-2	H 06	H 06	H 000'6	H 000'6	Н 06	H 06
TERBUFOS	13071-79-9	0.4 H	0.4 H	40 H	40 H	0.4 H	0.4 H
TETRACHLOROBENZENE, 1,2,4,5-	95-94-3	10 G	29 G	280 S	280 S	280 S	580 S
TETRACHLORODIBENZO-P-DIOXIN, 2,3,7,8- (TCDD)	1746-01-6	0.00003 M	0.00003 M	0.003 M	0.003 M	0.019 S	0.019 S
TETRACHLOROETHANE, 1,1,1,2-	630-20-6	70 H	H 02	7,000 H	7,000 H	7,000 H	7,000 H
TETRACHLOROETHANE, 1,1,2,2-	79-34-5	0.84 N	4.3 N	84 N	430 N	84 N	430 N
TETRACHLOROETHYLENE (PCE)	127-18-4	2 M	2 M	M 005	200 M	20 M	20 M
TETRACHLOROPHENOL, 2,3,4,6-	58-90-2	1,000 G	2,900 G	100,000 G	180,000 S	180,000 S	180,000 S
TETRAETHYL LEAD	78-00-2	0.0035 G	0.0097 G	0.35 G	0.97 G	3.5 G	9.7 G
TETRAETHYLDITHIOPYROPHOSPHATE	3689-24-5	17 G	49 G	1,700 G	4,900 G	17 G	49 G
TETRAHYDROFURAN	109-99-9	25 N	130 N	2,500 N	13,000 N	25 N	130 N
THIOFANOX	39196-18-4	10 G	29 G	1,000 G	2,900 G	10 G	29 G
THIRAM	137-26-8	520 G	1,500 G	S 000'0E	30,000 S	520 G	1,500 G
TOLUENE	108-88-3	1,000 M	1,000 M	100,000 M	100,000 M	100,000 M	100,000 M
TOLUIDINE, M-	108-44-1	41 G	170 G	4,100 G	17,000 G	41 G	170 G
TOLUIDINE, O	95-53-4	41 G	170 G	4,100 G	17,000 G	41,000 G	170,000 G
TOLUIDINE, P-	106-49-0	22 G	91 G	2,200 G	9,100 G	22 G	91 G
TOXAPHENE	8001-35-2	3 M	3 M	300 M	300 M	3 M	3 M
TRIALLATE	2303-17-5	0.91 G	3.8 G	91 G	380 G	0.91 G	3.8 G
TRIBROMOMETHANE (BROMOFORM) (THM)	75-25-2	80 M	80 M			8,000 M	8,000 M
TRICHLORO-1,2,2-TRIFLUOROETHANE, 1,1,2-	76-13-1	11,000 N	44,000 N	170,000 S	170,000 S	170,000 S	170,000 S
TRICHLOROACETIC ACID (HAA)	76-03-9	09 W	W 09	6,000 M	6,000 M	W 09	W 09
TRICHLOROBENZENE, 1,2,4-	120-82-1	M 02	M 02	7,000 M	7,000 M	7,000 M	7,000 M
TRICHLOROBENZENE, 1,3,5-	108-70-3	40 H	40 H	4,000 H	4,000 H	40 H	40 H
TRICHLOROETHANE, 1,1,1-	71-55-6	200 M	200 M	20,000 M	20,000 M	2,000 M	2,000 M
TRICHLOROETHANE, 1,1,2-	2-00-62	2 M	5 M	200 M	200 M	20 M	20 M
TRICHLOROETHYLENE (TCE)	79-01-6	2 M	2 M	M 003	200 M	20 M	20 M
TRICHLOROPHENOL, 2,4,5-	95-95-4	3,500 G	9,700 G	350,000 G	970,000 G	1,000,000 S	1,000,000 S
TRICHLOROPHENOL, 2,4,6-	88-06-2	35 G	97 G	3,500 G	9,700 G	35,000 G	97,000 G
TRICHLOROPHENOXYACETIC ACID, 2,4,5- (2,4,5-T)	93-76-5	70 H	70 H	7,000 H	7,000 H	70,000 H	70,000 H

N = Inhalation S = Aqueous solubility cap All concentrations in µg/L

R = Residential

R = Residential

N = Inhalation

R = Residential

G = Ingestion

THMs—The values listed for trihalomethanes (THMs) are the total for all THMs combined.

HAAs—The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.

PFOA and PFOS values listed are for individual or total combined.

Table 1—Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater Appendix A

			Used A	Used Aquifers			9
Regulated Substance	CASRN	<i>TDS</i> ≤ 2	TDS ≤ 2500 mg/L	<i>TDS</i> > 2	TDS > 2500 mg/L	Nonuse Aquirers	ıquirers
		Ж	NR	R	NR	R	NR
TRICHLOROPHENOXYPROPIONIC ACID, 2,4,5- (2,4,5-TP)	93-72-1	20 M	20 M	5,000 M	5,000 M	20 M	20 M
TRICHLOROPROPANE, 1,1,2-	9-77-869	170 G	490 G	17,000 G	49,000 G	170 G	490 G
TRICHLOROPROPANE, 1,2,3-	96-18-4	40 H	40 H	4,000 H	4,000 H	4,000 H	4,000 H
TRICHLOROPROPENE, 1,2,3-	96-19-5	N E9.0	2.6 N	93 N	260 N	0.63 N	2.6 N
TRIETHYLAMINE	121-44-8	15 N	62 N	1,500 N	6,200 N	15 N	62 N
TRIETHYLENE GLYCOL	112-27-6	9 000'69	190,000 G	6,900,000 G	19,000,000 G	S 000'69	190,000 G
TRIFLURALIN	1582-09-8	10 H	10 H	1,000 H	1,000 H	10 H	10 H
TRIMETHYLBENZENE, 1,3,4- (TRIMETHYLBENZENE, 1,2,4-)	92-63-6	130 N	230 N	13,000 N	53,000 N	13,000 N	53,000 N
TRIMETHYLBENZENE, 1,3,5-	108-67-8	130 N	530 N	13,000 N	49,000 S	130 N	230 N
TRINITROGLYCEROL (NITROGLYCERIN)	25-63-0	5 H	9 H	200 H	H 009	500 H	500 H
TRINITROTOLUENE, 2,4,6-	118-96-7	2 H	2 H	200 H	200 H	2 H	2 H
VINYL ACETATE	108-05-4	420 N	1,800 N	42,000 N	180,000 N	420 N	1,800 N
VINYL BROMIDE (BROMOETHENE)	593-60-2	1.5 N	N 8.7	150 N	N 082	15 N	78 N
VINYL CHLORIDE	75-01-4	2 M	2 M	200 M	200 M	20 M	20 M
WARFARIN	81-81-2	10 G	29 G	1,000 G	2,900 G	10,000 G	17,000 S
XYLENES (TOTAL)	1330-20-7	10,000 M	10,000 M	180,000 S	180,000 S	180,000 S	180,000 S
ZINEB	12122-67-7	1,700 G	4,900 G	10,000 S	10,000 S	1,700 G	4,900 G

N = Inhalation S = Aqueous solubility cap

All concentrations in µg/L

R = Residential

R = Residential

N = Inhalation

R = Residential

G = Ingestion

THMs—The values listed for trihalomethanes (THMs) are the total for all THMs combined.

HAAs—The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.

PFOA and PFOS values listed are for individual or total combined.

Table 2—Medium-Specific Concentrations (MSCs) for Inorganic Regulated Substances in Groundwater Appendix A

			nsed ,	Used Aquifers		V	J V	
Regulated Substance	CASRN	TDS ≤ 2	TDS ≤ 2500 mg/L	TDS > 2500 mg/L	:00 mg/L	Nonuse	Nonuse Aquirers	
		R	NR	Я	NR	R	NR	
ANTIMONY	7440-36-0	9 9	W 9	W 009	W 009	6,000 M	000'9	Σ
ARSENIC	7440-38-2	10 M	10 M	1,000 M	1,000 M	10,000 M	10,000	Σ
ASBESTOS (fibers/L)	12001-29-5	7,000,000 M	7,000,000 M	7,000,000 M	7,000,000 M	7,000,000 M	7,000,000	Σ
BARIUM AND COMPOUNDS	7440-39-3	2,000 M	2,000 M	200,000 M	200,000 M	2,000,000 M	2,000,000	Σ
BERYLLIUM	7440-41-7	4 M	4 M	400 M	400 M	4,000 M	4,000	Σ
BORON AND COMPOUNDS	7440-42-8	6,000 H	H 000'9	H 000'009	H 000'009	H 000,000,9	6,000,000	エ
CADMIUM	7440-43-9	5 M	5 M	200 M	200 M	5,000 M	5,000	≥
CHROMIUM (TOTAL)	7440-47-3	100 M	100 M	10,000 M	10,000 M	100,000 M	100,000	≥
COBALT	7440-48-4	10 G	29 G	1,000 G	2,900 G	10,000 G	29,000	ပ
COPPER	7440-50-8	1,000 M	1,000 M	100,000 M	100,000 M	1,000,000 M	1,000,000	≥
CYANIDE, FREE	57-12-5	200 M	200 M	20,000 M	20,000 M	200,000 M	200,000	≥
FLUORIDE	16984-48-8	4,000 M	4,000 M	400,000 M	400,000 M	4,000,000 M	4,000,000	≥
LEAD	7439-92-1	5 M	5 M	200 M	200 M	5,000 M	5,000	≥
LITHIUM	7439-93-2	S 69	190 G	9 006'9	19,000 G	9 000'69	190,000	ဖြ
MANGANESE	7439-96-5	300 H	300 H	30,000 H	30,000 H	300,000 H	300,000	エ
MERCURY	7439-97-6	2 M	2 M	200 M	200 M	2,000 M	2,000	≥
MOLYBDENUM	7439-98-7	40 H	40 H	4,000 H	4,000 H	40,000 H	40,000	エ
NICKEL	7440-02-0	100 H	100 H	10,000 H	10,000 H	100,000 H	100,000	エ
NITRATE NITROGEN	14797-55-8	10,000 M	10,000 M	1,000,000 M	1,000,000 M	10,000,000 M	10,000,000	≥
NITRITE NITROGEN	14797-65-0	1,000 M	1,000 M	100,000 M	100,000 M	1,0	1,000,000	Σ
PERCHLORATE	7790-98-9	15 H	15 H	1,500 H	1,500 H	15,000 H	15,000	エ
SELENIUM	7782-49-2	20 M	W 05	5,000 M	5,000 M	50,000 M	50,000	Σ
SILVER	7440-22-4	100 H	100 H	10,000 H	10,000 H	100,000 H	100,000	エ
STRONTIUM	7440-24-6	4,000 H	4,000 H	400,000 H	400,000 H	4,000,000 H	4,000,000	エ
THALLIUM	7440-28-0	2 M	Z M	Z00 M	200 M	2,000 M	2,000	Σ
NIL	7440-31-5	21,000 G	58,000 G	2,100,000 G	5,800,000 G	21,000,000 G	58,000,000	മ
VANADIUM	7440-62-2	2.4 G		240 G	5 089	2,400 G	008'9	G
ZINC AND COMPOUNDS	7440-66-6	2,000 H	2,000 H	200,000 H	200,000 H	2,000,000 H	2,000,000	エ

R = Residential NR = Nonresidential

All concentrations in µg/L (except asbestos)
M = Maximum Contaminant Level
H = Lifetime Health Advisory Level
SMCL = Secondary Maximum Contaminant Level
G = Ingestion
N = Inhalation
PA State MCL adopted as MSC for Copper and Lead

Table 2—Medium-Specific Concentrations (MSCs) for Inorganic Regulated Substances in Groundwater Appendix A

SECONE	SECONDARY CONTAMINANTS	NANTS	
REGULATED SUBSTANCE	CASRN	SMCL	UNITS
ALUMINUM	7429-90-5	200	hg/L
CHLORIDE	7647-14-5	250,000	hg/L
IRON	7439-89-6	008	hg/L
SULFATE	7757-82-6	250,000	hg/L

R = Residential NR = Nonresidential

All concentrations in µg/L (except asbestos)
M = Maximum Contaminant Level
H = Lifetime Health Advisory Level
SMCL = Secondary Maximum Contaminant Level
G = Ingestion
N = Inhalation
PA State MCL adopted as MSC for Copper and Lead

Appendix A
Table 3—Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
A. Direct Contact Numeric Values

				N	onresi	dential	
		Residenti	ial	Surface		Subsurfa	CA
REGULATED SUBSTANCE	CASRN	0—15 fee		Soil		Soil	CE
				0—2 fee	t	2—15 fe	et
ACENAPHTHENE	83-32-9	13,000	G	190,000	С	190,000	С
ACENAPHTHYLENE	208-96-8	13,000	G	190,000	c	190,000	C
ACEPHATE	30560-19-1	260	Ğ	3,800	Ğ	190,000	C
ACETALDEHYDE	75-07-0	170	N	710	N	820	N
ACETONE	67-64-1	10,000	С	10,000	С	10,000	С
ACETONITRILE	75-05-8	1,100	N	4,700	N	5,500	N
ACETOPHENONE	98-86-2	10,000	С	10,000	С	10,000	С
ACETYLAMINOFLUORENE, 2- (2AAF)	53-96-3	4.9	G	24	G	190,000	С
ACROLEIN	107-02-8	0.38	N	1.6	N	1.8	N
ACRYLAMIDE	79-06-1	1.7	N	22	N	25	N
ACRYLIC ACID	79-10-7	19	N	79	N	91	N
ACRYLONITRILE	107-13-1	6.5	N	33	N	37	N
ALACHLOR	15972-60-8	330	G	1,600	G	190,000	С
ALDICARB ALDICARB SULFONE	116-06-3 1646-88-4	220 220	G G	3,200 3,200	G G	190,000 190,000	С
ALDICARB SULFOXIDE	1646-87-3	220	G	3,200	G	190,000	C
ALDRIN	309-00-2	1.1	G	5.4	G	190,000	C
ALLYL ALCOHOL	107-18-6	1.9	N	7.9	N	9.1	N
AMETRYN	834-12-8	2,000	G	29,000	G	190,000	C
AMINOBIPHENYL, 4-	92-67-1	0.89	G	4.3	Ğ	190,000	C
AMITROLE	61-82-5	20	G	97	Ğ	190,000	C
AMMONIA	7664-41-7	9,600	N	10,000	C	10,000	C
AMMONIUM SULFAMATE	7773-06-0	44,000	G	190,000	C	190,000	С
ANILINE	62-53-3	19	N	79	N	90	N
ANTHRACENE	120-12-7	66,000	G	190,000	С	190,000	С
ATRAZINE	1912-24-9	81	G	400	G	190,000	С
AZINPHOS-METHYL (GUTHION)	86-50-0	330	G	4,800	G	190,000	С
BAYGON (PROPOXUR)	114-26-1	880	G	13,000	G	190,000	С
BENOMYL	17804-35-2	7,800	G	38,000	G	190,000	С
BENTAZON	25057-89-0	6,600	G	96,000	G	190,000	С
BENZENE	71-43-2	57	N	280	N	330	N
BENZIDINE	92-87-5	0.018	G	0.4	G	190,000	С
BENZO[A]ANTHRACENE BENZO[A]PYRENE	56-55-3 50-32-8	6.1 4.2	G G	130 91	G G	190,000 190,000	C
BENZO[B]FLUORANTHENE	205-99-2	3.5	G	76	G	190,000	C
BENZO[GHI]PERYLENE	191-24-2	13,000	G	190.000	C	190,000	C
BENZO[K]FLUORANTHENE	207-08-9	3.5	G	76	Ğ	190,000	C
BENZOIC ACID	65-85-0	190,000	C	190,000	c	190,000	C
BENZOTRICHLORIDE	98-07-7	1.4	Ğ	7	Ğ	10,000	C
BENZYL ALCOHOL	100-51-6	10,000	С	10,000	С	10,000	С
BENZYL CHLORIDE	100-44-7	9	N	45	N	52	N
BETA PROPIOLACTONE	57-57-8	0.11	N	0.55	N	0.63	N
BHC, ALPHA	319-84-6	3	G	14	G	190,000	С
BHC, BETA-	319-85-7	10	G	51	G	190,000	С
BHC, GAMMA (LINDANE)	58-89-9	17	G	83	G	190,000	С
BIPHENYL, 1,1-	92-52-4	8.2	N	34	N	40	N
BIS(2-CHLOROETHOXY)METHANE	111-91-1	660	G	9,600	G	10,000	С
BIS(2-CHLOROETHYL)ETHER	111-44-4	1.3	N	6.7	N	7.6	N
BIS(2-CHLORO-ISOPROPYL)ETHER	108-60-1	0.0071	N	220	N	250	N
BIS(CHLOROMETHYL)ETHER BIS[2-ETHYLHEXYL] PHTHALATE	542-88-1 117-81-7	0.0071 1.300	N G	0.036 6,500	N G	0.041 10.000	N C
BISPHENOL A	80-05-7	11,000	G	160,000	G	190,000	C
DIOI TILINOL A	00-00-7	11,000	<u> </u>	100,000	<u> </u>	190,000	U

G—Ingestion N—Inhalation C—Cap

Appendix A
Table 3—Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
A. Direct Contact Numeric Values

				N	onresi	dential	
		Pooldonti	o.l	O. unfo a c		Curkanish	
REGULATED SUBSTANCE	CASRN	Residentia 0—15 fee		Surface Soil		Subsurfa Soil	ce
		0—13166	, i	0—2 fee	t	2—15 fe	ρt
				0 2 700	ι		υι
BROMACIL	314-40-9	22,000	G	190,000	С	190,000	С
BROMOBENZENE	108-86-1	1,100	N	4,700	N	5,400	N
BROMOCHLOROMETHANE	74-97-5	760	N	3,200	N	3,600	N
BROMODICHLOROMETHANE	75-27-4	12	N	60	N	69	N
BROMOMETHANE	74-83-9	95	N	400	N	460	N
BROMOXYNIL	1689-84-5	180	G	880	G	190,000	С
BROMOXYNIL OCTANOATE	1689-99-2	180	G	880	G	190,000	С
BUTADIENE, 1,3-	106-99-0	15	N	74	N	85	N
BUTYL ALCOHOL, N-	71-36-3	10,000	С	10,000	С	10,000	С
BUTYLATE	2008-41-5	10,000	С	10,000	С	10,000	С
BUTYLBENZENE, N- BUTYLBENZENE, SEC-	104-51-8 135-98-8	10,000 10,000	C	10,000 10,000	C	10,000 10.000	C C
					C	, , , , , , ,	C
BUTYLBENZENE, TERT- BUTYLBENZYL PHTHALATE	98-06-6 85-68-7	10,000 9,800	C G	10,000 10,000	$\frac{c}{c}$	10,000 10,000	$\frac{c}{c}$
CAPTAN	133-06-2	8,100	G	40,000	G	190,000	$\frac{c}{c}$
CARBARYL	63-25-2	22,000	G	190,000	C	190,000	C
CARBAZOLE	86-74-8	930	G	4,600	G	190,000	C
CARBOFURAN	1563-66-2	1,100	G	16,000	G	190,000	C
CARBON DISULFIDE	75-15-0	10,000	C	10,000	C	10,000	$\frac{c}{c}$
CARBON TETRACHLORIDE	56-23-5	75	N	370	N	430	N
CARBOXIN	5234-68-4	22,000	G	190,000	C	190,000	C
CHLORAMBEN	133-90-4	3,300	G	48.000	G	190,000	C
CHLORDANE	57-74-9	53	G	260	G	190,000	C
CHLORO-1,1-DIFLUOROETHANE, 1-	75-68-3	10.000	C	10,000	C	10,000	C
CHLORO-1-PROPENE, 3- (ALLYL CHLORIDE)	107-05-1	19	N	80	N	92	Ň
CHLOROACETALDEHYDE	107-20-0	69	G	340	G	10,000	Ċ
CHLOROACETOPHENONE, 2-	532-27-4	190,000	C	190,000	C	190,000	Č
CHLOROANILINE, P-	106-47-8	93	G	460	G	190,000	C
CHLOROBENZENE	108-90-7	950	N	3,900	N	4,500	Ň
CHLOROBENZILATE	510-15-6	170	G	830	G	190,000	C
CHLOROBUTANE, 1-	109-69-3	8,800	G	10,000	С	10,000	C
CHLORODIBROMOMETHANE	124-48-1	220	G	1,100	G	10,000	С
CHLORODIFLUOROMETHANE	75-45-6	10,000	С	10,000	С	10,000	С
CHLOROETHANE	75-00-3	10,000	С	10,000	С	10,000	С
CHLOROFORM	67-66-3	19	N	96	N	110	N
CHLORONAPHTHALENE, 2-	91-58-7	18,000	G	190,000	С	190,000	С
CHLORONITROBENZENE, P-	100-00-5	39	N	160	N	180	N
CHLOROPHENOL, 2-	95-57-8	1,100	G	10,000	С	10,000	С
CHLOROPRENE	126-99-8	1.5	N	7.4	N	8.5	N
CHLOROPROPANE, 2-	75-29-6	1,900	N	7,900	N	9,100	N
CHLOROTHALONIL	1897-45-6	1,100	G	5,400	G	190,000	С
CHLOROTOLUENE, O-	95-49-8	4,400	G	10,000	С	10,000	С
CHLOROTOLUENE, P-	106-43-4	4,400	С	10,000	С	10,000	С
CHLORPYRIFOS	2921-88-2	220	G	3,200	G	190,000	С
CHLORSULFURON	64902-72-3	4,400	G	64,000	G	190,000	С
CHLORTHAL-DIMETHYL (DACTHAL) (DCPA)	1861-32-1	2,200	G	32,000	G	190,000	С
CHRYSENE	218-01-9	35	G	760	G	190,000	С
CRESOL(S)	1319-77-3	10,000	С	10,000	С	10,000	С
CRESOL, 4,6-DINITRO-O-	534-52-1	18	G	260	G	190,000	С
CRESOL, O- (2-METHYLPHENOL)	95-48-7	11,000	G	160,000	G	190,000	С
CRESOL, M- (3-METHYLPHENOL)	108-39-4	10,000	С	10,000	С	10,000	С
CRESOL, P- (4-METHYLPHENOL)	106-44-5	1,100	G	16,000	G	190,000	С

G—Ingestion N—Inhalation C—Cap

Appendix A
Table 3—Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
A. Direct Contact Numeric Values

	T I			N	onresi	idential	
REGULATED SUBSTANCE	CASRN	Residenti 0—15 fe		Surface Soil	ļ	Subsurfa Soil	ice
	1			0—2 fee	t	2—15 fe	et
CRESOL, P-CHLORO-M-	59-50-7	22.000	G	190,000	G	190,000	С
CROTONALDEHYDE	4170-30-3	9.8	G	48	G	10,000	Ċ
CROTONALDEHYDE, TRANS-	123-73-9	9.8	Ğ	48	Ğ	10,000	C
CUMENE (ISOPROPYL BENZENE)	98-82-8	7,600	N	10,000	C	10,000	C
CYANAZINE	21725-46-2	22	G	110	G	190,000	С
CYCLOHEXANE	110-82-7	10,000	С	10,000	С	10,000	С
CYCLOHEXANONE	108-94-1	10,000	С	10,000	С	10,000	С
CYFLUTHRIN	68359-37-5	5,500	G	80,000	G	190,000	С
CYROMAZINE	66215-27-8	110,000	G	190,000	С	190,000	С
DDD, 4,4'-	72-54-8	78	G	380	G	190,000	С
DDE, 4,4'-	72-55-9	55	G	270	G	190,000	С
DDT, 4,4'-	50-29-3	55	G	270	G	190,000	С
DI(2-ETHYLHEXYL)ADIPATE	103-23-1	10,000	С	10,000	С	10,000	С
DIALLATE	2303-16-4	300	G	1,500	G	10,000	С
DIAMINOTOLUENE, 2,4-	95-80-7	4.7	G	23	G	190,000	С
DIAZINON	333-41-5	150	G	2,200	G	10,000	С
DIBENZO[A,H]ANTHRACENE	53-70-3	1	G	22	G	190,000	С
DIBENZOFURAN	132-64-9	220	G	3,200	G	190,000	С
DIBROMO-3-CHLOROPROPANE, 1,2-	96-12-8	0.029	N	0.37	N	0.42	N
DIBROMOBENZENE, 1,4-	106-37-6	2,200	G	32,000	G	190,000	С
DIBROMOETHANE, 1,2- (ETHYLENE DIBROMIDE)	106-93-4	0.74	N	3.7	N	4.2	N
DIBROMOMETHANE	74-95-3	76	N	310	N	360	N
DIBUTYL PHTHALATE. N-	84-74-2	10,000	С	10.000	С	10,000	С
DICAMBA	1918-00-9	6,600	G	96,000	G	190,000	С
DICHLOROACETIC ACID	76-43-6	370	G	1.800	G	10,000	С
DICHLORO-2-BUTENE, 1,4-	764-41-0	0.11	N	0.52	N	0.6	N
DICHLORO-2-BUTENE, TRANS-1,4-	110-57-6	0.11	N	0.52	N	0.6	N
DICHLOROBENZENE, 1,2-	95-50-1	3,800	N	10,000	С	10,000	С
DICHLOROBENZENE, 1,3-	541-73-1	10,000	С	10,000	С	10,000	С
DICHLOROBENZENE, P-	106-46-7	40	N	200	N	230	N
DICHLOROBENZIDINE, 3,3'-	91-94-1	41	G	200	G	190,000	С
DICHLORODIFLUOROMETHANE (FREON 12)	75-71-8	1,900	N	8,000	N	9,100	N
DICHLOROETHANE, 1,1-	75-34-3	280	N	1,400	N	1,600	N
DICHLOROETHANE, 1,2-	107-06-2	17	N	85	N	98	N
DICHLOROETHYLENE, 1,1-	75-35-4	3,800	N	10,000	C	10,000	С
DICHLOROETHYLENE, CIS-1,2-	156-59-2	440	G	6,400	G	10,000	С
DICHLOROETHYLENE, TRANS-1,2-	156-60-5	4,400	G	10,000	С	10,000	С
DICHLOROMETHANE (METHYLENE CHLORIDE)	75-09-2	1,300	G	10,000	С	10,000	С
DICHLOROPHENOL, 2,4-	120-83-2	660	G	9,600	G	190,000	C
DICHLOROPHENOXYACETIC ACID, 2,4- (2,4-D)	94-75-7	2,200	G	32,000	G	190,000	C
DICHLOROPROPANE, 1,2-	78-87-5	0.12	N	0.6	N	0.69	N
DICHLOROPROPENE, 1,3-	542-75-6	110	N	550	N	640	N
DICHLOROPROPIONIC ACID, 2,2- (DALAPON)	75-99-0	6,600	G	10,000	C	10,000	C
DICHLORVOS	62-73-7	64	G	310	Ğ	10,000	C
DICYCLOPENTADIENE	77-73-6	5.7	N	24	N	27	N
DIELDRIN	60-57-1	1.2	G	5.7	G	190,000	C
DIETHANOLAMINE	111-42-2	440	G	6,400	Ğ	10,000	C
DIETHYL PHTHALATE	84-66-2	10,000	C	10,000	C	10,000	Ċ
DIFLUBENZURON	35367-38-5	4,400	G	64,000	Ğ	190,000	C
	000001-00-0						
DIISOPROPYL METHYLPHOSPHONATE	1445-75-6	10,000	С	10,000	С	10,000	С
			C G	10,000 7,000	C G	10,000 190,000	C

G—Ingestion N—Inhalation C—Cap

Appendix A
Table 3—Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
A. Direct Contact Numeric Values

				N	onresi	dential	
		Resident	ial	Surface		Subsurfa	100
REGULATED SUBSTANCE	CASRN	0—15 fe		Soil		Soil	ice
				0—2 fee	t	2—15 fe	et
DIMETHRIN	70-38-2	66,000		190.000	С	190,000	
DIMETHYLAMINOAZOBENZENE, P-	60-11-7	4	G G	190,000	G	190,000	C
DIMETHYLANILINE, N,N-	121-69-7	440	G	3,400	G	10,000	C
DIMETHYLBENZIDINE, 3,3-	119-93-7	1.7	G	8.3	G	190,000	C
DIMETHYL METHYLPHOSPHONATE	756-79-6	10,000	C	10,000	C	10.000	C
DIMETHYLPHENOL, 2,4-	105-67-9	4,400	G	10,000	C	10,000	C
DINITROBENZENE, 1,3-	99-65-0	22	G	320	Ğ	190,000	C
DINITROPHENOL, 2.4-	51-28-5	440	G	6,400	G	190,000	C
DINITROTOLUENE, 2,4-	121-14-2	60	G	290	Ğ	190,000	C
DINITROTOLUENE, 2,6- (2,6-DNT)	606-20-2	12	G	61	Ğ	190,000	С
DINOSEB	88-85-7	220	G	3,200	G	190,000	C
DIOXANE, 1,4-	123-91-1	89	N	440	N	510	N
DIPHENAMID	957-51-7	6,600	G	96,000	G	190,000	С
DIPHENYLAMINE	122-39-4	22,000	G	190,000	С	190,000	С
DIPHENYLHYDRAZINE, 1,2-	122-66-7	2.1	N	10	N	12	N
DIQUAT	85-00-7	480	G	7,000	G	190,000	С
DISULFOTON	298-04-4	8.8	G	130	G	10,000	С
DITHIANE, 1,4-	505-29-3	2,200	G	32,000	G	190,000	С
DIURON	330-54-1	440	G	6,400	G	190,000	С
ENDOSULFAN	115-29-7	1,300	G	19,000	G	190,000	С
ENDOSULFAN I (ALPHA)	959-98-8	1,300	G	19,000	G	190,000	С
ENDOSULFAN II (BETA)	33213-65-9	1,300	G	19,000	G	190,000	С
ENDOSULFAN SULFATE	1031-07-8	1,300	G	19,000	G	190,000	С
ENDOTHALL	145-73-3	4,400	G	64,000	G	190,000	С
ENDRIN	72-20-8	66	G	960	G	190,000	С
EPICHLOROHYDRIN	106-89-8	19	N	79	N	91	N
ETHEPHON	16672-87-0	1,100	G	16,000	G	190,000	С
ETHION	563-12-2	110	G	1,600	G	10,000	С
ETHOXYETHANOL, 2- (EGEE)	110-80-5	3,800	N	10,000	С	10,000	С
ETHYL ACETATE	141-78-6	1,300	N	5,500	N	6,300	N
ETHYL ACRYLATE	140-88-5	150	N	630	N	720	N
ETHYL BENZENE	100-41-4	180	N	880	N	1,000	N
ETHYL DIPROPYLTHIOCARBAMATE, S- (EPTC)	759-94-4	10,000	С	10,000	C	10,000	С
ETHYL ETHER	60-29-7	10,000	С	10,000	С	10,000	С
ETHYL METHACRYLATE	97-63-2	5,700	N	10,000	С	10,000	С
ETHYLENE CHLORHYDRIN	107-07-3	4,400	G	10,000	С	10,000	С
ETHYLENE GLYCOL	107-21-1	7,600	N G	10,000	C G	10,000	С
ETHYLENE THIOUREA (ETU)	96-45-7	18 2.2	G	260 32	G	190,000 190,000	C
ETHYLP-NITROPHENYL PHENYLPHOSPHOROTHIOATE	2104-64-5	2.2	G	32	G	190,000	C
FENAMIPHOS	22224-92-6	55	G	800	G	190,000	С
FENVALERATE (PYDRIN)	51630-58-1	5,500	G	10.000	C	10,000	C
FLUOMETURON	2164-17-2	2,900		42,000	G	190,000	C
FLUORANTHENE	206-44-0	8,800	G G	130,000	G	190,000	C
FLUORENE	86-73-7	8,800	G	130,000	G	190,000	C
FLUOROTRICHLOROMETHANE (FREON 11)	75-69-4	10,000	C	10,000	C	10,000	C
FONOFOS	944-22-9	440	G	6,400	G	10,000	C
FORMALDEHYDE	50-00-0	34	N	170	N	200	N
FORMIC ACID	64-18-6	5.7	N	24	N	27	N
FOSETYL-AL	39148-24-8	190,000	C	190,000	C	190.000	C
FURAN	110-00-9	220	G	3,200	Ğ	10,000	C
FURFURAL	98-01-1	530	G	2,600	G	4,500	N

G—Ingestion N—Inhalation C—Cap

Appendix A
Table 3—Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
A. Direct Contact Numeric Values

				N	onresi	dential	
		Residenti	al	Surface		Subsurfa	CO
REGULATED SUBSTANCE	CASRN	0—15 fee		Soil		Soil	00
				0—2 fee	t	2—15 fe	et
GLYPHOSATE	1071-83-6	22.000	G	190,000	С	190,000	С
HEPTACHLOR	76-44-8	4.1	G	20	G	190,000	C
HEPTACHLOR EPOXIDE	1024-57-3	2	G	10	Ğ	190,000	C
HEXACHLOROBENZENE	118-74-1	12	G	57	Ğ	190,000	c
HEXACHLOROBUTADIENE	87-68-3	220	G	1,200	G	10,000	С
HEXACHLOROCYCLOPENTADIENE	77-47-4	1,300	G	10,000	С	10,000	С
HEXACHLOROETHANE	67-72-1	46	N	230	N	270	N
HEXANE	110-54-3	10,000	С	10,000	С	10,000	С
HEXAZINONE	51235-04-2	7,300	G	110,000	G	190,000	С
HEXYTHIAZOX (SAVEY)	78587-05-0	5,500	G	80,000	G	190,000	С
HMX	2691-41-0	11,000	G	160,000	G	190,000	С
HYDRAZINE/HYDRAZINE SULFATE	302-01-2	0.091	N	0.45	N	0.52	N
HYDROQUINONE	123-31-9	310	G	1,500	G	190,000	С
INDENO[1,2,3-CD]PYRENE	193-39-5	3.5	G	76	G	190,000	С
IPRODIONE	36734-19-7	420	G	2,100	G	190,000	С
ISOBUTYL ALCOHOL	78-83-1	10,000	С	10,000	С	10,000	С
ISOPHORONE	78-59-1	10,000	С	10,000	С	10,000	С
ISOPROPYL METHYLPHOSPHONATE	1832-54-8	10,000	С	10,000	С	10,000	С
KEPONE	143-50-0	1.9	G	9.1	G	190,000	С
MALATHION	121-75-5	4,400	G	10,000	С	10,000	С
MALEIC HYDRAZIDE	123-33-1	110,000	G	190,000	С	190,000	С
MANEB	12427-38-2	310	G	1,500	G	190,000	С
MERPHOS OXIDE	78-48-8	110	G	1,600	G	10,000	С
METHACRYLONITRILE	126-98-7	22	G	320	G	2,700	N
METHAMIDOPHOS	10265-92-6	11	G	160	G	190,000	С
METHANOL	67-56-1	10,000	C G	10,000	С	10,000	C
METHOMYL METHOXYCHLOR	16752-77-5 72-43-5	5,500	G	80,000 16,000	G	190,000 190,000	C
METHOXYCHLOR METHOXYETHANOL, 2-	109-86-4	1,100 380	N	1,600	G N	1.800	N
METHOLTETHANOL, 2-	79-20-9	10,000	C	10,000	C	10,000	C
METHYL ACCIVATE	96-33-3	380	N	1,600	N	1,800	N
METHYL CHLORIDE	74-87-3	250	N	1,200	N	1,400	N
METHYL ETHYL KETONE	78-93-3	10,000	C	10,000	C	10,000	C
METHYL HYDRAZINE	60-34-4	0.38	N	1.6	N	1.8	N
METHYL ISOBUTYL KETONE	108-10-1	10,000	C	10,000	C	10,000	C
METHYL ISOCYANATE	624-83-9	19	N	79	N	91	N
METHYL N-BUTYL KETONE (2-HEXANONE)	591-78-6	570	N	2.400	N	2,700	N
METHYL METHACRYLATE	80-62-6	10,000	С	10,000	С	10.000	C
METHYL METHANESULFONATE	66-27-3	190	G	920	Ğ	10,000	C
METHYL PARATHION	298-00-0	55	G	800	G	190,000	С
METHYL STYRENE (MIXED ISOMERS)	25013-15-4	760	N	3,100	N	3,600	N
METHYL TERT-BUTYL ETHER (MTBE)	1634-04-4	1,700	N	8,500	N	9,800	N
METHYLCHLOROPHENOXYACETIC ACD (MCPA)	94-74-6	110	G	1,600	С	190,000	С
METHYLENE BIS(2-CHLOROANILINE), 4,4'-	101-14-4	42	G	910	G	190,000	С
METHYLNAPHTHALENE, 2-	91-57-6	57	N	240	N	270	N
METHYLSTYRENE, ALPHA	98-83-9	10,000	С	10,000	С	10,000	С
METOLACHLOR	51218-45-2	10,000	С	10,000	С	10,000	С
METRIBUZIN	21087-64-9	5,500	G	80,000	G	190,000	С
MEVINPHOS	7786-34-7	5.5	G	80	G	190,000	С
MONOCHLOROACETIC ACID	79-11-8	440	G	6,400	G	190,000	С
NAPHTHALENE	91-20-3	13	N	66	N	77	N
NAPHTHYLAMINE, 1-	134-32-7	10	G	51	G	190,000	С

G—Ingestion N—Inhalation C—Cap

Appendix A Table 3—Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
A. Direct Contact Numeric Values

				N	onresi	dential	
DECL!! ATED OUROTANOS	040004	Residenti	ial	Surface	,	Subsurfa	ce
REGULATED SUBSTANCE	CASRN	0—15 fee		Soil		Soil	
				0—2 fee	t	2—15 fe	et
NAPHTHYLAMINE. 2-	91-59-8	10	G	51	G	190,000	С
NAPROPAMIDE	15299-99-7	26,000	G	190,000	C	190,000	C
NITROANILINE, O-	88-74-4	0.95	N	3.9	N	4.5	N
NITROANILINE, P-	100-01-6	880	G	4,600	G	190,000	С
NITROBENZENE	98-95-3	11	N	55	N	63	N
NITROGUANIDINE	556-88-7	22,000	G	190,000	С	190,000	С
NITROPHENOL, 2-	88-75-5	1,800	G	26,000	G	190,000	С
NITROPHENOL, 4-	100-02-7	1,800	G	26,000	G	190,000	С
NITROPROPANE, 2-	79-46-9	0.16	N	0.82	N	0.94	N
NITROSODIETHYLAMINE, N-	55-18-5	0.0041	N	0.051	N	0.059	N
NITROSODIMETHYLAMINE, N-	62-75-9	0.012	N	0.16	N	0.18	N
NITROSO-DI-N-BUTYLAMINE, N-	924-16-3	0.28	N	1.4	N	1.6	N
NITROSODI-N-PROPYLAMINE, N-	621-64-7	0.22	N	1.1	N	1.3	N
NITROSODIPHENYLAMINE, N-	86-30-6	170	N	860	N	990	N
NITROSO-N-ETHYLUREA, N-	759-73-9	0.16	G	3.4	G	190,000	С
OCTYL PHTHALATE, DI-N-	117-84-0	2,200	G	10,000	С	10,000	С
OXAMYL (VYDATE)	23135-22-0	5,500	G	80,000	G	190,000	С
PARAQUAT	1910-42-5	990	G	14,000	G	190,000	С
PARATHION	56-38-2	6.6	G	96	G	10,000	С
PCBS, TOTAL (POLYCHLORINATED BIPHENYLS)	1336-36-3	9.3	G	46	G	190,000	С
(AROCLORS)							
PCB-1016 (AROCLOR)	12674-11-2	15	G	220	G	10,000	С
PCB-1221 (AROCLOR)	11104-28-2	4.7	N	23	N	27	N
PCB-1232 (AROCLOR)	11141-16-5	9.3	G	46	G	10,000	С
PCB-1242 (AROCLOR)	53469-21-9	9.3	G	46	G	10,000	С
PCB-1248 (AROCLOR)	12672-29-6	9.3	G	46	G	10,000	С
PCB-1254 (AROCLOR)	11097-69-1	4.4	G	64	G	10,000	С
PCB-1260 (AROCLOR)	11096-82-5	9.3	G	46	G	190,000	С
PEBULATE	1114-71-2	10,000	С	10,000	С	10,000	С
PENTACHLOROBENZENE	608-93-5	180	G	2,600	G	190,000	С
PENTACHLOROETHANE	76-01-7	210	G	1,000	G	10,000	С
PENTACHLORONITROBENZENE	82-68-8	72	G	350	G	190,000	С
PENTACHLOROPHENOL	87-86-5	47	G	230	G	190,000	С
PERFLUOROBUTANE SULFONATE (PFBS)	375-73-5	66	G	960	G	10,000	С
PERFLUOROOCTANE SULFONATE (PFOS)	1763-23-1	4.4	G	64	G	190,000	С
PERFLUOROOCTANOIC ACID (PFOA)	335-67-1	4.4	G	64	G	190,000	С
PHENACETIN	62-44-2	8,500	G	41,000	G	190,000	С
PHENANTHRENE	85-01-8	66,000	G	190,000	С	190,000	С
PHENOL	108-95-2	3,800	N	16,000	N	18,000	N
PHENYL MERCAPTAN	108-98-5	220	G	3,200	G	10,000	С
PHENYLENEDIAMINE, M-	108-45-2	1,300	G	19,000	G	190,000	С
PHENYLPHENOL, 2-	90-43-7	9,600	G	47,000	G	190,000	С
PHORATE	298-02-2	44	G	640	G	10,000	С
PHTHALIC ANHYDRIDE	85-44-9	380	N	1,600	N	1,800	N
PICLORAM	1918-02-1	15,000	G	190,000	С	190,000	С
PROMETON	1610-18-0	3,300	G	48,000	G	190,000	C
PRONAMIDE	23950-58-5	17,000	G	190,000	C	190,000	C
PROPACHLOR	1918-16-7	2,900	G	42,000	G	190,000	С
PROPANIL	709-98-8	1,100	G	16,000	G	190,000	C
PROPANOL, 2- (ISOPROPYL ALCOHOL)	67-63-0	3,800	N	10,000	С	10,000	С
PROPAZINE	139-40-2	4,400	G	10,000	C	10,000	С
PROPHAM	122-42-9	4,400	G	64,000	G	190,000	С

All concentrations in mg/kg G—Ingestion N—Inhalation C—Cap

Appendix A
Table 3—Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
A. Direct Contact Numeric Values

				N	onresi	dential	
		Residenti	ial	Curfood		Cubourfo	
REGULATED SUBSTANCE	CASRN	0—15 fe		Surface Soil	,	Subsurfa Soil	ice
		0 7070		0—2 fee	ŧ	2—15 fe	et
DD OD W DEVIZENE N	100.05.1	40.000					
PROPYLENE OXIDE	103-65-1	10,000	<u>C</u>	10,000 380	<u>C</u>	10,000	C
PYRENE PYRENE	75-56-9 129-00-0		G G	96,000	G G	690 190,000	N C
PYRETHRUM	8003-34-7	220	G	3,200	G	10,000	C
PYRIDINE	110-86-1	220	G	3,200	G	10,000	C
QUINOLINE	91-22-5	6.2	G	3,200	G	10,000	C
QUIZALOFOP (ASSURE)	76578-14-8	2,000	G	29,000	G	190,000	c
RDX	121-82-4	230	G	1,100	G	190,000	Ċ
RESORCINOL	108-46-3	190,000	C	190,000	C	190,000	Ċ
RONNEL	299-84-3	11,000	G	160,000	G	190,000	C
SIMAZINE	122-34-9	160	G	760	G	190,000	С
STRYCHNINE	57-24-9	66	G	960	G	190,000	С
STYRENE	100-42-5	10,000	С	10,000	С	10,000	С
TEBUTHIURON	34014-18-1	15,000	G	190,000	С	190,000	С
TERBACIL	5902-51-2	2,900	G	42,000	G	190,000	С
TERBUFOS	13071-79-9	5.5	G	80	G	10,000	С
TETRACHLOROBENZENE, 1,2,4,5-	95-94-3	66	G	960	G	190,000	С
TETRACHLORODIBENZO-P-DIOXIN, 2,3,7,8- (TCDD)	1746-01-6	0.00014	G	0.0007	G	190,000	С
TETRACHLOROETHANE, 1,1,1,2-	630-20-6	60	N	300	N	340	N
TETRACHLOROETHANE, 1,1,2,2-	79-34-5	7.6	N	38	N	44	N
TETRACHLOROETHYLENE (PCE)	127-18-4	760	N	3,200	N	3,600	N
TETRACHLOROPHENOL, 2,3,4,6-	58-90-2	6,600	G	96,000	G	190,000	С
TETRAETHYL LEAD	78-00-2	0.022	G	0.32	G	10,000	С
TETRAETHYLDITHIOPYROPHOSPHATE	3689-24-5	110	G	1,600	G	10,000	С
TETRAHYDROFURAN	109-99-9	230	N	1,100	N	1,300	N
THIOFANOX	39196-18-4	66	G	960	G	190,000	С
THIRAM	137-26-8	3,300	G	48,000	G	190,000	С
TOLUENE TOLUIDINE, M-	108-88-3	10,000	C G	10,000	С	10,000	C C
	108-44-1 95-53-4	1,200		5,700 5,700	G	10,000	$\frac{c}{c}$
TOLUIDINE, O- TOLUIDINE, P-	106-49-0	1,200 620	G G	3,000	G G	10,000 190,000	$\frac{c}{c}$
TOXAPHENE	8001-35-2	17	G	83	G	190,000	$\frac{c}{c}$
TRIALLATE	2303-17-5	26	G	130	G	10,000	C
TRIBROMOMETHANE (BROMOFORM)	75-25-2	400	N	2,000	N	2,300	N
TRICHLORO-1,2,2-TRIFLUOROETHANE, 1,1,2-	76-13-1	10,000	C	10,000	C	10,000	C
TRICHLOROACETIC ACID	76-03-9	270	G	1,300	Ğ	190,000	Č
TRICHLOROBENZENE, 1,2,4-	120-82-1	39	N	160	N	190	Ň
TRICHLOROBENZENE, 1,3,5-	108-70-3	46	N	190	N	230	Ň
TRICHLOROETHANE, 1,1,1-	71-55-6	10,000	C	10,000	C	10.000	C
TRICHLOROETHANE, 1,1,2-	79-00-5	3.8	N	16	N	18	N
TRICHLOROETHYLENE (TCE)	79-01-6	38	N	160	N	180	N
TRICHLOROPHENOL, 2,4,5-	95-95-4	22,000	G	190,000	С	190,000	С
TRICHLOROPHENOL, 2,4,6-	88-06-2	220	G	3,200	G	190,000	С
TRICHLOROPHENOXYACETIC ACID, 2,4,5- (2,4,5-T)	93-76-5	2,200	G	32,000	G	190,000	С
TRICHLOROPHENOXYPROPIONIC ACID, 2,4,5-	93-72-1	1,800	G	26,000	G	190,000	С
(2,4,5-TP)(SILVEX)							
TRICHLOROPROPANE, 1,1,2-	598-77-6	1,100	G	10,000	С	10,000	С
TRICHLOROPROPANE, 1,2,3-	96-18-4	0.14	G	3.0	G	27	N
TRICHLOROPROPENE, 1,2,3-	96-19-5	5.7	N	24	N	27	N
TRIETHYLAMINE	121-44-8	130	N	550	N	630	N
TRIETHYLENE GLYCOL	112-27-6	10,000	C	10,000	C	10,000	С
TRIFLURALIN	1582-09-8	1,700	G	12,000	G	190,000	С

G—Ingestion N—Inhalation C—Cap

Appendix A
Table 3—Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
A. Direct Contact Numeric Values

				N	onresi	dential	
REGULATED SUBSTANCE	CASRN	Residenti 0—15 fee		Surface Soil 0—2 fee		Subsurfa Soil 2—15 fe	
TRIMETHYLBENZENE, 1,3,4- (TRIMETHYLBENZENE, 1,2,4-)	95-63-6	1,100	N	4,700	N	5,400	N
TRIMETHYLBENZENE, 1,3,5-	108-67-8	1,100	N	4,700	N	5,400	N
TRINITROGLYCEROL (NITROGLYCERIN)	55-63-0	22	G	320	G	10,000	С
TRINITROTOLUENE, 2,4,6-	118-96-7	110	G	1,600	G	190,000	O
VINYL ACETATE	108-05-4	3,800	N	10,000	С	10,000	O
VINYL BROMIDE (BROMOETHENE)	593-60-2	14	N	70	N	80	Ζ
VINYL CHLORIDE	75-01-4	0.93	G	61	G	290	Ν
WARFARIN	81-81-2	66	G	960	G	190,000	С
XYLENES (TOTAL)	1330-20-7	1,900	N	7,900	N	9,100	N
ZINEB	12122-67-7	11,000	G	160,000	G	190,000	С

G—Ingestion N—Inhalation C—Cap

Appendix A
Table 3—Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

					Used A	Used Aquifers					:	:		L	Г
			<i>TDS</i> ≤ 25(≤ 2500 mg/L			TDS > 2	2500 mg/L			Nonuse	Nonuse Aquiters		Soil Duffor	,
REGULATED	CASRN	Res	Residential	Nonre	Nonresidential	Resi	Residential	Nonre	Nonresidential	Resi	Residential	Nonre	Nonresidential	Distance	_
SUBSTANCE		100 X GW MSC	Generic Value	(feet)											
ACENAPHTHENE	83-32-9	210	2,600 E		4,700 E	380	4,700 E	15							
ACENAPHTHYLENE	208-96-8	210	2,400 E	580	6,600 E	1,600	18,000 E	1,600	18,000 E	1,600	18,000 E	1,600	18,000 E	15	
ACEPHATE	30560-19-1	4.2	0.5 E	12	1.4 E	420	20 E	1,200	140 E	4.2	0.5 E	12	1.4 E	NA	
ACETALDEHYDE	75-07-0	1.9	0.23 E	7.9	0.96 E	190	23 E	790	36 E	1.9	0.23 E	7.9	0.96 E	AN	
ACETONE	67-64-1	3,100	3 03E	8,800	980 E	10,000	10,000 C	10,000	10,000 C	10,000	3,500 E	10,000	9,800 E	NA	
ACETONITRILE	75-05-8	13	1.5 E	53	9 E	1,300	150 E	5,300	800 E	130	15 E	530	3 09	NA	
ACETOPHENONE	98-86-2	320	190 E	Н	520 E	10,000	10,000 C	10,000	10,000 C	320		920			
ACETYLAMINOFLUORENE, 2- (2AAF)	53-96-3	0.017	0.07 E	0.072	0.3 E	1.7	2 E	7.2	30 E	17	70 E	72	300 E	20	
ACROLEIN	107-02-8	0.0042	0.00047 E	0.018	0.002 E	0.42	0.047 E	1.8	0.2 E	0.042	0.0047 E	0.18	0.02 E	ΑN	
ACRYLAMIDE	79-06-1	0.019	0.0033 E		0.043 E	1.9	0.33 E		4.3 E	0.019	0.0033 E	o.	0.043 E	Ϋ́	
ACRYLIC ACID	79-10-7	0.21	3 6E0'0	0.88	0.16 E	21	3.9 E	88	16 E	21	3.9 E	88	16 E	AN AN	
ACRYLONITRILE	107-13-1	0.072	0.01 E	0.37	0.051 E	7.2	1 E	37	5.1 E	7.2	1 E	37	5.1 E	NA	
ALACHLOR	15972-60-8	0.2	0.077 E	0.2	0.077 E	20	7.7 E		7.7 E	0.2	0.077 E	0.2	0.077 E	NA	
ALDICARB	116-06-3	0.3	0.05 E	0.3	0.05 E	30	2 E		2 E	300	20 E		3 0S	NA	
ALDICARB SULFONE	1646-88-4	0.2			0.027 E	20	2.7 E		2.7 E				-		
ALDICARB SULFOXIDE	1646-87-3	0.4	0.045 E	0.4	0.045 E	40	4.5 E	40	4.5 E	0.4	0.045 E	0.4	0.045 E	NA	
ALDRIN	309-00-2	0.0038	0.46 E	0.016	1.9 E	0.38		1.6	190 E	2	240 E	2	240 E	10	
ALLYL ALCOHOL	107-18-6	0.021	0.0025 E	0.088	0.01 E	2.1		8.8	1 E	2.1		8.8	1 E	NA	
AMETRYN	834-12-8	9		\dashv		009		600					6.5 E		
AMINOBIPHENYL, 4-	92-67-1	0.0031	0.0012 E	0.013	0.005 E	0.31	0.12 E	1.3	0.5 E				2 E		
AMITROLE	61-82-5	0.069	0.028 E	_	0.12 E	_	2.8 E	\dashv	12 E	\dashv	28 E	_	-		\neg
AMMONIA	7664-41-7	3,000	360 E	3,000	360 E	10,000	10,000 C		10,000 C	3,000	360 E	εý	360 E		\neg
AMMONIUM SULFAMATE	7773-06-0	200	24 E	200	24 E	20,000	2,400 E	20,000	2,400 E	200	24 E	200	24 E		
ANILINE	62-53-3	0.21	0.12 E	0.88	0.52 E	21	12 E	88	52 E	0.21	0.12 E	0.88	0.52 E	NA	
ANTHRACENE	120-12-7	9.9	350 E	9	350 E	9.9	350 E	6.6		6.6	350 E	6.6	350 E	10	
ATRAZINE	1912-24-9	0.3	0.13 E	0.3	0.13 E	30	13 E	30	13 E		0.13 E	0.3	0.13 E	NA	
AZINPHOS-METHYL (GUTHION)	86-50-0	5.2	2.9 E	15	17 E	520	290 E	1,500	1,700 E	5.2	5.9 E	15	17 E	AN 	
BAYGON (PROPOXUR)	114-26-1	0.3	0.057 E	0.3	0.057 E	30	5.7 E	30	5.7 E	300	57 E	300	24 E	NA	
BENOMYL	17804-35-2	27		110		200		\Box			130 E		-		
BENTAZON	25057-89-0	20				2,000		2,0		20		20			
BENZENE	71-43-2	0.5	0.13 E	0.5	0.13 E	20	13 E	50	13 E		13 E		13 E	AN	\neg

¹ For other options see § 250.308 (relating to soil to groundwater pathway numeric values). All concentrations in mg/kg E—Number calculated by the soil to groundwater equation in § 250.308

C—Cap NA—The soil buffer distance option is not available for this substance N/A—Soil to groundwater values cannot be calculated for these compounds

Appendix A
Table 3—Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

	D. #02	Soli Buller Distance	(feet)	5	5	5	5	5	5	AN	30	NA	Ą	Ą	20	15	20	20	NA NA	Ą	¥	NA	10	20	NA	AA	A	Ą	ΔN
F	Č	ا الم		ш	Ш	Ш	Ш	Е	Е	Ш	Е	Е	ш	ш	Ш	Ш	Ш	Е	Ш	ш	ш	ш	ш	111	Ш	Е	Ш	ш	L
		Nonresidential	Generic Value	1,600	1 096	860	170	180 E	610 E	7,500	5.1	350 F	30	0.0076	200	29 E	72 E	150 E	1.6	2.3	800	900.0	6,300 F	46,000 E	1.8	0.0047	1.6	2.7	1 1 2
	Aquifers	Nonres	100 X GW MSC	1.2	1.1	0.38	0.12	0.026	0.055	39,000	2.1	920	51	0.063	43	10	20	32	59	7.6	3,000	0.04	29	12,000	7	900.0	6	∞	700
	Nonuse Aquifers	ntial	Generic Value	120 E	360 E	860 E	170 E	180 E	610 E	2,700 E	1.2 E	130 E	5.9 E	0.0015 E	46 E	29 E	72 E	37 E	2.6 E	0.45 E	800 E	0.0012 E	6,300 E	46,000 E	1.8 E	.0047 E	1.6 E	2.7 E	77
		Residential	100 X GW MSC	0.092	1.1	0.38	0.12	0.026	0.055	14,000	0.5	350	10	0.012 0.	10	10	20	8.4	10	1.5	3,000	0.0079 0.	59	12,000 4	7	0.006 0.	6	80	100
r		ential	Generic Value	160 E	360 E	860 E	170 E	180 E	610 E	52,000 E	5.1 E	10,000 C	30 E	0.076 E	20 E	59 E	7.2 E	150 E	760 E	2.3 E	800 E	0.006 E (6,300 E	46,000 E	180 E	0.47 E	160 E	270 E	77
) mg/L	Nonresidential	100 X GW MSC	0.12	1.1	0.38	0.12	0.026	0.055	190,00 52 0	2.1	10,000 10	51	0.63	4.3	9	2	35	2,900	9.7	3,000	0.04	29 (12,000 46	200	9.0	006	800	100
	TDS > 2500 mg/L	ıtia/	Generic Value	12 E	960 E	860 E	170 E	180 E	610 E	52,000 E	1.2 E	10,000 C	5.9 E	0.015 E	4.6 E	21 E	7.2 E	37 E	260 E	0.45 E	800 E	0.0012 E	6,300 E	46,000 E	180 E	0.47 E	160 E	270 E	5.4 F
iifers		Residential	100 X GW GW MSC	0.0092	1.1	0.38	0.12	0.026	0.055	190,00 52 0	0.5	10,000 10	10	0.12	-	3.6	2	8.4	1,000	1.5	3,000	0.0079 0.	29 (12,000 46	200	9.0	006	800	100
Used Aquifers	\vdash	/e		ш	Ш (Ш	Ш	E		Ш	Ш	Ш	Ш	7 6	Ш	Ш	Ш	9 2	<u>Е</u>	ж Е	Ш	ш	Ш	Ш) E	Ш	Ш
Sn		Nonresidential	Generic Value	1.6	340	46	170	180	610	7,500	0.051	350	0.3	0.0007	0.2	0.88	0.072	1.5	7.6	0.023	ω	0.000.0	130	1,900	1.8	0.0047	1.6	2.7	0.54
	00 mg/L	Nonre	100 X GW MSC	0.001	0.39	0.02	0.12	0.026	0.055	39,00 0	0.021	920	0.51	0.006	0.043	0.15	0.02	0.35	29	0.076	30	0.0004	9.0	490	7	900'0	6	∞	_
	<i>TDS</i> ≤ 2500 mg/L	lential	Generic Value	0.12 E	26 E	46 E	25 E	180 E	200 E	2,700 E	0.012 E	130 E	0.059 E	0.00015 E	0.046 E	0.21 E	0.072 E	0.37 E	2.6 E	0.0045 E	8	0.000012 E	130 E	660 E	1.8 E	0.0047 E	1.6 E	2.7 E	0.54 F
		Resident	100 X GW MSC	0.0000	0.03	0.02	0.018	0.026	0.018	14,000	0.005	320	0.1	0.0012	0.01	0.036	0.02	0.084	10	0.015	30	0.0000 0	9.0	170	7	900.0	6	8	-
		CASRN		92-87-5	56-55-3	50-32-8	205-99-2	191-24-2	207-08-9	65-85-0	7-70-86	100-51-6	100-44-7	57-57-8	319-84-6	319-85-7	6-68-85	92-52-4	111-91-1	111-44-4	108-60-1	542-88-1	117-81-7	80-05-7	314-40-9	108-86-1	74-97-5	75-27-4	74-83-9
		REGULATED	SUBSTANCE	BENZIDINE	BENZO[A]ANTHRACENE	BENZO[A]PYRENE	BENZO[B]FLUORANTHENE	BENZO[GHI]PERYLENE	BENZO[K]FLUORANTHENE	BENZOIC ACID	BENZOTRICHLORIDE	BENZYL ALCOHOL	BENZYL CHLORIDE	BETA PROPIOLACTONE	BHC, ALPHA	BHC, BETA-	BHC, GAMMA (LINDANE)	BIPHENYL, 1,1-	BIS(2-CHLOROETHOXY) METHANE	BIS(2- CHLOROETHYL)ETHER	BIS(2-CHLORO- ISOPROPYL)ETHER	BIS(CHLOROMETHYL)ETHER	BIS[2-ETHYLHEXYL] PHTHALATE	BISPHENOL A	BROMACIL	BROMOBENZENE	BROMOCHLOROMETHANE	BROMODICHLORO METHANE (THM)	BROMOMETHANE

¹ For other options see § 250.308 (relating to soil to groundwater pathway numeric values). All concentrations in mg/kg E—Number calculated by the soil to groundwater equation in § 250.308

C—Cap NA—The soil buffer distance option is not available for this substance N/A—Soil to groundwater values cannot be calculated for these compounds

Appendix A
Table 3—Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

		्र	Used Aquifers	i d	0010			Nonus	Nonuse Aquifers		
SQ1	S ≤ 2500 r	g/L	+	Δ,	2500 mg/L		(1-1-1-1-1	Soil Buffer
Residential	<	Nonresidential	+	Residential	Non	Nonresidential	Ř	Residential	Nonre	Nonresidential	Distance
100 X Generic GW Value MSC	100 X GW MSC) X Generic W Value SC Value	$ \begin{array}{c c} ric & 100 X \\ GW & GW \\ \hline MSC & MSC \end{array} $	Generic	100 X GW MSC	Generic Value	100 X GW MSC	Generic	100 X GW MSC	Generic Value	(feet)
0.63 0.54	Ш	2.6 2.2	2 E 63	54	E 260	220	E 0.63	3 0.54 E	2.6	2.2 E	AA
0.63 28	E ;	2.6 120	Е	8 360 E	Е 8	360	Е	8 360 E	8	360 E	15
0.11 0.045	E 0.	0.45 0.19		1 4.5 E	E 45	19	E 1	1 4.5 E	. 45	19 E	NA
42			E 1	4,200	-	10,000	3,5	420	9,7	\vdash	NA
28	Ш	\dashv	Ш	5,800	E 4,000	5,800	E 40	58		58 E	30
1,100		490 3,100	ш	9,500	E 1,500	9,500		1,100			15
820	\perp	\dashv	ш	4,000	4	4,000		820		\rightarrow	30
630		\dashv	Щ Э	5,400	w)	5,400		630		\rightarrow	30
2,900		10,0	C C	10,000	7	10,000	7	10,0	7		10
17		\downarrow	ш	31	\dashv	31	\dashv	31	\dashv	\dashv	AA
350 210 E	-1	970 570	E 12,	7,000	E 12,000	7,000	E 12,000	7,000	12,000		NA
3.3 21 E		14 89		260	E 120	260	E 3.3	21	14	89 E	15
4 0.87 E		4 0.87	7 E 400	87	E 400	87	E	4 0.87 E	4	0.87 E	NA
150 130 E	اد		E 10,0	10,000	C 10,000	10,000	C 150		620	230 E	NA
0.5 0.26 E		0.5 0.26	3 E 50	26	E 50	26	Е	5 2.6 E	5	2.6 E	NA
70 53 E		70 53	Ш	5,300	E 7,000	5,300	E 70	53	20	53 E	A
10		Ì	П ,	160	1,000	160	<u>П</u>	1.6		1.6 E	ΑΝ
57-74-9 0.2 49 E		0.2 49	9 E 5.6	1,400	E 5.6	1,400	E 5.6	3 1,400 E	5.6	1,400 E	10
10,000 T,800 E	, 10	10,000 7,300) E 10,000	10,000	C 10,000	10,000	C 10,000	0 1,800 E	10,000	7,300 E	NA
0	ا ا	0.88 0.2	ш	4.9	E 88	20	E 21		88	20 E	NA
0.029		1 0.12		2.9	E 100	12	E 0.24	0.029	_	0.12 E	ΑN
0.33 0.42 E		1.4 1.8	Е	42	E 140	180	E 0.33		1.4	1.8 E	NA
10 6.1 E		10 6.1	E 1,000	610	E 1,000	610	E 1,000	0 610 E	1,000	610 E	NA
0.59 3.9 E		2.5 17	7 E 59	390	E 250	1,700	E 590	3,900	1,300	8,600 E	15
140 220 E		390 610) E 10,000	10,000	C 10,000	10,000	C 140		390	610 E	30
8 2.5 E		8 2.5	5 E 800	250	Е 800	250	Е 800) 250 E	800	250 E	NA
10,000 2,800 E	10	10,00 10,000 0) C 10,000	10,000	C 10,000	10,000	C 10,000) 2,800 E	10,000	10,000 C	NA
2,100 450 E	8,	8,800 1,900	E 10,	10,000	10,	10,000	C 10,000	10,000	10,0	10,000 C	ΝΑ
2		Н	Ш	200		200		20		Н	NA
280 6,000 E		780 17,000) E 1,200	26,000	E 1,200) 26,000 E	280	3 000.9 C	280	17.000 E	15

¹ For other options see § 250.308 (relating to soil to groundwater pathway numeric values). All concentrations in mg/kg E—Number calculated by the soil to groundwater equation in § 250.308 C—Cap NA—The soil buffer distance option is not available for this substance N/A—Soil to groundwater values cannot be calculated for these compounds

PENNSYLVANIA BULLETIN, VOL. 51, NO. 47, NOVEMBER 20, 2021

Appendix A
Table 3—Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

Γ			· ·				Γ						Γ		Г	Γ						Γ			Γ							ſ
		Soil Buffer	Distance	(feet)	Ν	¥	Α	NA	30	30	ΑN	15	¥	15	2	ΑN	¥	A A	Υ Υ	Υ Υ	30	¥	¥	15	Α	¥	ΑĀ	10	20	10	10	
			1	ric e	Ξ.	ш	ш	Ш	ш	Е	Ш	Ш	ш	Ш	ш	Ш	Ш	Ш	O	ш	ш	Ш	Ш	O	ш	ш	Ш	Ξ	ш	Е	Е	t
			Nonresidential	Generic Value	2.4	4.4	2	67	41	20	10	2.3	26	820	230	9,200	29	8,100	10,000	11,000	2,000	1.8	1.8	10,000	0.061	6,900	170	33	15,000	1,800	870	
	Monuse Aguifere	Signinh	Nonre	100 X GW MSC	1.8	4	8.3	88	16	10	10	0.2	190	20	0.19	10,000	78	49,000	10,000	49,000	970	14	14	5,000	0.1	5,300	620	0.1	4,900	16	4	
١	7 031	מפט		ic i	Ш	ш	ш	ш	ш	В	Ш	ш		Ш	ш	ш	ш	Ш	ပ	ш	ш	Ш	ш	ပ	ш	ш	Ш	Ш	ш	Ш	Ш	
	Non	NON.	Residential	Generic Value	0.55	4.4	0.38	16	9.7	20	10	2.3	9.6	820	230	2,300	21	2,800	10,000	4,000	720	0.43	0.43	10,000	0.061	1,700	41	33	5,300	1,800	870	
			Resid	100 X GW MSC	0.42	4	1.6	21	3.8	10	10	0.2	69	20	0.19	10,000	28	17,000	10,000	17,000	350	3.4	3.4	5,000	0.1	1,300	150	0.1	1,700	16	4	
ŀ	٦		Н		Ш	ш	ш	Ш	Ш	Ш	Ш	ш	Ш	ш	ш	Ш,	ш	Ш,	ш,	ш,	ပ	Ш	Ш	ပ	ш	Ш	ပ	Ш	ပ	Е	Ш	1
			dential	Generic Value	240	440	2	6,700	150	2,000	1,000	230	2,600	820	230	9,200	29	8,100	9,700	1,100	190,00 0	1.8	1.8	10,000	6.1	7,200	10,000	33	190,00 0	1,800	870	
		2500 mg/L	Nonresidential	100 X GW MSC	180	400	8.3	8,800	09	1,000	1,000	20	19,000	20	0.19	10,000	78	49,000	10,000	4,900	000,79	14	14	2,000	10	5,500	10,000	0.1	00'06 0	16	4	
١	١	2500		1	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	П	Ш	Ш	1	Ш	E 4	П	Ш	6 Ш	Ш	Ш	O	Ш	Ш	1	Ш	Ω 7	Ш	Ш	l
		ZDS >	ential	Generic Value	55	440	0.38	1,600	150	2,000	1,000	230	096	820	230	2,300	21	2,800	3,400	400	72,000	0.43	0.43	10,000	6.1	7,200	4,100	33	190,00	1,800	870	
	Used Aquiters		Residential	100 X GW MSC	42	400	9.1	2,100	09	1,000	1,000	20	6,900	20	0.19	10,000	28	17,000	10,000	1,700	35,000	3.4	3.4	5,000	10	5,500	10,000	0.1	170,00 0	16	4	-
	Αdι	Н	Н		Ш	Ш	Ш	Ш	Ш	Е	Ш	Ш	Ш	ш	Ш	Ш,	Ш	ш	Ш	ш	Ш	Ш	Ш	ш	Ш	Ш	Ш,	Ш	ш,	Ш	Ш	ļ
	Ωsec		Nonresidential	Generic Value	2.4	4.4	0.02	29	41	20	10	2.3	26	110	230	92	0.59	81	26	1	2,000	0.018	0.018	2,500	0.061	6,900	170	33	15,000	120	170	000
		≤ 2500 mg/L	Nonres	100 X GW MSC	1.8	4	0.083	88	16	10	10	0.2	190	7	0.19	530	0.78	490	490	49	970	0.14	0.14	350	0.1	5,300	620	0.1	4,900	1.1	8.0	
١	١	2500	Н		Ш	ш	ш	ш	ш	Е	Ш	ш	ш	ш	ш	ш	ш	ш	ш	ш	ш	ш	ш	ш	ш	ш	Ш	ш	ш	Ш	Ш	ı
		ZDS ≤	Residential	Generic Value	0.55	4.4	0.0038	16	9.7	20	10	2.3	9.6	110	220	23	0.21	28	34	4	720	0.0043	0.0043	009	0.061	1,700	41	33	5,300	30	41	,
			Resid	100 X GW MSC	0.42	4	0.016	21	3.8	10	10	0.2	69	7	0.18	130	0.28	170	170	17	350	0.034	0.034	84	0.1	1,300	150	0.1	1,700	0.27	0.19	,
ŀ	_				ن ک	φ	φ	မှ	ဖှ	φ	4	5	က္	-	စ	က	<u>-</u>	7.	4	ιύ	<u></u>	က	<u>ဂ</u>	φ	5	7.	-	5	φ	œ	တ	١,
			CASRN	5	100-00-5	95-57-8	126-99-8	75-29-6	1897-45-6	95-49-8	106-43-4	2921-88-2	64902-72-	1861-32-1	218-01-9	1319-77-3	534-52-1	95-48-7	108-39-4	106-44-5	59-50-7	4170-30-3	123-73-9	98-82-8	21725-46-2	110-82-7	108-94-1	68359-37-	66215-27-8	72-54-8	72-55-9	000
ŀ					<u>-</u>																		ŝ									-
			REGULATED	SUBSTANCE	CHLORONITROBENZENE, F	CHLOROPHENOL, 2-	CHLOROPRENE	CHLOROPROPANE, 2-	CHLOROTHALONIL	CHLOROTOLUENE, O-	CHLOROTOLUENE, P-	CHLORPYRIFOS	CHLORSULFURON	CHLORTHAL-DIMETHYL (DACTHAL) (DCPA)	INE	-(S)	CRESOL, 4,6-DINITRO-O-	CRESOL, O- (2- METHYLPHENOL)	CRESOL, M- (3- METHYLPHENOL)	CRESOL, P- (4- METHYLPHENOL)	CRESOL, P-CHLORO-M-	CROTONALDEHYDE	CROTONALDEHYDE, TRANS-	CUMENE (ISOPROPYL BENZENE)	ZINE	CYCLOHEXANE	CYCLOHEXANONE	HRIN	AZINE	4'-	-,+	
			_	-	CHLORG	CHLOR	CHLOR	CHLOR	CHLOR	CHLOR	CHLOR	CHLOR	CHLOR	CHLORTHA (DACTHAL)	CHRYSENE	CRESOL(S)	CRESO	CRESOL, O- (2-) METHYLPHEN(CRESOL, M- (3- METHYLPHEN(CRESOL, P- (4- METHYLPHENC	CRESOI	CROTO	CROTO	CUMENE (BENZENE)	CYANAZINE	CYCLOF	CYCLOF	CYFLUTHRIN	CYROMAZINE	DDD, 4,4'-	DDE, 4,4'-	

C—Cap
NA—The soil buffer distance option is not available for this substance
N/A—Soil to groundwater values cannot be calculated for these compounds

Appendix A
Table 3—Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

	Soil Duffer	Soil Buller Distance	(feet)	2	NA	NA	30	2	15	Ą	20	NA	NA	20	NA	NA	NA	NA	AN	NA	30	10	NA	ΑN	AA	NA	NA	NA	NA
Γ		a/	eric Je	ပ	0 E	4 E	4 E	о Б	0 E	Б Б	0 E	2 E	0 E) 0	45 E	<u>В</u>	4 E	Э 6	<u>Э</u>	0 E	0 E	0 E) C	39 E	1 E	9 E	16 E	23 E	9
		Nonresidential	Generic Value	10,000	2,300	14	0.14	270	12,000	0.92	400	0.12	140	10,000	4	0.79	0.0034	0.0039	5,900	6,100	1,000	17,000	10,000	3		1.	1	2	7.6
	Nonuse Aquifers	Nonre	100 X GW MSC	10,000	4,000	89	0.1	90.0	450	2	97	0.5	320	10,000	400	9	900.0	900'0	6,000	6,000	750	310	10,000	160	5	7	02	100	20
	nuse ,	П	eric Ie	ပ ၀	0 E	2 E	4 E	0 E	0 E	2 E	0 E	2 E	2 E	၁ 0	45 E	9 E	0 7	7 E 8	Э 0	0 E	0 E	0 E	0 C	.5 E	1 E	9 E	16 E	23 E	9 E
	No	Residential	Generic Value	10,000	640	3.2	0.14	270	9,000	0.92	140	0.12	32	10,000	4	0.79	000.0	0.0007 8	5,900	6,100	1,000	7,700	10,000	7.		1	1	2	7.6
		Resi	100 X GW MSC	10,000	1,100	16	0.1	90.0	320	7	35	0.5	84	10,000	400	9	0.0012	0.0012	6,000	6,000	750	140	10,000	31	5	7	02	100	20
Γ	Γ		ic e	ပ	Ш	Е	Н	Ш	Ш	Ш	Е	Е	Ш	ပ	Ш	Ш	ш	Ш	Ш	Е	Ш	Ш	С	Ш		Ш	Ш	Ш	Ш
		Nonresidential	Generic Value	10,000	260	1.4	14	270	12,000	0.92	8,200	0.12	140	10,000	4,500	62	0.34	0.39	5,900	6,100	1,000	3,300	10,000	330	10	19	160	230	7.6
	2500 mg/L	Nonre	700 X GW MSC	4,000	450	8.9	10	90.0	450	7	2,000	0.5	320	10,000	40,000	009	9.0	9.0	6,000	6,000	750	09	10,000	1,600	20	02	002	1,000	20
l	> 25		ric e	၁	1 E	2 E	1 E) E) E	Ш) E	2 E	2 E) C) E	9 E	7 E	3 E) E) E) E) E) C	5 E	<u>В</u>) E) E) E) E
	< SQ1	Residential	Generic Value	10,000	64	0.32	14	270	9,000	0.92	8,200	0.12	32	10,000	4,500	62	290'0	0.078	5,900	6,100	1,000	770	10,000	75	10	19	160	230	7.6
Used Aguifers		Res	7001 WSC WSC	4,000	110	1.6	10	90.0	350	7	2,000	0.5	84	10,000	40,000	009	0.12	0.12	6,000	6,000	750	14	10,000	310	20	20	200	1,000	20
ed A		/e	ric e	ပ	E	Ш	i E	Ш	E	Ш) E	Б :	E	E	9 E	E	ш	Ш	Ш	Е	Ш	3 E) E	Ш		9 E) E	<u>Е</u>	Ш
Us)		Nonresidential	Generic Value	10,000	2.6	0.014	0.14	270	250	0.0092	400	0.0012	1.4	4,000	45	0.79	0.0034	0.0039	29	61	10	33	100	3.9	0.1	0.19	1.6	2.3	0.076
	DS ≤ 2500 mg/L	Nonre	100 X GW MSC	40	4.5	0.068	0.1	90.0	9.7	0.02	97	0.005	3.5	920	400	9	900'0	900'0	09	09	7.5	9.0	100	16	0.5	0.7	<i>L</i>	10	0.5
	≤ 250		ic e	ပ 0		2 E	\vdash	23 E	Э 0	2 E	0 E	2 E	2 E	О Е	45 E		7 E	8 E	59 E	61 E		2 E		5 E		9 E	9 9	3 E	9 9
	<i>TDS</i>	Residential	Generic Value	10,000	0.64	0.003	0.14	7	6	0.0092	140	0.0012	0.32	1,400	7	62'0	29000'0	82000'0	2	9	1	<i>L'L</i>	100	0.75	0.1	0.19	9.1	2.3	0.076
		Re	7001 MSC MSC	40	1.1	0.016	0.1	0.0052	3.5	0.02	35	0.005	0.84	320	400	9	0.0012	0.0012	09	09	7.5	0.14	100	3.1	0.5	0.7	7	10	0.5
		CASRN	5	103-23-1	2303-16-4	2-08-56	333-41-5	53-70-3	132-64-9	96-12-8	106-37-6	106-93-4	74-95-3	84-74-2	1918-00-9	76-43-6	764-41-0	110-57-6	95-50-1	541-73-1	106-46-7	91-94-1	75-71-8	75-34-3	107-06-2	75-35-4	156-59-2	156-60-5	75-09-2
		REGULATED	SUBSTANCE	DI(2-ETHYLHEXYL)ADIPATE	DIALLATE	DIAMINOTOLUENE, 2,4-	DIAZINON	DIBENZO[A,H] ANTHRACENE	DIBENZOFURAN	DIBROMO-3- CHLOROPROPANE, 1,2-	DIBROMOBENZENE, 1,4-	DIBROMOETHANE, 1,2- (ETHYLENE DIBROMIDE)	DIBROMOMETHANE	DIBUTYL PHTHALATE, N-	DICAMBA	DICHLOROACETIC ACID (HAA)	DICHLORO-2-BUTENE, 1,4-	DICHLORO-2-BUTENE, TRANS-1,4-	DICHLOROBENZENE, 1,2-	DICHLOROBENZENE, 1,3-	DICHLOROBENZENE, P-	DICHLOROBENZIDINE, 3,3'-	DICHLORODIFLUORO- METHANE (FREON 12)	DICHLOROETHANE, 1,1-	DICHLOROETHANE, 1,2-	DICHLOROETHYLENE, 1,1-	DICHLOROETHYLENE, CIS- 1,2-	DICHLOROETHYLENE, TRANS-1,2-	DICHLOROMETHANE (METHYLENE CHLORIDE)

¹ For other options see § 250.308 (relating to soil to groundwater pathway numeric values). All concentrations in mg/kg
E—Number calculated by the soil to groundwater equation in § 250.308
C—Cap
NA—The soil buffer distance option is not available for this substance
N/A—Soil to groundwater values cannot be calculated for these compounds

Appendix A
Table 3—Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

	Soil Duffor	Soli Buller Distance	(feet)	ΑN	Ą	NA	ΑN	NA	AN	30	15	AN	20	NA	NA	20	10	20	ΑΝ	10	NA	NA	NA	NA	NA	NA	NA	AN	NA	NA	30	¥
		idential	Generic Value	1,000 E	1,800 E	1.1 E	48 E	530 E	0.22 E	0.56 E		10,000 C	52 E	8.2 E	8,100 E	570 E	240 E	150 E	560 E	1,400 E	1.2 E	10,000 C	49 E	2,100 E	210 E	53 E	290 E	3.5 E	12 E	18,000 E	19 E	0.24 E
	Nonuse Aquiters	Nonresidential	100 X GW MSC	2,000	7,000	5	270	2,000	0.94	0.26	Н	10,000	20	09	21,000	170	3.6	69	1,000	25	10	10,000	100	19,000	880	180	200	27	20	30,000	11	2
	nuse ,		eric Je	0 E	0 E	1 E	12 E	0 E		3 E			52 E	2 E	0 E	0 E	0 E	37 E			2 E		49 E	0 E	50 E	13 E		2 E	12 E	0 E		4 E
:	No	Residential	Generic Value	1,000	1,800	1.1	1	530	0.052	0.13	110	10,000	2	8.2	2,900	140	240	က	130	330	1.2	10,000	4	780	2	1	290	0.85	1	18,000	3.9	0.24
		Resi	100 X GW MSC	2,000	7,000	5	99	2,000	0.22	0.063	4.1	10,000	20	09	7,600	41	3.6	14	240	5.9	10	10,000	100	6,900	210	43	200	6.5	20	30,000	2.2	2
		3/	ric 'e	Э С	Э С	1 E	3 E	Э С	2 E	Э Ш		ပ	2 E) E	ヨ (7 E	<u>Ш</u> С	2 2	Ш	Э С) E	ヨ (9 E	三 C	1 E	3 E	3 E	35 E	三 (ヨ (4
		Nonresidential	Generic Value	100	180	11	48	530	22		47	10,000	52	820	810	22	240	15	260	140	120	8,300	4.9	210	21	5.3			1,200	18,000	19	24
	2500 mg/L	Nonr	100 X GW MSC	200	002	20	270	2,000	94	26	1.7	10,000	20	000'9	2,100	17	3.6	5.9	1,000	2.5	1,000	10,000	10	1,900	88	18	02	270	2,000	30,000	11	200
	3 > 25		ric re	0 E	0 E	1 E	12 E	0 E	2 E	13 E		ပ 0	2 E	0 E	0 E	14 E	回 0	7 E	回 0	33 E	0 E	B 0	9 E	78 E	5 E	3 E	29 E	2 E	0 E	0 E	В	24 E
	< SQ1	Residential	Generic Value	100	180	11	1	530	5.	1	7	10,000	52	820	290	1	240	3.7	130	3	120	3,000	4.9	7		1.3	2	8.5	1,200	18,000	3.9	2
Used Aquifers		Res	100 X GW MSC	200	200	20	9	2,000	22	6.3	0.41	10,000	20	6,000	760	4.1	3.6	1.4	240	0.59	1,000	6,900	10	069	21	4.3	20	65	2,000	30,000	2.2	200
ed A	Г	/6	ric e	Е	3 E	Н	3 E	3 E	2 E	Ш	-		П	2 E	E	, E		Е			5 E	3 E) E	l E	l E	3 E) E		5 E			Ш
SN		Nonresidential	Generic Value		1.8	0.11	0.48	5.3	0.22	0.56	0.47	2,400	52	8.2	8.1	0.57	240	0.15	5.6	1.4	1.2	83	0.049	2.1	0.21	0.053	0.29	0.35	12	570	0.19	0.24
	TDS ≤ 2500 mg/L	Nonre	100 X GW MSC	2	7	0.5	2.7	20	0.94	0.26	0.017	7,800	20	09	21	0.17	3.6	0.059	10	0.025	10	190	0.1	19	0.88	0.18	0.7	2.7	20	920	0.11	2
	< 250		ic e	1 E	8 E	1 E	2 E	3 E	2 E	3 E	1 E	0 回	2 E	2 E	9 E	4 E		7 E	3 E	3 E	2 E	O	9 E	8 E	5 E	3 E	9 E	5 E	2 E	0 E		4 E
	SQ1	Residential	Generic Value		1.8	0.11	0.12	5.3	0.052	0.13	0.11	880	52	8.2	2.9	0.14	240	0.037	1.3	0.33	1.2	30	0.049	0.78	0.02	0.013	0.29	0.085	12	210	0.039	0.24
		Res	100 X GW MSC	2	7	0.5	0.65	20	0.22	0.063	0.0041	2,800	20	09	9.7	0.041	3.6	0.014	2.4	0.0059	10	69	0.1	6.9	0.21	0.043	0.7	0.65	20	320	0.022	2
		CASRN		120-83-2	94-75-7	78-87-5	542-75-6	75-99-0	62-73-7	77-73-6	60-57-1	84-66-2	35367-38-5	1445-75-6	60-51-5	119-90-4	70-38-2	60-11-7	121-69-7	119-93-7	9-62-952	105-67-9	99-62-0	51-28-5	121-14-2	606-20-2	88-85-7	123-91-1	957-51-7	122-39-4	122-66-7	85-00-7
		REGULATED	SUBSTANCE	DICHLOROPHENOL, 2,4-	DICHLOROPHENOXY ACETIC ACID, 2,4- (2,4-D)	DICHLOROPROPANE, 1,2-	DICHLOROPROPENE, 1,3-	DICHLOROPROPIONIC ACID, 2,2- (DALAPON)	DICHLORVOS	DICYCLOPENTADIENE	DIELDRIN	DIETHYL PHTHALATE	DIFLUBENZURON	DIISOPROPYL METHYLPHOSPHONATE	DIMETHOATE	DIMETHOXYBENZIDINE, 3,3-	DIMETHRIN	DIMETHYLAMINOAZO BENZENE, P-	DIMETHYLANILINE, N,N-	DIMETHYLBENZIDINE, 3,3-	DIMETHYL METHYLPHOSPHONATE	DIMETHYLPHENOL, 2,4-	DINITROBENZENE, 1,3-	DINITROPHENOL, 2,4-	DINITROTOLUENE, 2,4-	DINITROTOLUENE, 2,6- (2,6- DNT)	DINOSEB	DIOXANE, 1,4-	DIPHENAMID	DIPHENYLAMINE	DIPHENYLHYDRAZINE, 1,2-	DIQUAT

¹ For other options see § 250.308 (relating to soil to groundwater pathway numeric values). All concentrations in mg/kg
E—Number calculated by the soil to groundwater equation in § 250.308
C—Cap
NA—The soil buffer distance option is not available for this substance
N/A—Soil to groundwater values cannot be calculated for these compounds

PENNSYLVANIA BULLETIN, VOL. 51, NO. 47, NOVEMBER 20, 2021

Appendix A
Table 3—Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

		_		_	_	_	_		_	_	_	_	_	_	_			_	_					_						_		
	Soil Buffor	Distance	(feet)	20	NA	NA	15	15	15	15	NA	15	NA	NA	15	NA	NA	NA	NA	NA	ΝΑ	NA	NA	NA	ΝΑ	20	NA	15	NA	10	15	NA
			ic	Ш	ш	Е	Е	Ξ	Е	Е	Е	Ε	Ξ	ш	Е	Е	Е	Ш	Ξ	ш	ш	ш	Ш	ပ	Е	ш	ш	Ε	Е	ш	Е	ш
		Nonresidential	Generic Value	180	1.3	16	250	260	260	20	4.1	5.5	17	5.7	110	2,500	1,600	220	4,600	350	530	43	22	10,000	87	0.3	90.0	94	2.5	3,200	3,800	8,700
,	Nonuse Aquirers	Nonre	100 X GW MSC	20	∞	19	48	20	45	12	10	0.2	88	49	4.9	10,000	6,200	220	7,000	490	1,900	260	190	10,000	780	0.097	0.07	8.5	6	26	190	10,000
	se /	Г	6	ш	ш	Ш	Е	Ш	Е	Е	Ш	Е	Ш	Ш	Е	Ш	Ш	Ш	Ш	ш	ш	Ш	Ш	ပ	ш	ш	Ш	Ш	Е	ш	Е	ш
;	Non	Residential	Generic Value	180	1.3	5.9	250	110	120	20	4.1	5.5	4.2	2	37	290	390	54	4,600	120	190	10	7.9	10,000	31	0.11	90.0	94	2.5	3,200	3,800	8,700
		Resid	100 X GW MSC	70	∞	6.9	48	21	21	12	10	0.2	21	17	1.7	4,200	1,500	140	7,000	170	069	63	69	10,000	280	0.035	0.07	8.5	6	26	190	10,000
H	П	Н		Ш	ш	ш	Ш	Ш	Е	Е	Ш	Е	Ш	Ш	Е	Ш	ш	Ш	Ш	ပ	ပ	Ш	Ш	O	ш	ш	Ш	Ш	Ш	ш	Ш	ш
		Nonresidential	Generic Value	18	130	1,600	250	260	260	20	410	220	17	220	1,900	2,500	1,600	220	4,600	10,000	10,000	4,300	2,200	10,000	8.7	30	9	94	250	3,200	3,800	8,700
	TDS > 2500 mg/L	Nonres	100 X GW MSC	7	800	1,900	48	20	45	12	1,000	20	88	4,900	82	10,000	6,200	220	7,000	10,000	10,000	10,000	10,000	10,000	78	9.7	7	8.5	006	26	190	10,000
	. 250	Г	,,	Ш	ш	Ш	Ш	Ш	Е	Е	Ш	В	Ш	Ш	Е	Ш	Ш	Ш	Ш	ပ	ပ	ш	Ш	ပ	ш	ш	Ш	Ш	Е	ш	Ш	ш
	< SQL	Residential	Generic Value	18	130	290	250	260	260	20	410	220	4.2	200	1,900	290	390	54	4,600	10,000	10,000	1,000	790	10,000	3.1		9	94	250	3,200	3,800	8,700
Used Aquifers		Resid	100 X GW MSC	7	800	069	48	20	45	12	1,000	20	21	1,700	82	4,200	1,500	140	7,000	10,000	10,000	6,300	6,900	10,000	28	3.5	7	8.5	006	56	190	10,000
d Ag	Н	Н		Ш	ш	Ш	Е	Е	Е	Е	Е	Е	Е	Ш	Е	Е	Ш	Ш	Е	ш	ш	ш	Ш	Ш	ш	Ш	Ш	Е	Е	Ш	_	ш
Use		Nonresidential	Generic Value	0.18	1.3	16	250	260	260	20	4.1	5.5	0.17	5.7	110	25	16	2.2	46	350	530	43	22	170	0.087	0.3	90.0	94	2.5	3,200	3,800	87
	JS ≤ 2500 mg/L	Nonre	100 X GW MSC	0.07	∞	19	48	20	45	12	10	0.2	0.88	49	4.9	180	62	2.2	20	490	1,900	260	190	1,400	0.78	0.097	0.07	8.5	6	26	190	200
	250	Г		ш	ш	Ш	Ш	Ш	Е	Е	Ш	Е	Ш	ш	Е	Е	Ш	Ш	Ш	ш	ш	ш	Ш	Ш	Ш	ш	Ш	Ш	Е	ш	Е	ш
	≥ SQ1	Residential	Generic Value	0.18	1.3	5.9	110	110	120	20	4.1	5.5	0.042	2	37	5.9	3.9	0.54	46	120	190	10	7.9	170	0.031	0.11	90.0	94	2.5	3,200	2,800	87
		Resi	100 X GW MSC	0.07	∞	6.9	21	21	21	12	10	0.2	0.21	17	1.7	42	15	1.4	102	170	069	63	69	1,400	0.28	0.035	0.07	8.5	6	26	140	200
		CASRN		298-04-4	505-29-3	330-54-1	115-29-7	8-86-656	33213-65-9	1031-07-8	145-73-3	72-20-8	106-89-8	16672-87-0	563-12-2	110-80-5	141-78-6	140-88-5	100-41-4	759-94-4	60-29-7	97-63-2	107-07-3	107-21-1	96-45-7	2104-64-5	22224-92-6	51630-58-1	2164-17-2	206-44-0	86-73-7	75-69-4
-		_												16		_							NI			2	22	_	2			
		REGULATED	SUBSTANCE	DISULFOTON	DITHIANE, 1,4-	DIURON	ENDOSULFAN	ENDOSULFAN I (ALPHA)	ENDOSULFAN II (BETA)	ENDOSULFAN SULFATE	ENDOTHALL	ENDRIN	EPICHLOROHYDRIN	ETHEPHON	ETHION	ETHOXYETHANOL, 2- (EGEE)	ETHYL ACETATE	ETHYL ACRYLATE	ETHYL BENZENE	ETHYL DIPROPYL THIOCARBAMATE, S- (EPTC)	ETHYL ETHER	ETHYL METHACRYLATE	ETHYLENE CHLORHYDRIN	ETHYLENE GLYCOL	ETHYLENE THIOUREA (ETU)	ETHÝLP-NITROPHENYL PHENYLPHOSPHORO THIOATE	FENAMIPHOS	FENVALERATE (PYDRIN)	FLUOMETURON	FLUORANTHENE	FLUORENE	FLUOROTRICHLORO METHANE (FREON 11)

¹ For other options see § 250.308 (relating to soil to groundwater pathway numeric values). All concentrations in mg/kg

E—Number calculated by the soil to groundwater equation in § 250.308

C—Cap

NA—The soil buffer distance option is not available for this substance

N/A—Soil to groundwater values cannot be calculated for these compounds

Appendix A
Table 3—Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

	Doil Duffer	Soli Burrer Distance	(feet)	20	NA	NA	NA	NA	NA	15	15	10	15	15	15	15	15	NA	15	NA	¥ V	Ą	5	20	Ą	NA	NA A	10	20	NA	NA	10
r			ric e	3	Э	E	Э	Э	E	E	_ E	Ш	_ E	Э (Ш	_ E	E	Ε.	Э	3 1	ш	Ш	ပ	Ш	O	Ш	ш	Ш	S	Э,	Е	Ш
		Nonresidential	Generic Value	2.9	1,200	0.29	21,000	420	0.99	620	310	1,100	5.8	3,400	3,300	26	5,300	8.5	820	4.8	0.0057	610	190,00 0	18	10,000	1,900	8.1	3,700	10,000	47	0.51	650
,	Nonuse Aquiters	Nonre	100 X GW MSC	1	10,000	2.6	24,000	920	7.8	70	18	20	9.0	290	180	10	580	40	20	40	0.051	4,500	6.2	6.2	10,000	10,000	20	27	10,000	400	4.5	4.9
	nuse ,		eric Je	Э 6	0 E	1 E	0 E	<u>В</u>	4 E	0 E	0 E	Ш О	8 E	0 E	0 E	26 E	0 E	5 E	0 E	4.8 E	П	<u>В</u>	ပ	3 E	ပ	<u>Э</u>	1 E	<u>В</u>	၁	2 E	2 E	230 E
:	S	Residential	Generic Value	2.9	1,200	0.071	7,700	150	0.24	620	310	1,100	5.8	3,400	3,300	2	1,400	8.5	820	4.	0.0011	150	190,00 0	4.3	10,000	1,900	8.1	890	10,000	47	0.12	23
		Res	100 X GW MSC	_	10,000	0.63	8,700	350	1.9	70	18	20	9.0	290	180	10	150	40	20	40	0.01	1,100	6.2	1.5	10,000	10,000	70	6.5	10,000	400	1.1	1.7
		_	ric e	日() E	9 E	၁ () E) E	3 E	Ш	э «	E () E) E) E) E) E	Ш	Ш	ပ	Ш	ပ	Э) E	国 (Ш	၁
		Nonresidential	Generic Value	290	1,200	2.9	190,00 0	420	66	62,000	68	110	5.8	3,400	3,300	26	8,700	820	820	09	0.057	61	190,00 0	1,800	10,000	190	810	370	10,000	4,700	51	10,000 C
	TDS > 2500 mg/L	Nonre	100 X GW MSC	100	10,000	56	190,00 0	920	780	7,000	4	2	9.0	290	180	10	920	4,000	20	200	0.51	450	6.2	620	10,000	1,000	7,000	2.7	5,000	40,000	450	230
	> 25(Г	ic	Ш	Ш	Ш	ပ	ш	Ш	Ш	В	ш	Ш	ш	Ш	Е	Е	В	Ш	В	ш	ш	ш	ш	ပ	Ш	Ш	ш	ပ	Е	Е	ပ
	SQ1	Residential	Generic Value	290	1,200	0.71	190,00 0	150	24	62,000	68	110	5.8	1,000	3,300	26	8,700	850	820	09	0.011	15	140,00 0	430	10,000	190	810	88	10,000	4,700	12	10,000 C
Used Aquifers		Resi	100 X GW MSC	100	10,000	6.3	190,00 0	320	190	7,000	4	2	9.0	84	180	10	920	4,000	20	200	0.1	110	8.	150	10,000	1,000	7,000	0.65	5,000	40,000	110	170
ed Ac	Г	<i>,</i> c	ric e	Ш	Ш	Ш	Ш	Ш	Э	Ш	Е	ш	Ш	Ш	Ш	Ξ.	Ε.	Ш	Ш	Ξ.	ш .	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ε.	Е	650 E
ſŊ		Nonresidential	Generic Value	2.9	12	0.029	21,000	4.2	0.99	620	0.68	1.1	0.96	42	91	0.56	5,300	8.5	820	4.8	0.0005	0.61	18,000	18	760	1.9	8.1	3.7	170	47	0.51	650
	DS ≤ 2500 mg/L	Nonre	100 X GW MSC	-	100	0.26	24,00 0	9.7	7.8	70	0.04	0.02	0.1	3.5	2	0.1	580	40	20	40	0.0051	4.5	0.23	6.2	2,900	10	70	0.027	20	400	4.5	4.9
	250			Ш	Ш	Ш	Е		Ш	Ш	Ш	ш	Ш	Ш	Ш	Е		Ш	Ш	Ш	ш	Ш	ш	Ш	Ш	Ш	Ш	ш	Ш	Е	Ш	Ш
	≥ SQT	dential	Generic Value	2.9	12	0.0071	7,700	1.5	0.24	620	0.68	1.1	0.96	10	91	0.56	1,400	8.5	820	4.8	0.00011	0.15	1,400	4.3	260	1.9	8.1	0.89	170	47	0.12	230
		Resident	100 X GW MSC	_	100	0.063	8,700	3.5	1.9	70	0.04	0.02	0.1	0.84	2	0.1	150	40	20	40	0.001	1.1	0.018	1.5	1,000	10	20	0.0065	20	400	1.1	1.7
	•	CASRN		944-22-9	20-00-0	64-18-6	39148-24-8	110-00-9	98-01-1	1071-83-6	76-44-8	1024-57-3	118-74-1	87-68-3	77-47-4	67-72-1	110-54-3	51235-04-2	78587-05-0	2691-41-0	302-01-2	123-31-9	193-39-5	36734-19-7	78-83-1	78-59-1	1832-54-8	143-50-0	121-75-5	123-33-1	12427-38-2	78-48-8
		REGULATED	SUBSTANCE	FONOFOS	FORMALDEHYDE	FORMIC ACID	FOSETYL-AL	FURAN	FURFURAL	GLYPHOSATE	HEPTACHLOR	HEPTACHLOR EPOXIDE	HEXACHLOROBENZENE	HEXACHLOROBUTADIENE	HEXACHLOROCYCLO PENTADIENE	HEXACHLOROETHANE	HEXANE	HEXAZINONE	HEXYTHIAZOX (SAVEY)	HMX	HYDRAZINE/HYDRAZINE SULFATE	HYDROQUINONE	INDENO[1,2,3-CD]PYRENE	IPRODIONE	ISOBUTYL ALCOHOL	ISOPHORONE	ISOPROPYL METHYLPHOSPHONATE	KEPONE	MALATHION	MALEIC HYDRAZIDE	MANEB	MERPHOS OXIDE

C—Cap NA—The soil buffer distance option is not available for this substance N/A—Soil to groundwater values cannot be calculated for these compounds

Appendix A
Table 3—Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

	Soil Duffor	Soli buller Distance	(feet)	Ϋ́	ΑN	ΝΑ	Ą	10	ΑΝ	Ϋ́	AA	NA	ΑN	ΑN	ΑN	ΑN	NA	ΑΝ	ĄN	30	15	AN	AN	15	15	30	Ϋ́	NA	ΑN	ΑN	30
		idential	Generic Value	0.16 E	0.061 E	10,000 C		710 E		\dashv	\vdash	38 E	7,600 E	0.02 E	10,000 C	0.12 E	6.4 E	8,400 E	0.34 E	210 E	200 E	2.8 E	1,200 E	21 E	100 E	1,200 E	40 E	2.4 E	0.053 E	0.67 E	2,500 E
,	Nonuse Aquiters	Nonresidential	100 X GW MSC	0.97	0.49	10,000	20	4.5	180	9,700	1,800	300	10,000	0.18	10,000	0.88	26	10,000	2.7	100	35	20	3,000	2.7	2.6	089	70	7	0.24	9	1,000
;	Nonuse	ential	Generic Value	0.057 E	0.021 E	10,000 C		710 E		650 E			7,600 E	0.0048 E	4,300 E	0.029 E	1.6 E	2,000 E	0.082 E	210 E	47 E	2.8 E	1,200 E	1.6 E	25 E	420 E	40 E	2.4 E	0.019 E	0.67 E	2,500 E
		Residential	100 X GW MSC	0.35	0.17	10,000	20	4.5	42	3,500	420	300	10,000	0.042	10,000	0.21	6.3	10,000	99.0	100	8.4	20	3,000	0.21	0.63	240	70	7	0.087	9	1,000
		idential	Generic Value	16 E	6.1 E	10,000 C		710 E		10,000 C	450 E	38 E	7,600 E	0.2 E	10,000 C	12 E	640 E	8,400 E	34 E	21 E	10,000 C	28 E	120 E	2,100 E	10,000 E	10,000 C	4,000 E	240 E	5.3 E	67 E	2,500 E
	2500 mg/L	Nonresidential	100 X GW MSC	6	49	10,000	2,000	4.5	1,800	10,000	1,800	300	10,000	1.8	10,000	88	2,600	10,000	270	10	3,500	200	300	270	260	10,000	7,000	200	24	009	1,000
	TDS > 25	ential	Generic Value	5.7 E	2.1 E	10,000 C		710 E	48 E	10,000 C	100 E	38 E	7,600 E	0.048 E	4,300 E	2.9 E	160 E	2,000 E	8.2 E	21 E	4,700 E	28 E	120 E	160 E	2,500 E	10,000 C	4,000 E	240 E	1.9 E	67 E	2,500 E
quifers		Residential	100 X GW MSC	35	17	10,000	2,000	4.5	420	10,000	420	300	10,000	0.42	10,000	21	089	10,000	99	10	840	200	300	21	63	10,000	7,000	200	8.7	009	1,000
Used Aquifers		Nonresidential	Generic Value	0.16 E	0.061 E	2,100 E		630 E		1,800 E	4.5 E		76 E	0.002 E	120 E	0.12 E	6.4 E	84 E	0.34 E	0.21 E	200 E	0.28 E	1.2 E	21 E	100 E	1,200 E	40 E	2.4 E	0.053 E	0.67 E	25 E
	≤ 2500 mg/L	Nonres	100 X GW MSC	0.97	0.49	10,000	20			9,7	1	3	400	0.018	780	0.88	26	620	2.7	0.1	35	2	က	2.7	2.6	089	70	7	0.24	9	10
	<i>TDS</i> ≤ 25	Residential	Generic Value	0.057 E	0.021 E	200 E	-	630 E	0.48 E	650 E	-1	0.38 E	76 E	0.00048 E	43 E	0.029 E	1.6 E	20 E	0.082 E	0.21 E	47 E	0.28 E	1.2 E	1.6 E	25 E	420 E	40 E	2.4 E	0.019 E	0.67 E	25 E
		Resid	100 X GW MSC	0.35	0.17	4,200	20	4	4.2	3,500	4.2	3	400	0.0042	280	0.21	6.3	150	99.0	0.1	8.4	2	င	0.21	0.63	240	70	7	0.087	9	10
		CASRN	5	126-98-7	10265-92-6	67-56-1	16752-77-5	72-43-5	109-86-4	79-20-9	96-33-3	74-87-3	78-93-3	60-34-4	108-10-1	624-83-9	591-78-6	80-62-6	66-27-3	298-00-0	25013-15-4	1634-04-4	94-74-6	101-14-4	91-57-6	98-83-9	51218-45-2	21087-64-9	7786-34-7	79-11-8	91-20-3
		REGULATED	SUBSTANCE	METHACRYLONITRILE	METHAMIDOPHOS	METHANOL	METHOMYL	METHOXYCHLOR	METHOXYETHANOL, 2-	METHYL ACETATE	METHYL ACRYLATE	METHYL CHLORIDE	METHYL ETHYL KETONE	METHYL HYDRAZINE	METHYL ISOBUTYL KETONE	METHYL ISOCYANATE	METHYL N-BUTYL KETONE (2-HEXANONE)	METHYL METHACRYLATE	METHYL METHANESULFONATE	METHYL PARATHION	METHYL STYRENE (MIXED ISOMERS)	METHYL TERT-BUTYL ETHER (MTBE)	METHYLCHLOROPHENOXYA CETIC ACID (MCPA)	METHYLENE BIS(2- CHLOROANILINE), 4,4'-	METHYLNAPHTHALENE, 2-	METHYLSTYRENE, ALPHA	METOLACHLOR	METRIBUZIN	MEVINPHOS	MONOCHLOROACETIC ACID (HAA)	NAPHTHALENE

¹ For other options see § 250.308 (relating to soil to groundwater pathway numeric values). All concentrations in mg/kg E—Number calculated by the soil to groundwater equation in § 250.308 C—Cap NA—The soil buffer distance option is not available for this substance N/A—Soil to groundwater values cannot be calculated for these compounds

Appendix A
Table 3—Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

					Used A	Used Aquifers								
			TDS ≤ 25(≤ 2500 mg/L			TDS > 2	TDS > 2500 mg/L			Nonuse	Nonuse Aquifers		, o # o !! o o
REGULATED	CASRN	Res	Residential	Nonre	Nonresidential	Resi	Residential	Nonn	Nonresidential	Resi	Residential	Nonre	Nonresidential	Distance
SUBSTANCE		100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	(feet)
NAPHTHYLAMINE, 1-	134-32-7	0.036	0.29 E	0.15	1.2 E	3.6	29 E	E 15	120 E	3.6	29 E	15	120 E	15
NAPHTHYLAMINE, 2-	91-59-8	0.036	0.012 E	0.15	0.049 E	3.6	1.2 E	E 15	4.9 E	36	12 E	150	49 E	NA
NAPROPAMIDE	15299-99-7	420	970 E	1,200	2,800 E	7,000	16,000 E	E 7,000	16,000 E	420	970 E	1,200	2,800 E	30
NITROANILINE, O-	88-74-4	0.011	0.002 E	0.044	0.0079 E	1.1	0.2 E	E 4.4	0.79 E	0.011	0.002 E	0.044	0.0079 E	NA
NITROANILINE, P-	100-01-6	3.3	0.49 E	14	2.1 E	330	49 E	E 1,400	210 E	3.3	0.49 E	14	2.1 E	NA
NITROBENZENE	98-95-3	0.12	0.052 E	0.63	0.27 E	12	5.2 E	E 63	27 E	12	5.2 E	63	27 C	NA
NITROGUANIDINE	556-88-7	20	7.8 E	20	7.8 E	7,000	180 E	E 7,000	780 E	20	7.8 E	02	7.8 E	NA
NITROPHENOL, 2-	88-75-5	28	5.7 E	78	16 E	2,800	240 E	E 7,800	1,600 E	2,800	570 E	7,800	1,600 E	NA
NITROPHENOL, 4-	100-02-7	9	4.1 E	9	4.1 E	009	410 E	E 600	410 E	600	410 E	009	410 E	NA
NITROPROPANE, 2-	79-46-9	0.0018	0.00029 E	0.0093	0.0015 E	0.18	0.029 E	E 0.93	0.15 E	0.018	0.0029 E	0.093	0.015 E	NA
NITROSODIETHYLAMINE, N-	55-18-5	0.0000 45	0.000007 E	0.0005	0.0001 E	0.0045	0.00079 E	E 0.058	0.01 E	0.00045	0.0000 79	0.0058	0.001 E	ΑN
NITROSODIMETHYLAMINE, N-	62-75-9	0.00014	0.00014 0.000019 E	0.0018	0.0002 E	0.014	0.0019 E	E 0.18	0.024 E	0.0014	0.0001 E	0.018	0.0024 E	۷N
NITROSO-DI-N-BUTYLAMINE, N-	924-16-3	0.0031	0.0038 E	0.016	0.02 E	0.31	0.38 E	E 1.6	2 E	0.31	0.38 E	1.6	2 E	NA
NITROSODI-N- PROPYLAMINE, N-	621-64-7	0.0025	0.00035 E	0.013	0.0018 E	0.25	0.035 E	E 1.3	0.18 E	0.025	0.0035 E	0.13	0.018 E	ΑΝ
NITROSODIPHENYLAMINE, N-	86-30-6	1.9	3 E	9.6	15 E	190	300 E	Е 960	1,500 E	190	300 E	096	1,500 E	30
NITROSO-N-ETHYLUREA, N-	759-73-9	0.00079	0.00079 0.000091 E	0	0.0012 E	0.079		E 1	0.12 E	0.79	0.091 E	10	1.2 E	NA
OCTYL PHTHALATE, DI-N-	117-84-0	35	\neg		\rightarrow	300	\neg	_	\neg	300	-	300	-	5
OXAMYL (VYDATE)	23135-22-0	20	-	20	\neg	2,000	260	, ,	\neg	20		20	\dashv	ΑN
PARAQUAT	1910-42-5	က	\rightarrow	4	120 E	300		က	=	3		က	120 E	15
PARATHION	56-38-2	0.1	\neg	4	\neg	10	\neg	2		0.1	_	0.29	\rightarrow	15
PCBS, TOTAL (POLYCHLORINATED BIPHENLYS) (AROCLORS)	1336-36-3	0.05	9.8 E	0.05	9.8 E	5	980 E	E 5	980 E	0.05	9.8 E	0.05	9.8 E	10
PCB-1016 (AROCLOR)	12674-11-2	0.24	99 E	0.68	190 E	24	6,600 E	E 25	6,900 E	0.24	99 E	0.68	190 E	10
PCB-1221 (AROCLOR)	11104-28-2	0.033	0.16 E	0.14	0.68 E	3.3		E 14	68 E	0.033	0.16 E	0.14	0.68 E	20
PCB-1232 (AROCLOR)	11141-16-5	0.033	0.13 E	_	0.54 E	3.3		E 14		0.033	0.13 E	0.14	0.54 E	20
PCB-1242 (AROCLOR)	53469-21-9	0.033	4 E	0.14	17 E	3.3	400 E	E 10	1,200 E	0.033	4 E	0.14	17 E	10
PCB-1248 (AROCLOR)	12672-29-6	0.033	-	4	-	3.3	\neg		-	0.033		0.14	\rightarrow	10
PCB-1254 (AROCLOR)	11097-69-1	690.0	\neg	_	-	2.2	- 1	5.	-	0.069	-	0.19	\dashv	5
PCB-1260 (AROCLOR)	11096-82-5	0.033	150 E	0.14	630 E	3.3	15,000 E	Е 8	36,000 E	0.033	150 E	0.14	630 E	5

C—Cap
NA—The soil buffer distance option is not available for this substance
N/A—Soil to groundwater values cannot be calculated for these compounds

PENNSYLVANIA BULLETIN, VOL. 51, NO. 47, NOVEMBER 20, 2021

Appendix A
Table 3—Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

	£	Soil Buffer Distance	(feet)	30	10	20	15	10	AN	AN	NA	ΑN	10	AN	30	ΝΑ	15	30	NA	NA	NA	NA	ΝΑ	ΑN	Ą	NA	NA	30	NA	10	Ą
Г			ان د د	Ш	В	В	ш	ш				ш	ш	\vdash	Е	Ш	ပ	ш	ပ	ш	В	Е	В	Ш	ш	Ш	Е	Е	ш	Е	ш
		Nonresidential	Generic Value	830	5,900	15	870	5,000	N/A	N/A	N/A	29,000	10,000	3,300	15	8,200	190,00 0	4.1	260	7.4	39	450	0.46	25	31	0.5	2.4	1,700	0.19	2,200	4.4
	Nonuse Aquifers	Nonre	100 X GW MSC	490	74	3	44	100	2.9	0.007	0.007	76,000	110	20,000	9.7	58,000	70,000	1.9	1,800	20	40	730	1	49	180	1	10	880	1.1	13	35
	nse /	Г	ji e	Ш	Ш	Е	Ш	ш				Ш	ш	ш	В	Е	၁ ၀ ၀	ш	Ш	ш	Е	В	Е	Ш	Ш	ш	Е	Е	ш	В	ш
	Non	Residential	Generic Value	290	5,900	3.5	870	5,000	A/N	A/N	N/A	12,000	10,000	3,300	5.3	3,000	190,00 0	1.5	130	7.4	39	160	0.46	8.7	7.3	0.5	2.4	400	0.047	2,200	4.4
		Resi	100 X GW MSC	170	74	0.72	44	100	←	0.007	0.007	30,000	110	20,000	3.5	21,000	34,000	0.69	420	20	40	260	1	17	45	1	10	210	0.27	13	35
	Т	Т	0	ပ	Ш	Ш	ш	ш				ш	ш	Ш	Е	Ш	ပ	ш	Ш	ш	Ш	Е	Ш	Ш	ш	Ш	Е	Е	ш	Ш	ш
		Nonresidential	Generic Value	10,000	5,900	1,500	870	200	N/A	N/A	N/A	4,600	10,000	3,300	1,500	820	190,00 0	410	260	740	3,900	920	0.46	2,500	3,100	20	240	9,900	19	2,200	4.4
	TDS > 2500 mg/L	Nonres	100 X GW MSC	9,200	74	300	44	10	290	0.7	0.7	12,000	110	20,000	920	5,800	14,000	190	1,800	5,000	4,000	1,500	1	4,900	10,000	100	1,000	5,200	110	13	35
	250	H	0	ပ	Е	Ш	Ш	ш				ш	ш	Ш	Е	Ш	ш	Ш	Ш	ш	Ш	Е	Ш	Ш	Ш	Ш	Е	Е	Ш	Е	ш
	< SQ1	Residential	Generic Value	10,000	5,900	320	200	200	N/A	N/A	N/A	1,200	10,000	3,300	530	300	49,000	150	130	740	3,900	920	0.46	870	730	20	240	9,900	4.7	2,200	4.4
Used Aauifers		Resid	100 X GW MSC	9,200	74	72	25	10	100	0.7	0.7	3,000	110	20,000	320	2,100	3,400	69	420	5,000	4,000	1,500	1	1,700	4,200	100	1,000	5,200	27	13	35
d Aa		Н		Ш	Ш	Ш	ш	ш				ш	ш	Ш	Е	Ш	ш	Ш	Ш	ш	Ш	Е	Ш	Ш	ш	Ш	Е	Е	ш	Ш	ш
Use		Nonresidential	Generic Value	830	620	15	20	5	N/A	N/A	N/A	46	10,000	33	15	8.2	2,000	4.1	5.6	7.4	39	450	0.0046	25	31	0.5	2.4	1,700	0.19	2,200	4.4
	DS ≤ 2500 mg/L	Nonre	100 X GW MSC	490	7.8	3	_	0.1	2.9	0.007	200.0	120	110	200	9.7	28	140	1.9	18	20	40	730	0.01	49	180	1	10	880	1.1	13	35
	250	Г	0	Ш		Е	ш	ш				Ш	ш	Ш	-	Ш	ш	Ш	-	_	Е	Е	Ш	Ш	ш	Ш	Е	Е		Е	ш
	≥ SQ1	dential	Generic Value	290	220	3.5	5	5	N/A	N/A	N/A	12	10,000	33	5.3	3	490	1.5	1.3	7.4	39	160	0.0046	8.7	7.3	0.5	2.4	400	0.047	2,200	4.4
		Resident	100 X GW MSC	170	2.8	0.72	0.25	0.1	_	200.0	0.007	30	110	200	3.5	21	34	69.0	4.2	20	40	260	0.01	17	42	1	10	210	0.27	13	35
	_	CASRN		1114-71-2	608-93-5	7-10-92	82-68-8	87-86-5	375-73-5	1763-23-1	335-67-1	62-44-2	85-01-8	108-95-2	108-98-5	108-45-2	90-43-7	298-02-2	85-44-9	1918-02-1	1610-18-0	23950-58-5	1918-16-7	8-86-602	67-63-0	139-40-2	122-42-9	103-65-1	75-56-9	129-00-0	8003-34-7
L		24.5	5	111	09	7	٣	80	37	176	33	9	8	10	10	10	0)	25	8	191	161	2395	191	20	9	13	12	10	7	12	800
		REGULATED	SUBSTANCE	PEBULATE	PENTACHLOROBENZENE	PENTACHLOROETHANE	PENTACHLORO NITROBENZENE	PENTACHLOROPHENOL	PERFLUOROBUTANE SULFONATE (PFBS)	PERFLUOROOCTANE SULFONATE (PFOS)	PERFLUOROOCTANOIC ACID (PFOA)	PHENACETIN	PHENANTHRENE	PHENOL	PHENYL MERCAPTAN	PHENYLENEDIAMINE, M-	PHENYLPHENOL, 2-	PHORATE	PHTHALIC ANHYDRIDE	PICLORAM	PROMETON	PRONAMIDE	PROPACHLOR	PROPANIL	PROPANOL, 2- (ISOPROPYL ALCOHOL)	PROPAZINE	PROPHAM	PROPYLBENZENE, N-	PROPYLENE OXIDE	PYRENE	PYRETHRUM

¹ For other options see § 250.308 (relating to soil to groundwater pathway numeric values). All concentrations in mg/kg E—Number calculated by the soil to groundwater equation in § 250.308

C—Cap NA—The soil buffer distance option is not available for this substance N/A—Soil to groundwater values cannot be calculated for these compounds

Appendix A
Table 3—Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

					Used A	Used Aquifers								
			TDS ≤ 2500 mg/l	70 mg/L			ZDS >	TDS > 2500 mg/L			Nonuse	Nonuse Aquifers		:
REGULATED	CASBN	Res	Residential	Nonre	Nonresidential	Resi	Residential	Nonr	Nonresidential	Resi	Residential	Nonre	Nonresidential	Soil Buffer Distance
SUBSTANCE		100 X GW MSC	Generic Value	(feet)										
PYRIDINE	110-86-1	3.4	0.39 E	9.7	1.1 E	350	39	E 970	110 E	35	3.9 E	6	11 E	Ϋ́
QUINOLINE	91-22-5	0.022	0.074 E	0.091	0.31 E	2.2	7.4 E	E 9.1	31 E	22	74 E	91	310 E	20
QUIZALOFOP (ASSURE)	76578-14-8	30	47 E	30	47 E	30	47 E	E 30	47 E	30	47 E	30	47 E	30
RDX	121-82-4	0.2	0.057 E	0.2	0.057 E	20	5.7 E	E 20	5.7 E	0.2	0.057 E	0.2	0.057 E	NA
RESORCINOL	108-46-3	006'9	800 E	19,00 0	2,200 E	190,00 0	80,000	E 190,00	190,00 C 0	006'9	800 E	19,000	2,200 E	NA
RONNEL	299-84-3	170	270 E	490	760 E	4,000	6,200 E	E 4,000	6,200 E	170	270 E	490	760 E	30
SIMAZINE	122-34-9	0.4	0.15 E	0.4	0.15 E	40	15 E	E 40	15 E	0.4	0.15 E	0.4	0.15 E	ΑN
STRYCHNINE	57-24-9	1		2.9	2.4 E	100	81 E	E 290	240 E	1,000	810 E	2,900	2,400 E	NA
STYRENE	100-42-5	10	24 E		24 E	1,000	2,400 E	E 1,000	2,400 E	1,000	2,400 E	1,000	2,400 E	30
TEBUTHIURON	34014-18-1	20	83 E	50	83 E	5,000	8,300 E	E 5,000	8,300 E	20	83 E	20	83 E	30
TERBACIL	5902-51-2	6		6	2.2 E	900		E 900	220 E	6	2.2 E	6	2.2 E	NA
TERBUFOS	13071-79-9	0.04	0.055 E	0.04	3 250.0	4	5.5 E	E 4	5.5 E	0.04	0.055 E	0.04	0.055 E	30
TETRACHLOROBENZENE, 1,2,4,5-	95-94-3	_	4.6 E	2.9	13 E	28	270 E	E 28	270 E	28	270 E	28	270 E	20
TETRACHLORODIBENZO-P- DIOXIN, 2,3,7,8- (TCDD)	1746-01-6	0.000.0	0.032 E	0.000	0.032 E	0.0003	3.2	E 0.0003	3.2 E	0.0019	20 E	0.0019	20 E	5
TETRACHLOROETHANE, 1,1,1,2-	630-20-6	7	18 E	2	18 E	002	1,800	Е 700	1,800 E	200	1,800 E	200	1,800 E	30
TETRACHLOROETHANE, 1,1,2,2-	79-34-5	0.084	0.026 E	0.43	0.13 E	8.4	2.6 E	E 43	13 E	8.4	2.6 E	43	13 E	NA
TETRACHLOROETHYLENE (PCE)	127-18-4	0.5	0.43 E	0.5	0.43 E	9	43 [Е 50	43 E	9	4.3 E	2	4.3 E	ΝΑ
TETRACHLOROPHENOL, 2,3,4,6-	58-90-2	100	1,600 E	290	4,500 E	10,000	160,000 E	E 18,000	190,00 C 0	18,000	190,00 C 0	18,000	190,000 0	15
TETRAETHYL LEAD	78-00-2	0.0003	0.0043 E	0.000	0.012 E	0.035	0.43	E 0.097	1.2 E	0.35	4.3 E	0.97	12 E	15
TETRAETHYLDITHIO PYROPHOSPHATE	3689-24-5	1.7	2.5 E	4.9	7.3 E	170	250 E	E 490	730 E	1.7	2.5 E	4.9	7.3 E	30
TETRAHYDROFURAN	109-99-9	2.5	0.55 E	13	2.8 E	250	25 E	E 1,300	280 E	2.5	0.55 E	13	2.8 E	NA
THIOFANOX	39196-18-4	_			0.32 E	100		E 290		_	0.11 E	2.9	0.32 E	Υ
THIRAM	137-26-8	52	140 E		390 E	3,000		\dashv		52	140 E	150	-	20
TOLUENE	108-88-3	100	-		-	10,000	\neg		4,400	10,000	-	10,000	\rightarrow	¥N.
TOLUIDINE, M-	108-44-1	4.1	-		-	410	190 E		780	\Box		- 1		ΑΝ
TOLUIDINE, O-	95-53-4	4.1	4.7 E	17	19 E	410	470 E	E 1,700	1,900 E	4,100	4,700 E	10,000	10,000 C	ΑΝ

C—Cap
NA—The soil buffer distance option is not available for this substance
N/A—Soil to groundwater values cannot be calculated for these compounds

Appendix A
Table 3—Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

	5	Soil Buffer	(feet)	ΑN	20	15	NA	20	NA	20	15	NA	NA	NA	15	20	NA	20	NA	NA	NA	NA	NA	30	15	30	AN	NA
Г			U	ш	Е	ш	ш	ပ	ш	Е	Ш	Е	Е	Ш	ပ	ш	Ш	ш	Е	ш	ш	Е	В	Ш	ပ	Ш	ш	Ш
		Nonresidential	Generic Value	8.3	1.2	1.9	350	10,000	0.97	2,700	31	72	1.5	1.7	190,00 0	28,000	1,500	22	8.4	320	0.15	1.5	2,400	1.9	10,000	93	20	0.023
	Nonuse Aquifers	Nonre	100 X GW MSC	9.1	0.3	0.38	800	10,000	9	700	4	200	2	5	100,001 0	9,700	7,000	2	49	400	0.26	6.2	10,000	1	5,300	53	20	0.2
	se A	Н		ш	Ш	Ш	Ш	၁	Ш	Е	Ш	Ш	Ш	Ш	ပ	Ш	Ш	ш	Ш	Ш	Ш	Е	Ш	Ш	Ш	ш	ш	Ш
	Nonu	Residential	Generic Value	2	1.2	0.47	350	10,000	0.97	2,700	31	72	1.5	1.7	190,00 0	10,000	1,500	22	2.9	320	0.037	0.36	870	1.9	7,300	23	20	0.023
		Resic	100 X GW MSC	2.2	0.3	0.091	800	10,000	9	200	4	200	2	2	100,001 0	3,500	7,000	2	17	400	0.063	1.5	6,900	1	1,300	13	20	0.2
H	Т	Н		Ш	Ш	Ш	ш	O	Ш	Е	Ш	Ш	Ш	ш	U	Ш	Ш	Ш	Ш	Ш	Ш	Е	၁	Ш	O	Ш	ш	Ш
		Nonresidential	Generic Value	830	120	190	350	10,000	26	2,700	3,100	720	15	17	190,00 0	2,800	150	2,200	840	320	15	150	10,000	190	10,000	8,600	20	2.3
	TDS > 2500 mg/L	Nonres	100 X GW MSC	910	30	38	800	10,000	009	700	400	2,000	20	20	97,000	970	200	200	4,900	400	56	620	10,000	100	5,300	4,900	20	20
	250	Н		Ш	Е	Ш	ш	၁	Ш	Е	Ш	Е	Е	В	ပ	Ш	Ш	Ш	Ш	Ш	Ш	Е	၁	Ш	Ш	Ш	ш	ш
	< SQL	Residential	Generic Value	200	120	47	350	10,000	26	2,700	3,100	720	15	17	190,00 0	1,000	150	2,200	290	320	3.7	36	10,000	190	7,300	2,300	20	2.3
Used Aguifers		Resid	100 X GW MSC	220	30	9.1	800	10,000	009	200	400	2,000	20	20	35,000	350	200	200	1,700	400	6.3	150	10,000	100	1,300	1,300	20	20
d Aa		Н	0	Ш	Е	ш	ш	၁	Ш	Е	Ш	Е	Е	Ш	ш	Ш	Ш	ш	Е	ш	ш	Е	Е	Ш	Ш	Ш	ш	Ш
Use		Nonresidential	Generic Value	8.3	1.2	1.9	3.5	10,000	0.97	27	31	7.2	0.15	0.17	5,900	28	1.5	22	8.4	3.2	0.15	1.5	2,400	1.9	300	93	0.2	0.023
	DS ≤ 2500 mg/L	Nonre	100 X GW MSC	9.1	0.3	0.38	80	4,400	9	7	4	20	0.5	0.5	970	9.7	7	5	49	4	0.26	6.2	10,000	1	53	53	0.5	0.2
	250	Г		Ш	Ш	ш	ш	Е	Ш	Ш	Ш	Ш	Ш	Е	Ш	Ш	Е	ш	Ш	Ш	ш	Ш	Ш		ш	Ш	ш	Ш
	≥ SQT	dential	Generic Value	2	1.2	0.47	3.5	3,400	0.97	27	31	7.2	0.15	0.17	2,100	10	1.5	22	2.9	3.2	0.037	0.36	870	1.9	73	23	0.2	0.023
		Resident	100 X GW MSC	2.2	0.3	0.091	80	1,100	9	7	4	20	0.5	0.5	320	3.5	7	2	17	4	0.063	1.5	6,900	1	13	13	0.5	0.2
	_	CASRN		106-49-0	8001-35-2	2303-17-5	75-25-2	76-13-1	76-03-9	120-82-1	108-70-3	71-55-6	2-00-62	79-01-6	95-95-4	88-06-2	93-76-5	93-72-1	9-77-865	96-18-4	96-19-5	121-44-8	112-27-6	1582-09-8	95-63-6	108-67-8	25-63-0	118-96-7
		REGULATED	SUBSTANCE	TOLUIDINE, P-	TOXAPHENE	TRIALLATE	TRIBROMOMETHANE (BROMOFORM) (THM)	TRICHLORO-1,2,2- TRIFLUOROETHANE, 1,1,2-	TRICHLOROACETIC ACID (HAA)	TRICHLOROBENZENE, 1,2,4-	TRICHLOROBENZENE, 1,3,5-	TRICHLOROETHANE, 1,1,1-	TRICHLOROETHANE, 1,1,2-	TRICHLOROETHYLENE (TCE)	TRICHLOROPHENOL, 2,4,5-	TRICHLOROPHENOL, 2,4,6-	TRICHLOROPHENOXY ACETIC ACID, 2,4,5- (2,4,5-T)	TRICHLOROPHENOXY PROPIONIC ACID, 2,4,5- (2,4,5-TP)(SILVEX)	TRICHLOROPROPANE, 1,1,2-	TRICHLOROPROPANE, 1,2,3-	TRICHLOROPROPENE, 1,2,3-	TRIETHYLAMINE	TRIETHYLENE GLYCOL	TRIFLURALIN	TRIMETHYLBENZENE, 1,3,4- (TRIMETHYLBENZENE, 1,2,4-)	TRIMETHYLBENZENE, 1,3,5-	TRINITROGLYCEROL (NITROGLYCERIN)	TRINITROTOLUENE, 2,4,6-

C—Cap
NA—The soil buffer distance option is not available for this substance
N/A—Soil to groundwater values cannot be calculated for these compounds

Appendix A
Table 3—Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

	Soil Buffor	Distance	(feet)	Ϋ́	ĄN	₹	30	ΑΝ	Ϋ́
		Nonresidential	Generic Value	21 E	3.8 E	0.27 E	4,100 E	10,000 C	78 F
ν ν	Norwse Aquirers	Nonres	100 X GW MSC	180	7.8	2	1,700	10,000	490
0,000	Normase	Residential	Generic Value	5 E	0.73 E	0.27 E	2,400 E	10,000 C	27 F
		Resic	100 X GW MSC	42	1.5	2	1,000	10,000	170
		Nonresidential	Generic Value	2,100 E	38 E	2.7 E	900 E	10,000 C 10,000 10,000 C 10,000 10,000 C	160 F
	TDS > 2500 mg/L	Nonres	100 X GW MSC	10,000	78	20	290	10,000	1 000
	TDS > 25	Residential	Generic Value	500 E	7.3 E	2.7 E	240 E	10,000 C 10,000	160 F
quifers		Resi	100 X GW MSC	4,200	15	20	100	10,000	1 000
Used Aquifers		Nonresidential	Generic Value	21 E	0.38 E	0.027 E	6.9 E	3 066	78 F
	10 mg/L	Nonres	100 X GW MSC	180	0.78	0.2	2.9	1,000	067
	<i>TDS ≤ 2500 mg/</i> L	idential	Generic Value	5 E	0.073 E	0.027 E	2.4 E	300 E	27 F
		CASRN Residentia		42	0.15	0.2	-	1,000	170
				108-05-4	593-60-2	75-01-4	81-81-2	1330-20-7	12122-67-7
		REGULATED	SUBSTANCE	VINYL ACETATE	VINYL BROMIDE (BROMOETHENE)	VINYL CHLORIDE	WARFARIN	XYLENES (TOTAL)	ZINEB

¹ For other options see § 250.308 (relating to soil to groundwater pathway numeric values). All concentrations in mg/kg
E—Number calculated by the soil to groundwater equation in § 250.308
C—Cap
NA—The soil buffer distance option is not available for this substance
N/A—Soil to groundwater values cannot be calculated for these compounds

Appendix A Table 4—Medium-Specific Concentrations (MSCs) for Inorganic Regulated Substances in Soil A. Direct Contact Numeric Values

		Residentia	a/	Nonresid	enti	al MSCs	
REGULATED SUBSTANCE	CASRN	MSC 0—15 fee		Surface So 0—2 feet	il	Subsurfac Soil 2—15 fee	
ALUMINUM	7429-90-5	190,000	С	190,000	С	190,000	С
ANTIMONY	7440-36-0	88	G	1,300	G	190,000	С
ARSENIC	7440-38-2	12	G	61	G	190,000	С
BARIUM AND COMPOUNDS	7440-39-3	44,000	G	190,000	С	190,000	С
BERYLLIUM	7440-41-7	440	G	6,400	G	190,000	С
BORON AND COMPOUNDS	7440-42-8	44,000	G	190,000	С	190,000	С
CADMIUM	7440-43-9	110	G	1,600	G	190,000	С
CHROMIUM III	16065-83-1	190,000	С	190,000	С	190,000	С
CHROMIUM VI	18540-29-9	37	G	180	G	140,000	N
COBALT	7440-48-4	66	G	960	G	190,000	N
COPPER	7440-50-8	7,200	G	100,000	G	190,000	С
CYANIDE, FREE	57-12-5	130	G	1,900	G	190,000	С
FLUORIDE	16984-48-8	8,800	G	130,000	G	190,000	С
IRON	7439-89-6	150,000	G	190,000	С	190,000	С
LEAD	7439-92-1	500	U	1,000	S	190,000	С
LITHIUM	7439-93-2	440	G	6,400	G	190,000	С
MANGANESE	7439-96-5	31,000	G	190,000	С	190,000	С
MERCURY	7439-97-6	35	G	510	G	190,000	С
MOLYBDENUM	7439-98-7	1,100	G	16,000	G	190,000	С
NICKEL	7440-02-0	4,400	G	64,000	G	190,000	С
PERCHLORATE	7790-98-9	150	G	2,200	G	190,000	С
SELENIUM	7782-49-2	1,100	G	16,000	G	190,000	С
SILVER	7440-22-4	1,100	G	16,000	G	190,000	С
STRONTIUM	7440-24-6	130,000	G	190,000	С	190,000	С
THALLIUM	7440-28-0	2.2	G	32	G	190,000	С
TIN	7440-31-5	130,000	G	190,000	С	190,000	С
VANADIUM	7440-62-2	15	G	220	G	190,000	С
ZINC	7440-66-6	66,000	G	190,000	С	190,000	С

G—Ingestion

N—Inhalation C—Cap U—UBK Model

S—SEGH Model

Appendix A
Table 4—Medium-Specific Concentrations (MSCs) for Inorganic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

					Used /	Used Aquifers								
	•		TDS ≤ 2500 mg/l	.00 mg/L			TDS > 2	2500 mg/L			Nonuse Aquiters	Aquiters		Soil
REGULATED	CASRN	4	~	N	NR	R	~	NR	2	4	R	N	NR	Buffer
SUBSTANCE		100 X GW MSC	Generic Value	Distance (feet)										
ANTIMONY	7440-36-0	9.0	27	9.0	27	09	2,700	09	2,700	009	27,000	009	27,000	15
ARSENIC	7440-38-2	1	29	-	29	100	2,900	100	2,900	1,000	29,000	1,000	29,000	15
BARIUM AND COMPOUNDS	7440-39-3	200	8,200	200	8,200	20,000	190,000	20,000	190,000	190,000	190,000	190,000	190,000	15
BERYLLIUM	7440-41-7	0.4	320	0.4	320	40	32,000	40	32,000	400	190,000	400	190,000	10
BORON AND COMPOUNDS	7440-42-8	009	1,900	009	1,900	60,000	190,000	000'09	190,000	190,000	190,000	190,000	190,000	30
CADMIUM	7440-43-9	0.5	38	0.5	38	20	3,800	20	3,800	200	38,000	200	38,000	15
CHROMIUM (III)	16065-83-1	10	190,000	10	190,000	1,000	190,000	1,000	190,000	10,000	190,000	10,000	190,000	5
CHROMIUM (VI)	18540-29-9	10	190	10	190	1,000	19,000	1,000	19,000	10,000	190,000	10,000	190,000	15
COBALT	7440-48-4	1	45	2.9	130	100	4,500	290	13,000	1,000	45,000	2,900	130,000	15
COPPER	7440-50-8	100	43,000	100	43,000	10,000	190,000	10,000	190,000	100,000	190,000	100,000	190,000	10
CYANIDE, FREE	57-12-5	20	200	20	200	2,000	20,000	2,000	20,000	20,000	190,000	20,000	190,000	20
FLUORIDE	16984-48-8	400	44	400	44	40,000	4,400	40,000	4,400	190,000	44,000	190,000	44,000	NA
LEAD	7439-92-1	0.5	420	0.5	450	20	45,000	20	45,000	500	190,000	200	190,000	10
LITHIUM	7439-93-2	6.9	2,100	19	5,700	069	190,000	1,900	190,000	6,900	190,000	19,000	190,000	10
MANGANESE	7439-96-5	30	2,000	30	2,000	3,000	190,000	3,000	190,000	30,000	190,000	30,000	190,000	15
MERCURY	7439-97-6	0.2	10	0.2	10	20	1,000	20	1,000	200	10,000	200	10,000	15
MOLYBDENUM	7439-98-7	4	650	4	650	400	65,000	400	65,000	4,000	190,000	4,000	190,000	15
NICKEL	7440-02-0	10	029	10	029	1,000	65,000	1,000	65,000	10,000	190,000	10,000	190,000	15
PERCHLORATE	6-86-0622	1.5	0.17	1.5	0.17	150	17	150	17	1,500	170	1,500	170	NA
SELENIUM	7782-49-2	2	56	2	56	200	2,600	200	2,600	5,000	26,000	2,000	26,000	20
SILVER	7440-22-4	10	84	10	84	1,000	8,400	1,000	8,400	10,000	84,000	10,000	84,000	20
STRONTIUM	7440-24-6	400	44	400	44	40,000	4,400	40,000	4,400	190,000	44,000	190,000	44,000	NA
THALLIUM	7440-28-0	0.2	14	0.2	14	20	1,400	20	1,400	200	14,000	200	14,000	15
NIL	7440-31-5	2,100	190,000	5,800	190,000	190,000	190,000	190,000	190,000	190,000	190,000	190,000	190,000	10
VANADIUM	7440-62-2	0.24	240	0.68	680	24	24,000	68	68,000	240	190,000	680	190,000	5
ZINC	7440-66-6	200	12,000	200	12,000	20,000	190,000	20,000	190,000	190,000	190,000	190,000	190,000	15

¹For other options see § 250.308 (relating to soil to groundwater pathway numeric values).
All concentrations in mg/kg
R—Residential
NR—Non-Residential
NA—Not Applicable

Appendix A
Table 5—Physical and Toxicological Properties
A. Organic Regulated Substances

				_	_	_	_	_	_	_		_	_	_	_	_		_	_		_		_							_	_	_	_				
Degradation Coefficient (K) (yr¹)	1.24	2.11			18.07	4.50		69.0	4.50		1.39	5.50		0.40			0.22	18.07		18.07	69:0				0.28			4.50			0.35	15.81	0.19	0.24	0.21	0.19	90:0
Boiling Point (degrees C)	279	280	340	20	26	82	203	303	53	193	141	11	378	287	317	307	330	26	345	302	258	-33	603	184	340	313	421	decomb.	970	415	81	400	438	495	357	009	480
Organic Liquid				×	×	×	×		×		×	×						×				×		×							×						
TF Vol from Subsurface Soil	20833	19776		14945	14942	14958			14948	14906	14902	14939						14937				15059		14876	44562						15000						
TF Vol from Surface Soil	17220	16493		13010	13007	13020			13012	12981	12978	13004						13003				13098		12959	30838						13053						
Aqueous Sol Reference¹	1,5,6	5,6,7	9	-	-	-	-	7	1,2,4	4	2	-	2	2	2	2	4,5,6	2	2	2	4	2,5,7	10	1	1,5,6,7,8,9	2,4,5	1, 2	2,4,5	9	2	1,2,3,4	1,2,4	1,5,6	1,5,6	2'9'5	1,5,6	5,6,7
Aqueous Sol (mg/L)	3.8	16.1	818000	1000000	1000000	1000000	2200	10.13	208000	2151000	1000000	73500	140	0009	8000	330000	0.02	1000000	185	1200	280000	310000	2160000	33800	0.066	70	31.5	2000	2	200	1780.5	520	0.011	0.0038	0.0012	0.00026	0.00055
VOC?	×	×		×	×	×			×	×	×	×						×				×		×	×						×						
Koc	4900	4500	က	4.1	0.31	0.5	170	1600	0.56	25	58	11	110	22	10	0.22	48000	3.2	389	110	120	က	က	190	21000	130	407.4	31	1,900	13	28	530,000	350000	910000	550000	2800000	4400000
7				_				ပ		_		_					_			ပ	ပ			၁							_	_	ပ	_	၁		၁
IUR (µg/m³) ⁻¹				0.0000022				0.0013		0.0001		0.000068					0.0049			0.006	0.00027			0.0000016							0.0000078	0.067	0.00011	0.0006	0.00011		0.00011
RfCi (mg/m³)				1 600.0	31 D	0.06			0.00002	0.006	0.001	0.002						0.0001 X				0.5		0.001			0.01 D				0.03			1 2000			
	L			0					0.0	0	0	0						0.0						0										0.000002			
CSFo (mg/kg-d) ⁻¹								3.8 C		0.5		0.54	0.056 C				17			21 C	0.94 C			0.0057		0.23 C			0.0024 O		0.055	230	X 2.0	-	1.2 C		1.2 C
a)	Ė	ر ا	0		_		-		_	_	_	۵	_	_	Ŀ	Σ	E	_	_			I	_	Д		_	0	_	_	_	_	_		_		S,	
RfDo (mg/kg-d)	90.0	90:0	0.0012 0		6.0		0.1		0.0005	0.002	0.5	0.04	0.01	0.001	0.001	0.001	0.00003	0.005	600.0			0.85	0.2	0.007	0.3	0.035	0.0015	0.004	0.05	0.03	0.004	0.003		0.0003		90.0	
CAS	83-32-9	208-96-8	30560-19-1	75-07-0	67-64-1	75-05-8	98-86-2	53-96-3	107-02-8	79-06-1	79-10-7	107-13-1	15972-60-8	116-06-3	1646-88-4	1646-87-3	309-00-2	107-18-6	834-12-8	92-67-1	61-82-5	7664-41-7	7773-06-0	62-53-3	120-12-7	1912-24-9	86-50-0	114-26-1	17804-35-2	25057-89-0	71-43-2	92-87-5	26-55-3	50-32-8	202-99-2	191-24-2	207-08-9
Regulated Substance	ACENAPHTHENE	ACENAPHTHYLENE	ACEPHATE	ACETALDEHYDE	ACETONE	ACETONITRILE	ACETOPHENONE	ACETYLAMINO-FLUORENE, 2- (2AAF)	ACROLEIN	ACRYLAMIDE	ACRYLIC ACID	ACRYLONITRILE	ALACHLOR	ALDICARB	ALDICARB SULFONE	ALDICARB SULFOXIDE	ALDRIN	ALLYL ALCOHOL	AMETRYN	AMINOBIPHENYL, 4-	AMITROLE	AMMONIA	AMMONIUM SULFAMATE	ANILINE	ANTHRACENE	ATRAZINE	AZINPHOS-METHYL (GUTHION)	BAYGON (PROPOXUR)	BENOMYL	BENTAZON	BENZENE	BENZIDINE	BENZO[A]ANTHRACENE	BENZO[A]PYRENE	BENZO[B]FLUORANTHENE	BENZO[GHI]PERYLENE	BENZOĮKJFLUORANTHENE

1'Aqueous solubility references are keyed to the numbered list found at § 250.304(f) (relating to MSCs for groundwater). Where there are multiple sources cited. The table value is the median of the values in the individual references.

Toxidity value Sources.

Toxidity value Sources.

O = EPA Office of Pesticide Programs Human
D = ATSDR Minimal Risk Level
Health Benchmarks for Pesticide Programs Human
D = ATSDR Minimal Risk Level
Health Effects Assessment
P = EPA Provisional Peer-Reviewed Value
Sources cited. The table value is the median of the values in the individual
Sources cited. The table value is the median of the values in the individual
Sources cited. The table value is the median of the values in the individual
Sources cited. The table value is the median of the values in the individual
Sources cited. The table values is the median of the values in the individual
Sources cited. The table value is the median of the values in the individual
Sources cited. The table value is the median of the values in the individual
Sources cited. The table values is the median of the values in the individual
Sources cited. The table values in the individual
Sources cited. The table values in the individual
Sources cited. The table values in the individual
Sources called The production of the values in the individual in the individual in the individual individual in the value of the values in the individual in the individual in the value of the value in the individual individual in the value of the value of the value in the individual individual

Appendix A
Table 5—Physical and Toxicological Properties
A. Organic Regulated Substances

											_		_		_														_		_					
Degradation Coefficient (<u>K)</u> (yr¹)		121413.60		20.90	0.01	0.94	1.02	1.05	18.07		69'0	69:0	57270.57	0.65	69:0					99'9		5.75	4.50	4.68					1.39	589.39	4.22				0.07	
Boiling Point (degrees C)	249	221	205	179	162	288	304	323	255	218	179	189	105	384	220	421	156.1	89	87	4	329	414	-4.5	118	138	183	174	169	370	259	315	355	311	46	77	407
Organic Liquid		×	×	×	×					×	×	×	×	×			×	×	×	×			×	×	×	×	×	×	×					×	×	
TF Vol from Subsurface Soil	14913	15606		14846	14937				16325		14849	14856	14922				14866	14942	14910	14981			15041	14930	15519	14851	14910	14904						14961	15083	
TF Vol from Surface Soil	12985	13494		12940	13008				14027		12942	12947	12992				12954	13007	12984	13039			13115	12998	13430	12943	12983	12979						13022	13117	
Aqueous Sol Reference¹	2,3,4,5	1,5,13	1,2,3	1	2	4,5,6,7	9	4,5,6	1	4,6,7,9,10,11	1,4,5	2	9	4,5,6	4	2	1,2	4	9	2	2	12	1	1	2	1,6,7	1,6,7	1,6,7	4,5,6	4	2,4,5	1,5,6	2	1,2,3	1,2,3	5,6,8
Aqueous Sol (mg/L)	2700	53	40000	493	370000	1.7	0.1	7.3	7.2	100500	10200	1700	22000	0.285	120	815	445	16700	4500	17500	130	0.08	735	74000	45	15	17	30	2.69	0.5	120	1.2	200	2100	795	170
VOC?	×	×		×	×				×		×	×	×				×	×	×	×			×	×	×	×	×	×						×	×	
Koc	32	920	100	190	4	1800	2300	1400	1,700	61	9/	62	16	87000	1,500	28	268	27	93	170	300	18,000	120	3.2	240	2,500	890	089	34000	200	190	2,500	43	300	160	260
-				0	၁	_	_	ပ			_	I	_	0					0				-							ပ					_	
IUR (µg/m³) ⁻¹				0.000049	0.004	0.0018	0.00053	0.00031			0.00033	0.00001	0.062	0.0000024					0.000037				0.00003							0.000000066					0.000006	
13)				۵					×								_	×		_			_											_	_	
RfCi (mg/m³)				0.001					0.0004								90.06	0.04		0.005			0.002											0.7	0.1	
Fo g-d)-1		-		_	ပ -	_	-	ပ	-		L	I	_	-							0	0	ပ						<u>م</u>	ر ص		I			-	
CSFo (mg/kg-d) ⁻¹		13		0.17	14	6.3	1.8	1.1	0.008		1.1	0.07	220	0.014					0.062		0.103	0.103	9.0						0.0019	0.0023		0.02			0.07	
o ₍	4		0.1 P)2 P		ص 80		13	1 20	33 P		- 40		1 20	1 20	0.1 M	1 80	0.01 M	1 2	14	0.015 0	15 0		0.1	0.05	0.05 P	0.1 X	0.1 X	0.2	0.13	0.1		1 20	0.1	1	0.1
RfDo (mg/kg-d)			0	0.002		0.008		0.0003	0.05	0.003		0.04		0.02	0.05	0	0.008	0.0	0.02	0.0014	0.01	0.015		0	0.0	0.0	0	Ö	0	0.1	0		0.005	0	0.004	0
CAS	02-82-0	2-20-86	100-51-6	100-44-7	8-29-29	319-84-6	319-85-7	6-68-89	92-52-4	111-91-1	111-44-4	108-60-1	542-88-1	117-81-7	2-90-08	314-40-9	108-86-1	74-97-5	75-27-4	74-83-9	1689-84-5	1689-99-2	106-99-0	71-36-3	2008-41-5	104-51-8	135-98-8	9-90-86	2-89-58	133-06-2	63-25-2	86-74-8	1563-66-2	75-15-0	56-23-5	5234-68-4
Regulated Substance	BENZOIC ACID	BENZOTRICHLORIDE	BENZYL ALCOHOL	BENZYL CHLORIDE	BETA PROPIOLACTONE	BHC, ALPHA	BHC, BETA-	BHC, GAMMA (LINDANE)	BIPHENYL, 1,1-	BIS(2-CHLORO ETHOXY)METHANE	BIS(2-CHLOROETHYL)ETHER	BIS(2-CHLORO-ISOPROPYL)ETHER	BIS(CHLOROMETHYL)ETHER	BIS[2-ETHYLHEXYL]PHTHALATE	BISPHENOL A	BROMACIL	BROMOBENZENE	BROMOCHLOROMETHANE	BROMODICHLOROMETHANE	BROMOMETHANE	BROMOXYNIL	BROMOXYNIL OCTANOATE	BUTADIENE, 1,3-	BUTYL ALCOHOL, N-	BUTYLATE	BUTYLBENZENE, N-	BUTYLBENZENE, SEC-	BUTYLBENZENE, TERT-	BUTYLBENZYL PHTHALATE	CAPTAN	CARBARYL	CARBAZOLE	CARBOFURAN	CARBON DISULFIDE	CARBON TETRACHLORIDE	CARBOXIN

1-Aqueous solubility references are keyed to the numbered list found at § 250,304(f) (relating to MSCs for groundwater). Where there are multiple sources cited. The table value is the median of the values in the individual references.

| Configuration of the numbered list found at § 250,304(f) (relating to MSCs for groundwater). Where there are multiple sources cited. The table value is the median of the values in the individual sources cited. The table value is the median of the values in the individual sort of the values in the individual in the individual sort of the values in the individual in the individual sort of the values of the individual sort of the values of the values of the values of the individual sort of the values of the individual sort of the values of the values of the individual sort of the values of the individual sort of the values of the individual sort of the values of

Appendix A
Table 5—Physical and Toxicological Properties
A. Organic Regulated Substances

		_	_					_	_		_																	_		_					_
Degradation Coefficient (<u>(K)</u> (yr¹)		60:0		18.07		4.50		0.84	3.60		1.39		4.50	0.01				69:0							1.37	0.13	5.16	6.02	18.07	5.16	9.03		18.07	18.07	15.81
Boiling Point (degrees C)	210	351	တု	45	85	247	232	132	415	79	116	-41	12	61	256	242	175	29	47	320	159	162	377	531	360	448	139	312	191	202	202	235	104	104	152
Organic Liquid			×	×	×			×		×	×	×	×	×			×	×	×		×	×					×			×			×	×	×
TF Vol from Subsurface Soil			15041	15116	14938		15127	14922		14942	14895	15113	15038	14988	23532	15196	15009	15075	15002		14848	14877					14899	14970	14896				14931	14940	14846
TF Vol from Surface Soil			13117	13142	13004		13139	12992		13007	12973	13141	13101	13044	19021	13190	13053	13116	13055		12941	12961					12976	13025	12974				12998	13006	12940
Aqueous Sol Reference ¹	2	4,5,7	4	1,3,5,7,10	o	е	-	С	4	1,2,3,4	4,6,7,9	4	-	1,2,3	-	1	1,3,4	6	1,3,5	2	1,4,5	12	2,4,6,7	2,5,6,8,9	2,5,7	-	2	4	3,5,6	2	9	2	3	1	1,5,6
Aqueous Sol (mg/L)	200	0.056	1400	3300	1000000	1100	3900	490	13	089	4200	2899	2002	8000	11.7	220	24000	1736	3100	9.0	422	106	1.12	192	0.5	0.0019	20000	150	2500	2500	22000	3846	180000	156000	20
VOC?			×	×	×		×	×		×	×	×	×	×	×	×	×	×	×		×	×					×	×	×				×	×	×
Koc	20	00086	22	48	3.2	92	460	200	2600	280	83	69	42	99	8500	480	400	20	260	086	160	375	4600	11	6,500	490000	25	257	22	35	49	780	5.6	6.1	2800
4		_		O					ပ					_				_								ပ									
IUR (µg/m³) ⁻¹		0.0001		0.000006					0.000031					0.000023				0.0003								0.000011									
j 7 ³)		_	_	_		_		۵				_	_	ပ		а		_	Ι								ပ								_
RfCi (mg/m³)		0.0007	20	0.001		0.00003		0.05				90	10	0.3		0.002		0.02	0.1001								90.0								0.4
CSFo (mg/kg-d) ⁻¹		0.35		0.021 C	0.27 X		0.2 P		0.11 C		0.084			0.031 C		0.06 P				0.017 C						0.12 C							1.9 S ²	1.9 H	_
(р.	_	_					-	_	_	۵.	-			_	_	а.	_	н		_		0.02 X	-	0	-		۵	×	_	_	I	×	Н	Ь	_
RfDo (mg/kg-d)	0.015	0.0005					0.004	0.02	0.02	0.04	0.02			0.01	0.08	0.0007	0.005	0.02		0.015	0.02	0.02	0.001	0.02	0.01		0.1	0.00008	0.05	0.05	0.005	0.1	0.001	0.001	0.1
CAS	133-90-4	57-74-9	75-68-3	107-05-1	107-20-0	532-27-4	106-47-8	108-90-7	510-15-6	109-69-3	124-48-1	75-45-6	75-00-3	67-66-3	91-58-7	100-00-5	8-29-26	126-99-8	75-29-6	1897-45-6	95-49-8	106-43-4	2921-88-2	64902-72-3	1861-32-1	218-01-9	1319-77-3	534-52-1	95-48-7	108-39-4	106-44-5	29-20-2	4170-30-3	123-73-9	98-82-8
Regulated Substance	CHLORAMBEN	CHLORDANE	CHLORO-1,1-DIFLUOROETHANE, 1-	CHLORO-1-PROPENE, 3- (ALLYL CHLORIDE)	CHLOROACETALDEHYDE	CHLOROACETOPHENONE, 2-	CHLOROANILINE, P-	CHLOROBENZENE	CHLOROBENZILATE	CHLOROBUTANE, 1-	CHLORODIBROMOMETHANE	CHLORODIFLUOROMETHANE	CHLOROETHANE	CHLOROFORM	CHLORONAPHTHALENE, 2-	CHLORONITROBENZENE, P-	CHLOROPHENOL, 2-	CHLOROPRENE	CHLOROPROPANE, 2-	CHLOROTHALONIL	CHLOROTOLUENE, O-	CHLOROTOLUENE, P-	CHLORPYRIFOS	CHLORSULFURON	CHLORTHAL-DIMETHYL (DACTHAL) (DCPA)	CHRYSENE	CRESOL(S)	CRESOL, DINITRO-0-, 4,6-	CRESOL, O- (METHYLPHENOL, 2-)	CRESOL, M (METHYLPHENOL, 3-)	CRESOL, P (METHYLPHENOL, 4-)	CRESOL, P-CHLORO-M-	CROTONALDEHYDE	CROTONALDEHYDE, TRANS-	CUMENE (ISOPROPYL BENZENE)

Appendix A
Table 5—Physical and Toxicological Properties
A. Organic Regulated Substances

	_	_		_	_	_	_		_		_		_	_					_	_	_		_	_		_			_	_		_		
Degradation Coefficient (<u>(K)</u> (yr¹)						0.02	0.02	0.02	4.50	1.39	69:0		0.13	7.23	69:0		2.11	4.50	11.00					0.69	69:0	69:0	69:0	69:0	0.16	0.07	0.19	0.01	0.01	4.50
Boiling Point (degrees C)	369	81	157	448	222	350	348	260	214	328	292	306	524	287	196	220	131	96	340	329	194	156	155	180	173	174	898	-30	22	83	32	09	48	40
Organic Liquid		×	×						×	×		×			×		×	×	×		×	×	×	×	×			×	×	×	×	×	×	×
TF Vol from Subsurface Soil		15112	14858											31445	14856		14893	14858			14924	14851	14847	14855	14849	14850		15041	14998	14945	15119	14979	15000	15023
TF Vol from Surface Soil		13140	12949											23885	12946		12972	12948			12994	12943	12940	12946	12942	12943		13115	13051	13010	13145	13037	13053	13071
Aqueous Sol Reference ¹	2,5	1,2,4,5,6	1,2,4,5	2	12	5,6,7	2	2'9'5	2	2,4,6,8	4	2,4,6,8	1,5,6	1,6,7,9	4	1	1,2,3,5	1	1,2,3	4,5,6,8,10	-	6	6	1,4,5,6,7	1	1	4,5,6	1	2	1,2,3,4	1,4,5	-	1	1,2,3
Aqueous Sol (mg/L)	171	55	36500	0.001	11000	0.16	0.04	0.0055	200	40	7470	20	9000.0	4.48	1000	20	4150	11400	400	2600	1000000	820	820	147	106	82.9	3.11	280	2000	8412	2500	3200	6300	20000
VOC?		×	×											×	×		×	×			×	×	×	×	×	×		×	×	×	×	×	×	×
Koc	199	479	99	130,000	1,200	44000	87000	240000	47,000,000	190	36	200	1800000	10233	140	1,600	54	110	1600	0.27	6.9	180	215	350	360	510	22000	360	52	38	92	49	47	16
-						ပ	O	_			ပ		O		۵		-					а.	Ь			၁	0		ပ	_				_
ا <i>لا)</i> (ابو/س ³⁾⁻¹						0.000069	0.000097	0.000097			0.0011		0.0012		900'0		0.0006					0.0042	0.0042			0.000011	0.00034		0.0000016	0.000026				0.00000001
ر نع)		_	۵												_		_	×						Τ		_		×	I	۵	_			_
RfCi (mg/m³)		9	0.7												0.0002		600.0	0.004						0.2		0.8		0.1	0.5	0.007	0.2			9:0
Fo g-d) ⁻¹	Ξ					-	-	-	-	I	O T		0		а в		2				-					C	- 2		O _	_				
CSFo (mg/kg-d)⁻¹	0.84					0.24	0.34	0.34	0.0012	0.061	7		4.1		0.8						0.05					0.0054	0.45		0.0057	0.091				0.002
RfDo (mg/kg-d)	0.002 H		- 2	0.025	0.5	0.003 X	0.0003 X	0.0005	1 9.0			OO7 D		0.001 X	0.0002 P	0.01	0.009	0.01 H	0.1	0.03	0.004			1 60.0	M 60.0	0.07 D		0.2	0.2 P	X 900.0	0.05	0.002	0.02	0.006
R (mg	0.0			ō		Ö	0.0	0.0				0.0007		ö	0.0	0	0.0	0			ö			0	0	0				ö		Ö	0	0.0
CAS	21725-46-2	110-82-7	108-94-1	68359-37-5	66215-27-8	72-54-8	72-55-9	50-29-3	103-23-1	2303-16-4	2-80-2	333-41-5	53-70-3	132-64-9	96-12-8	106-37-6	106-93-4	74-95-3	84-74-2	1918-00-9	76-43-6	764-41-0	110-57-6	95-50-1	541-73-1	106-46-7	91-94-1	75-71-8	75-34-3	107-06-2	75-35-4	156-59-2	156-60-5	75-09-2
Regulated Substance	CYANAZINE	CYCLOHEXANE	CYCLOHEXANONE	CYFLUTHRIN	CYROMAZINE	DDD, 4,4'-	DDE, 4,4'-	DDT, 4,4'-	DI(2-ETHYLHEXYL)ADIPATE	DIALLATE	DIAMINOTOLUENE, 2,4-	DIAZINON	DIBENZO[A,HJANTHRACENE	DIBENZOFURAN	DIBROMO-3-CHLOROPROPANE, 1,2-	DIBROMOBENZENE, 1,4-	DIBROMOETHANE, 1,2- (ETHYLENE DIBROMIDE)	DIBROMOMETHANE	DIBUTYL PHTHALATE, N-	DICAMBA	DICHLOROACETIC ACID	DICHLORO-2-BUTENE, 1,4-	DICHLORO-2-BUTENE, TRANS-1,4-	DICHLOROBENZENE, 1,2-	DICHLOROBENZENE, 1,3-	DICHLOROBENZENE, P-	DICHLOROBENZIDINE, 3,3'-	DICHLORODIFLUOROMETHANE (FREON 12)	DICHLOROETHANE, 1,1-	DICHLOROETHANE, 1,2-	DICHLOROETHYLENE, 1,1-	DICHLOROETHYLENE, CIS-1,2-	DICHLOROETHYLENE, TRANS-1,2-	DICHLOROMETHANE (METHYLENE CHLORIDE)

1'Aqueous solubility references are keyed to the numbered list found at § 250.304(f) (relating to MSCs for groundwater). Where there are multiple sources cited. The table value is the median of the values in the individual references.

Toxidity value Sources.

Toxidity value Sources.

O = EPA Office of Pesticide Programs Human
D = ATSDR Minimal Risk Level
Health Benchmarks for Pesticide Programs Human
D = ATSDR Minimal Risk Level
Health Effects Assessment
P = EPA Provisional Peer-Reviewed Value
Sources cited. The table value is the median of the values in the individual
Sources cited. The table value is the median of the values in the individual
Sources cited. The table value is the median of the values in the individual
Sources cited. The table value is the median of the values in the individual
Sources cited. The table values is the median of the values in the individual
Sources cited. The table value is the median of the values in the individual
Sources cited. The table value is the median of the values in the individual
Sources cited. The table values is the median of the values in the individual
Sources cited. The table values in the individual
Sources cited. The table values in the individual
Sources cited. The table values in the individual
Sources called The production of the values in the individual in the individual in the individual individual in the value of the values in the individual in the individual in the value of the value in the individual individual in the value of the value of the value in the individual individual

Appendix A
Table 5—Physical and Toxicological Properties
A. Organic Regulated Substances

CAS	RfDo (mg/kg-d)	CSFo (mg/kg-d) ⁻¹	RfCi (mg/m³)	IUR (µg/m³) ⁻¹	Кос	VOC?	Aqueous Sol (mg/L)	Aqueous Sol Reference¹	7F Vol from Surface Soil	TF Vol from Subsurface Soil	Organic Liquid	Boiling Point (degrees C)	Degradation Coefficient <u>(K)</u> (yr¹)
120-83-2	0.003				1	160	4500	1				210	88'9
94-75-7	0.01					29	229	4,5,6,7,10				215	1.39
78-87-5	0.04 P	0.037 P	0.004	0.0037 F		47 X	2700	1,3,4	13016	14954	×	96	0.10
542-75-6	0.03	0.1	0.02	0.000004		27 X	2700	9	13038	14981	×	108	22.38
75-99-0	0.03					95 X	200000	9	12949	14860	×	190	2.11
62-73-7	0.0005	0.29	0.0005	0.000083 C		20	10000	2,4,5			×	234	
77-73-6	0.008 P		0.0003 X		8	810 X	40	5	12957	14870		167	
60-57-1	0.00005	16 1		0.0046	11000	00	0.17	4,5,6				385	0.12
111-42-2	0.002 P		0.0002 P			4	1000000	2,3,9			×	269	
84-66-2	0.8					81	1080	4,5,6			×	298	2.25
35367-38-5	0.02				1,0	000	0.2	2				201	
1445-75-6	0.08					10 X	160000	6	12978	14903	×	190	
60-51-5	0.0022 O				_	110	25000	4				361	2.26
119-90-4		1.6 P			1,3	1,300	09	6				331	69'0
70-38-2	0.3 M				27,000	00	0.036	13				353	
60-11-7		4.6 C		0.0013 C		1000	13.6	7				335	4.50
121-69-7	0.002	0.027 P			180	80 X	1200	5,6,7,9	12944	14852	×	192	69'0
119-93-7		Н			22,0	00	1300	10				300	18.07
756-79-6	0.06 P	0.0017 P				× 2	1000000	14	12998	14930	×	181	
105-67-9	0.02				1	130	7869				×	211	18.07
0-59-66	0.0001				1	20	523	2'9'5'8				291	69'0
51-28-5	0.002				0.	19	2600	2,4				332	0.48
121-14-2	0.002	0.31 C		0.000089 C		51	270	4,5,6				300	69.0
606-20-2	0.0003 X	1.5 P				74	200					300	69'0
88-85-7	0.001				_	50	20					223	1.03
123-91-1	0.03	0.1	0.03	0.000005	1	.8 ×	1000000		12996	14928	×	101	69'0
957-51-7	0.03				2	00	260	9				210	
122-39-4	0.1 0				1	06	300	8				302	4.50
122-66-7		0.8		0.00022	9	× 09	0.252	9	13375	15446		309	69'0
35-00-7	0.0022					2.6	700000	9				355	
298-04-4	0.00004				10	00	25	4,5,6			×	332	6.02
505-29-3	0.01				22	× ×	3000	15	12976	14899		199	
330-54-1	0.002				3	00	42	2,4,5				354	
115-29-7	0.006				2,0	00	0.48	4				401	2.78
959-98-8	5S SOO O				20	00	0.5	S				401	

1'Aqueous solubility references are keyed to the numbered list found at § 250.304(f) (relating to MSCs for groundwater). Where there are multiple sources cited. The table value is the median of the values in the individual references.

Toxidity value Sources.

Toxidity value Sources.

O = EPA Office of Pesticide Programs Human
D = ATSDR Minimal Risk Level
Health Benchmarks for Pesticide Programs Human
D = ATSDR Minimal Risk Level
Health Effects Assessment
P = EPA Provisional Peer-Reviewed Value
Solvant (IRIS)
I = Integrated Risk Provisional Peer-Reviewed Toxicity
Solvant M = EPA Driving Water
R = TEA Driving

Appendix A
Table 5—Physical and Toxicological Properties
A. Organic Regulated Substances

	_	_		_	_	_	_	_							_	_			_	_	_		_		_	_	_	_		_	_	_	_,
Degradation Coefficient (<u>(K)</u> (yr¹)					4.50			4.50	18.07	18.07	1.11					10.54	4.50					0.29	2.11	0.35		18.07	18.07		2.25			46.84	0.23
Boiling Point (degrees C)	390	409	320	245	116	201	415	136	77	100	136	127	35	117	128	198	347	215	390	300	318	375	298	24	324	-21	101	464	31	162	417	310	341
Organic Liquid					×		×	×	×	×	×	×	×	×	×	×				×				×	×	×	×		×	×			
7F Vol from Subsurface Soil					14893			15040	14881	14863	15000	15014	14908	14921	14941	14938							25294	15060		14990	14846		14956	14930			
TF Vol from Surface Soil					12972			13100	12963	12951	13004	13056	12982	12991	13006	13004							20155	13107		13046	12940		13019	12998			
Aqueous Sol Reference¹	9	6'2	2	4,6,7,9	1,3,4	12	4,6,9,10	2	1,2,3,4,5,6	1,2,6	1,3,4	2	-	9,10	o	2	2	4	2	2	2,5,6,8	1,5,6	1	1,4,5,6	5,6,8	-	2	2	1	1,2,3	1,5,6	4,6,7	4,6,7,9
Aqueous Sol (mg/L)	0.45	0.117	100000	0.23	65800	1240000	0.85	1000000	80800	15000	191	392	60400	4635.5	1000000	1000000	20000	3.1	329	0.085	9.76	0.26	1.9	1090	13	22000	1000000	120000	10000	91000	12000	0.18	0.311
VOC?					×			×	×	×	×	×	×	×	×	×							×	×		×	×		×	×			
Koc	2300	2300	120	11000	35	2	8700	12	59	110	220	240	89	22	-	4.4	0.23	1,200	300	4,400	89	49000	7900	130	1100	3.6	0.54	310	130	6.3	3500	0089	21000
-					_						0						ပ									_						_	_
IUR (µg/m³)-¹					0.0000012						0.0000025						0.000013									0.000013						0.0013	0.0026
3)					_			_	Д	Д	_			۵		ပ								I		O	×			н			
RfCi (mg/m³)					0.001			0.2	0.07	0.008	1			0.3		0.4								0.7		600'0	0.0003			90.0			
⁵ o 3-d)⁻¹					_					Ξ	О						ပ									ပ				0		1	_
CSFo (mg/kg-d)⁻¹	L				0.0099					0.048	0.011						0.045									0.021				0.0349		4.5	9.1
(p-	S ₃	လူ	-	- -	<u>а</u>	-	-	Ь	-	0.005 P	_	0	_	н	<u>م</u>	-	<u>-</u>	_	-	-	3	-	-	- m	-	-	а	0	_	3	_	1 2	3
RfDo (mg/kg-d)	0.006	900.0	0.02	0.0003	900.0	0.005	0.0005	60:0	6.0	0.00	0.1	0.05	0.2	60:0	0.02	.,	0.00008	0.00001	0.00025	0.025	0.013	0.04	0.04	0.3	0.002	0.2	6.0	2.5	0.001	0.003	0.1	0.0005	0.000013
CAS	33213-65-9	1031-07-8	145-73-3	72-20-8	106-89-8	16672-87-0	563-12-2	110-80-5	141-78-6	140-88-5	100-41-4	759-94-4	60-29-7	97-63-2	107-07-3	107-21-1	96-45-7	2104-64-5	22224-92-6	51630-58-1	2164-17-2	206-44-0	86-73-7	75-69-4	944-22-9	20-00-0	64-18-6	39148-24-8	110-00-9	98-01-1	1071-83-6	76-44-8	1024-57-3
Regulated Substance	ENDOSULFAN II (BETA)	ENDOSULFAN SULFATE	ENDOTHALL	ENDRIN	EPICHLOROHYDRIN	ETHEPHON	ETHION	ETHOXYETHANOL, 2- (EGEE)	ETHYL ACETATE	ETHYL ACRYLATE	ETHYL BENZENE	ETHYL DIPROPYLTHIOCARBAMATE, S- (EPTC)	ETHYL ETHER	ETHYL METHACRYLATE	ETHYLENE CHLORHYDRIN	ETHYLENE GLYCOL	ETHYLENE THIOUREA (ETU)	ETHYL P-NITROPHENYL PHENYLPHOSPHORO THIOATE	FENAMIPHOS	FENVALERATE (PYDRIN)	FLUOMETURON	FLUORANTHENE	FLUORENE	FLUOROTRICHLOROMETHANE (FREON 11)	FONOFOS	FORMALDEHYDE	FORMIC ACID	FOSETYL-AL	FURAN	FURFURAL	GLYPHOSATE	HEPTACHLOR	HEPTACHLOR EPOXIDE

1'Aqueous solubility references are keyed to the numbered list found at § 250.304(f) (relating to MSCs for groundwater). Where there are multiple sources cited. The table value is the median of the values in the individual references.

Toxidity value Sources.

Toxidity value Sources.

O = EPA Office of Pesticide Programs Human
D = ATSDR Minimal Risk Level
Health Benchmarks for Pesticide Programs Human
D = ATSDR Minimal Risk Level
Health Effects Assessment
P = EPA Provisional Peer-Reviewed Value
Sources cited. The table value is the median of the values in the individual
Sources cited. The table value is the median of the values in the individual
Sources cited. The table value is the median of the values in the individual
Sources cited. The table value is the median of the values in the individual
Sources cited. The table values is the median of the values in the individual
Sources cited. The table value is the median of the values in the individual
Sources cited. The table value is the median of the values in the individual
Sources cited. The table values is the median of the values in the individual
Sources cited. The table values in the individual
Sources cited. The table values in the individual
Sources cited. The table values in the individual
Sources called The production of the values in the individual in the individual in the individual individual in the value of the values in the individual in the individual in the value of the value in the individual individual in the value of the value of the value in the individual individual

PENNSYLVANIA BULLETIN, VOL. 51, NO. 47, NOVEMBER 20, 2021

Appendix A
Table 5—Physical and Toxicological Properties
A. Organic Regulated Substances

	_	_		_	_		_	_	_		_	_	_				_	_		_	_		_		_	_	_	_	_	_		_	_		_	_
Degradation Coefficient (K) (yr¹)	90:0	69:0	4.50	69:0					18.07	18.07	0.17		17.57	4.5		0.17	2.46						36.14		69:0	4.50		18.07	4.50	2.57	5.27	18.07			4.50	
Boiling Point (degrees C)	319	215	239	187	69	408	539	436	114	285	536	545	108	215	230	320	351	260	351	392	06	223	65	228	346	124	22	20	-24	80	88	117	40	128	100	203
Organic Liquid		×	×		×				×				×	×	×		×			×	×		×			×	×	×	×	×	×	×	×	×	×	×
7F Vol from Subsurface Soil				17421	15056				14966				14866								14925		14964			15115	14908	14892	15038	14897	14947	14910	14959	14868	14934	
TF Vol from Surface Soil				14825	13105				13026				12954								12994		13025			13141	12982	12971	13103	12974	13011	12983	13021	12955	13001	
Aqueous Sol Reference¹	1,4,5	4,5,6,7	5,6,7	-	1,5,6	1,2	2	16	2	2,3,5	5	2	1,2,3,4,5	2,4,5	13	4	4	4	9,13	8,10,12	1	5	2	2	4,5,6	2	4,5,6	1,2,5	1,2,3,4	1,2,3,4,5	2	1,2,4,5	7	1	1	2
Aqueous Sol (mg/L)	900'0	2.89	1.8	20	9.6	330000	0.5	2	1000000	70000	0.062	13	81000	12000	20000	9.7	143	0009	23	2.3	25700	2000000	1000000	28000	0.045	1000000	243500	52000	6180	275000	1000000	19550	100000	17500	15600	200000
VOC?				×	×				×				×								×		×			×	×	×	×	×	×	×	×	×	×	
Кос	3800	4700	7200	2200	3600	41	6,500	4	0.0053	10	31000000	1,100	09	31	1.84	22000	1300	2.8	-	53,000	21	5	2.8	20	000009	+	30	22	9	32	-	17	10	54	10	5.2
-1	_	_		ပ					_		0					၁													I		×					၁
IUR (µg/m³)-¹	0.00046	0.000022		0.000011					0.0049		0.00011					0.0046													0.0000018		0.001					0.000028
13)			_	_	_				Ь					С							Д					_		Д		_	×		ပ	-	_	
RfCi (mg/m³)			0.0002	0.03	0.7				0.00003					2							0.03		20			0.02		0.02	0.09	2	0.00002	3	0.001	0.03	0.7	
CSFo (mg/kg-d) ⁻¹	1.6	0.078		0.04					3	0.06 P	1.2 C	0.0439 O		0.00095		1 01			0.0601										0.013 H							O.099 C
	L	<u>م</u>			I					Ь		_		0.0					0	D						Д	×	I			Д	н				-
RfDo (mg/kg-d)	0.0008	0.001	900.0	0.0007		0.033	0.025	0.05		0.04		0.04	0.3	0.2	0.1	0.0003	0.02	0.5	0.005	-	0.0001	0.00005	2	0.025	0.005	0.005	_	0.03		9.0	0.001	0.08		0:002	1.4	
CAS	118-74-1	87-68-3	77-47-4	67-72-1	110-54-3	51235-04-2	78587-05-0	2691-41-0	302-01-2	123-31-9	193-39-5	36734-19-7	78-83-1	78-59-1	1832-54-8	143-50-0	121-75-5	123-33-1	12427-38-2	78-48-8	126-98-7	10265-92-6	67-56-1	16752-77-5	72-43-5	109-86-4	79-20-9	96-33-3	74-87-3	78-93-3	60-34-4	108-10-1	624-83-9	591-78-6	80-62-6	66-27-3
Regulated Substance	HEXACHLOROBENZENE	HEXACHLOROBUTADIENE	HEXACHLOROCYCLOPENTADIENE	HEXACHLOROETHANE	HEXANE	HEXAZINONE	HEXYTHIAZOX (SAVEY)	HMX	HYDRAZINE/HYDRAZINE SULFATE	HYDROQUINONE	INDENO[1,2,3-CD]PYRENE	IPRODIONE	ISOBUTYL ALCOHOL	ISOPHORONE	ISOPROPYL METHYLPHOSPHONATE	KEPONE	MALATHION	MALEIC HYDRAZIDE	MANEB	MERPHOS OXIDE	METHACRYLONITRILE	METHAMIDOPHOS	METHANOL	METHOMYL	METHOXYCHLOR	METHOXYETHANOL, 2-	METHYL ACETATE	METHYL ACRYLATE	METHYL CHLORIDE	METHYL ETHYL KETONE	METHYL HYDRAZINE	METHYL ISOBUTYL KETONE	METHYL ISOCYANATE	METHYL N-BUTYL KETONE (2- HEXANONE)	METHYL METHACRYLATE	METHYL METHANESULFONATE

1'Aqueous solubility references are keyed to the numbered list found at § 250.304(f) (relating to MSCs for groundwater). Where there are multiple sources cited. The table value is the median of the values in the individual references.

Toxidity value Sources.

Toxidity value Sources.

O = EPA Office of Pesticide Programs Human
D = ATSDR Minimal Risk Level
Health Benchmarks for Pesticide Programs Human
D = ATSDR Minimal Risk Level
Health Effects Assessment
P = EPA Provisional Peer-Reviewed Value
Solvant (IRIS)
I = Integrated Risk Provisional Peer-Reviewed Toxicity
Solvant M = EPA Driving Water
R = TEA Driving

Appendix A
Table 5—Physical and Toxicological Properties
A. Organic Regulated Substances

	_	_	_			_	_							_		_		_			_	_	_	_	_			_		_	_	_		_
Degradation Coefficient (K) (yr¹)	3.61		69'0	1.39								86.0	69'0	69'0				0.64		9.01	25.81	0.69	69'0	0.69	69'0	69.0	3.72	1734.48	69'0					
Boiling Point (degrees C)	348	163	99	287	379	241	165	100	298		189	218	301	908	668	284	332	211	231	215	279	120	176	154	235	206	592	223	234	334	352	375	098	325
Organic Liquid		×	×				×	×										×				×	×	×	×	×			×			×		×
TF Vol from Subsurface Soil		14853	14950			14870	14850	14985		14856	14943	15323	18386			14886		14847		14884	14878	14911	14896	14934	14946	14914	15140							
TF Vol from Surface Soil		12945	13014			12955	12942	13035		12947	13008	13284	15517			12967		12940		12966	12960	12984	12974	13001	13008	12986	13148							
Aqueous Sol Reference ¹	4,5,6	o	1,2,4,6	5,6,8,9	10	-	6	1,5	1,5	9	17	က	2	9	2	9	2	2	6	1,2,3,4,5,6	2	1,3,4,5	10	2	9, 10, 11	9	1	6	5	2	8'9	2,4,5,6,7	10,13	5
Aqueous Sol (mg/L)	25	68	45000	1000	13.9	25	260	230	1200	000009	000858	30	1690	6.4	02	1200	008	2000	4400	2100	16000	16700	00086	1000000	1200	0066	32	13000	8	280000	000099	20	9090.0	0.25
VOC?		×	×			×	×	×		×	×	×	×			×		×		×	×	×	X	×	×	×	×							
Koc	062	2,200	12	112	3,000	16000	099	182	96	44	0.24	950	3200	87	880	27	15	130	0.13	37	230	20	26	8.5	450	11	280	2	000000086	7.1	16200	2300	78100	110000
4			ပ		U							ပ						_				I	_	_	_	ပ	၁	၁					_	
IUR (µg/m³) ⁻¹			0.00000026		0.00043							0.000034						0.00004				0.0027	0.043	0.014	0.0016	0.002	0.0000026	0.0077					0.0001	
i n³)		Ι	_			S ₄						_				×	Д					1		X										
RfCi (mg/m³)		0.04	9			0.003						0.003				0.00005	900.0	0.009				0.02		0.00004										
CSFo (mg/kg-d) ⁻¹			၁ ၁		0.1 P							2 C	1.8 S ⁵	1.8 C			2 P						1 0	1	5.4	1 2	- 6	27 C					7	
CS (mg/l			0.0018		o.							0.12	1	1.			0.02						150	2	5.		0.0049	2						
o(g-d)	1 52	H 90		- 50	22 P	-	H (0.15	1 52	55 0)2 H	1 2			12 0	X X	74 P	1 2	1	Se Se	M 80			108 P					J1 P	1 52	12 1	0 8		1 /0
RfDo (mg/kg-d)	0.00025	900:0		0.0005	0.002	0.004	0.07	0.7	0.025	0.000025	0.002	0.02			0.12	10.01	0.004	0.002	1.0	0.008	800'0			0.000008					10.0	0.025	0.0045	0.00003		0.00007
CAS	298-00-0	25013-15-4	1634-04-4	94-74-6	101-14-4	91-57-6	98-83-9	51218-45-2	21087-64-9	7786-34-7	79-11-8	91-20-3	134-32-7	91-59-8	15299-99-7	88-74-4	100-01-6	88-95-3	256-88-7	88-75-5	100-02-7	79-46-9	55-18-5	65-75-9	924-16-3	621-64-7	9-02-98	759-73-9	117-84-0	23135-22-0	1910-42-5	56-38-2	1336-36-3	12674-11-2
Regulated Substance	METHYL PARATHION	METHYL STYRENE (MIXED ISOMERS)	METHYL TERT-BUTYL ETHER (MTBE)	METHYLCHLOROPHENOXYACETIC ACID (MCPA)	METHYLENE BIS(2-CHLOROANILINE), 4,4'-	METHYLNAPHTHALENE, 2-	METHYLSTYRENE, ALPHA	METOLACHLOR	METRIBUZIN	MEVINPHOS	MONOCHLOROACETIC ACID	NAPHTHALENE	NAPHTHYLAMINE, 1-	NAPHTHYLAMINE, 2-	NAPROPAMIDE	NITROANILINE, O-	NITROANILINE, P-	NITROBENZENE	NITROGUANIDINE	NITROPHENOL, 2-	NITROPHENOL, 4-	NITROPROPANE, 2-	NITROSODIETHYLAMINE, N-	NITROSODIMETHYLAMINE, N-	NITROSO-DI-N-BUTYLAMINE, N-	NITROSODI-N-PROPYLAMINE, N-	NITROSODIPHENYLAMINE, N-	NITROSO-N-ETHYLUREA, N-	OCTYL PHTHALATE, DI-N-	OXAMYL (VYDATE)	PARAQUAT	PARATHION	PCBS, TOTAL (POLYCHLORINATED BIPHENYLS) (AROCLORS)	PCB-1016 (AROCLOR)

1'Aqueous solubility references are keyed to the numbered list found at § 250.304(f) (relating to MSCs for groundwater). Where there are multiple sources cited. The table value is the median of the values in the individual references.

Toxidity value Sources.

Toxidity value Sources.

O = EPA Office of Pesticide Programs Human
D = ATSDR Minimal Risk Level
Health Benchmarks for Pesticide Programs Human
D = ATSDR Minimal Risk Level
Health Effects Assessment
P = EPA Provisional Peer-Reviewed Value
Sources cited. The table value is the median of the values in the individual
Sources cited. The table value is the median of the values in the individual
Sources cited. The table value is the median of the values in the individual
Sources cited. The table value is the median of the values in the individual
Sources cited. The table values is the median of the values in the individual
Sources cited. The table value is the median of the values in the individual
Sources cited. The table value is the median of the values in the individual
Sources cited. The table values is the median of the values in the individual
Sources cited. The table values in the individual
Sources cited. The table values in the individual
Sources cited. The table values in the individual
Sources called The production of the values in the individual in the individual in the individual individual in the value of the values in the individual in the individual in the value of the value in the individual individual in the value of the value of the value in the individual individual

Appendix A
Table 5—Physical and Toxicological Properties
A. Organic Regulated Substances

t t				Г	Γ		П	75		ဖွ	17			Γ	ō.	82	4		ō.		П	9				5	Γ			П		П	70		7
Degradation Coefficient <u>(K)</u> (yr ⁻¹)								0.37		0.36	0.17				4.50	0.63	36.1		4.50	18.07		13490.40				1.7							0.07		18.07
Boiling Point (degrees C)	275	290	325	340	365	385	303	277	160	328	310	211	258	192	341	341	182	170	286	280	319	285	373	347	321	110	355	82	318	257	159	34	393	170	115
Organic Liquid	×	×	×	×	×		×		×			×						×			×							×	×		×	X		×	×
TF Vol from Subsurface Soil	16032								15102							70721	14901	14989				14956				14865		14906			14891	15057			15114
TF Vol from Surface Soil	13810								13120							41808	12977	13039				13018				12952		12981			12971	13239			13142
Aqueous Sol Reference¹	2	7	5	7,9,11	2	5	5	1,5,6,7	1,3	4,6,8	1,2,4,5	6	19,20,21,22,23	24	2,3,9	1,4,5	1,2,3,4	6'9	3	2	2	2	2	2,5	2		2	2	1,5	5	9	1	1	13	2
Aqueous Sol (mg/L)	69'0	1.45	0.1	0.054	0.057	80:0	92	0.74	480	0.44	11	26600	089	9500	692	1.1	84300	653	351000	002	09	6170	430	092	15		225	1000000	9.8	250	25	405000	0.132	0.35	1000000
VOC?	×								×							×	×	×				×				×		×			×	×		×	×
Кос	1900	1500	48000	190000	810000	1800000	630	32000	1905	7900	20000	61.7	2.57	2.06	110	38000	22	295	12	5,700	810	62	15	346	200	139	160	25	155	51	720	25	68000	5.62	9900:0
1	S ₇	S ₂	S,	S,		S ₇					0				၁																				
IUR (µg/m³)-¹	0.0001	0.0001	0.0001	0.0001		0.0001					0.0000051				0.000000063																	0.0000037			
3)																	ပ					ပ						Ь			×				
RfCi (mg/m³)																	0.2					0.02						0.2			1	0.03			
-o d)-1	S ₇	S ₂	S ₇	S ₂		S ₂			Д	I	_		Σ		၁					I												_			
CSFo (mg/kg-d) ⁻¹	2	2	2	2		2			0.09	0.26	0.4		0.07		0.0022					0.00194												0.24			
(p-£	L				- 2		5 H	8		3	- 2	о В	2 M	2 M		0.3 S ⁸	0.3	01 P	- 9		2 0	2	1 2	- 2	- 2	3	- 2	2 P	2	2	0.1 X	1 0	3	0	_
RfDo (mg/kg-d)					0.00002		0.05	0.0008		0.003	0.005	0.0003	0.00002	0.00002		Ö	Ö	0.001	0.006		0.0002		0.07	0.015	0.075	0.013	0.005		0.02	0.02	0	0.001	0.03	0.044	0.001
CAS	11104-28-2	11141-16-5	53469-21-9	12672-29-6	11097-69-1	11096-82-5	1114-71-2	608-93-5	76-01-7	82-68-8	87-86-5	375-73-5	1763-23-1	335-67-1	62-44-2	85-01-8	108-95-2	108-98-5	108-45-2	90-43-7	298-02-2	85-44-9	1918-02-1	1610-18-0	23950-58-5	1918-16-7	8-86-602	0-69-29	139-40-2	122-42-9	103-65-1	15-56-9	129-00-0	8003-34-7	110-86-1
Regulated Substance	PCB-1221 (AROCLOR)	PCB-1232 (AROCLOR)	PCB-1242 (AROCLOR)	PCB-1248 (AROCLOR)	PCB-1254 (AROCLOR)	PCB-1260 (AROCLOR)	PEBULATE	PENTACHLOROBENZENE	PENTACHLOROETHANE	PENTACHLORONITROBENZENE	PENTACHLOROPHENOL	PERFLUOROBUTANE SULFONATE (PFBS)	PERFLUOROOCTANE SULFONATE (PFOS)	PERFLUOROOCTANOIC ACID (PFOA)	PHENACETIN	PHENANTHRENE	PHENOL	PHENYL MERCAPTAN	PHENYLENEDIAMINE, M-	PHENYLPHENOL, 2-	PHORATE	PHTHALIC ANHYDRIDE	PICLORAM	PROMETON	PRONAMIDE	PROPACHLOR	PROPANIL	PROPANOL, 2- (ISOPROPYL ALCOHOL)	PROPAZINE	PROPHAM	PROPYLBENZENE, N-	PROPYLENE OXIDE	PYRENE	PYRETHRUM	PYRIDINE

1'Aqueous solubility references are keyed to the numbered list found at § 250.304(f) (relating to MSCs for groundwater). Where there are multiple sources cited. The table value is the median of the values in the individual references.

Toxidity value Sources.

Toxidity value Sources.

O = EPA Office of Pesticide Programs Human
D = ATSDR Minimal Risk Level
Health Benchmarks for Pesticide Programs Human
D = ATSDR Minimal Risk Level
Health Effects Assessment
P = EPA Provisional Peer-Reviewed Value
Solvant (IRIS)
I = Integrated Risk Provisional Peer-Reviewed Toxicity
Solvant M = EPA Driving Water
R = TEA Driving

Appendix A
Table 5—Physical and Toxicological Properties
A. Organic Regulated Substances

		_	_	_	_	_		_		_	_	_			_		_	_	_	_		_	_	_	_		_	_	_			_	_	_	_	_
Degradation Coefficient (<u>Kl</u> (yr¹)	12.65						4.50	1.20				69.0	0.21	3 70	2 6	0.50	0.03	69.0	4.50					9.01		18.07				0.69	0.35		69:0		0.05	0.03
Boiling Point (degrees C)	238	220	353	280	349	225	270	145	394	396	332	245	412	131	1	147	121	288	202	349	99	280	339	111	203	200	200	432	343	149	48	196	213	208	74	114
Organic Liquid	×							×			×			>	<	< >	×		×	×	×			×	×	×			×	×	×		×		×	×
TF Vol from Subsurface Soil								14850						14001	12011	148/1	14955				14891			14953						14849	15014	15077	15233	18611	15082	14909
TF Vol from Surface Soil								12942						12000	2220	1295/	1301/				12970			13016						12942	13064	13291	13217	15677	13116	12982
Aqueous Sol Reference ¹	1,3,5	2	9,1		2	5	2	c)	2	2	9	1,5,6,7	9	-	- 0	7	1,2,3,4,5	9	5	2	1,6,7	o	4	1,2,3,4	ဖ	1,3,5	1,2,3	2,4,5	2	1,2,3,4	-	2,3,5,9	1,4,6,7	υ	1,4,5,6	_
Aqueous Sol (mg/L)	00009	0.3	59.9	717000	40	2	143	300	2500	710	2	0.583	0.0000193	1100	000	7890	79L	183	0.8	25	300000	5200	30	532.4	15030	15000	7410	ო	4	3050	170	1200000	44.4	5.8	1495	4420
VOC?								×						>		< >	×				×			×						×	×	×	×	×	×	×
Koc	1,300	580	70	2	580	110	280	910	620	53	510	1,800	4300000	080	100	6/	300	6200	4900	220	43	0.022	1000	130	140	410	320	1500	2,000	130	1,200	20	1500	3100	100	92
7													O	_	-		-				_				S	O		_		_						_
IUR (µg/m³) ⁻¹													38	NZ000000	1 00000	0.000058	0.000000026				0.00000194				0.000051	0.000051		0.00032		0.0000011						0.000016
RfCi (mg/m³)								-					0.00000004 C			-	0.04				2 1			- 2							5 P		0.002 P	0.002 S ¹⁰	5	0.0002 X
Fo 3-d) ⁻¹	_		-			Ξ							O	-		-	-				_				တ	۵.	۵	_	0	-		-	۵			_
CSFo (mg/kg-d) ⁻¹	3		0.08			0.12							130000	9000	20.0	0.02	0.0021				0.0076				0.016	0.016	0.03	1.1	0.717	0.0079		0.07	0.029			0.057
RfDo (mg/kg-d)		0.009	0.004	2 TE	0.05 H	0.005	0.0003	0.2	1 20.0	0.013	0.000025 H	0.0003	1 20000000000	- 000		70.0	0.006	0.03	0.0000001	0.0005	1 6:0	0.0003 H	0.015 0	0.08			0.004 X	O.00009 P	0.025 O	0.02	30	0.02	0.01	0.00e M	2	0.004
CAS	91-22-5	76578-14-8	121-82-4	108-46-3	299-84-3	122-34-9	57-24-9	100-42-5	34014-18-1	5902-51-2	13071-79-9	95-94-3	1746-01-6 0.0000000007	830-20-8	000-20-0	19-34-5	127-18-4	58-90-2	78-00-2	3689-24-5	109-99-9	39196-18-4	137-26-8	108-88-3	108-44-1	95-53-4	106-49-0	8001-35-2	2303-17-5	75-25-2	76-13-1	76-03-9	120-82-1	108-70-3	71-55-6	2-00-62
Regulated Substance	QUINOLINE	QUIZALOFOP (ASSURE)	RDX	RESORCINOL	RONNEL	SIMAZINE	STRYCHNINE	STYRENE	TEBUTHIURON	TERBACIL	TERBUFOS	TETRACHLOROBENZENE, 1,2,4,5-	TETRACHLORODIBENZO-P-DIOXIN,	Z,3,7,8- (ICDD)	TITO 00 11 000 TITO 1 1 1 1 2 0	TELKACHLOROETHANE, 1,1,2,2-	IETRACHLOROETHYLENE (PCE)	TETRACHLOROPHENOL, 2,3,4,6-	TETRAETHYL LEAD	TETRAETHYLDITHIOPYROPHOSPHATE	TETRAHYDROFURAN	THIOFANOX	THIRAM	TOLUENE	TOLUIDINE, M-	TOLUIDINE, O-	TOLUIDINE, P.	TOXAPHENE	TRIALLATE	TRIBROMOMETHANE (BROMOFORM)	TRICHLORO-1,2,2-TRIFLUOROETHANE, 1,1,2-	TRICHLOROACETIC ACID	TRICHLOROBENZENE, 1,2,4-	TRICHLOROBENZENE, 1,3,5-	TRICHLOROETHANE, 1,1,1-	TRICHLOROETHANE, 1,1,2-

Appendix A
Table 5—Physical and Toxicological Properties
A. Organic Regulated Substances

	_						_												_	_	_
Degradation Coefficient <u>(K)</u> (yr ⁻¹)	0.02	0.14	0.14	1.39			0.35					4.50		18.07			60:0	0.09	4.50	0.69	
Boiling Point (degrees C)	87	246	246	279	353	117	157	142	06	285	382	169	165	190	240	73	16	-13	356	140	474
Organic Liquid	×					×	×	×	×	×		×	×	×		×	×	×		×	
TF Vol from Subsurface Soil	15022					15119	14896	14992	14862			14904	14876	14848		14955	15043	15040		14909	
TF Vol from Surface Soil	13070					13145	12974	13047	12951			12978	12961	12941		13017	13086	13109		12982	
Aqueous Sol Reference ¹	1	1,2,4	1,2,4,5	2,4,5	2	14	1,4,6	14	1,4	12	2,5,6,7	1	1	2,3,5	2	1	12	1	4	13	4
Aqueous Sol (mg/L)	1100	1000	820	278	140	2700	1896	2700	22000	1000000	4	56	48.9	1800	100	20000	4180	2700	17	175	10
VOC?	×					×	×	×	×			×	×	×		×	×	×		×	
Кос	66	2400	1100	43	1700	24	280	190	51	9	720	2,200	099	116	1	2.8	150	10	910	350	19
1	_		_														I	_			
IUR (µg/m³) ⁻¹	0.000004		0.0000031														0.000032	0.0000088			
3)	_						_	۵	_			_	_			_	_	_		_	
RfCi (mg/m³)	0.002						0.0003	0.0003	0.007			0.06	90.0			0.2	0.003	0.1		0.1	
-o d)-1			_				_				_			Д	_			_			
CSFo (mg/kg-d) ⁻¹	0.046		0.011				90				0.0077			0.017	0.03			1.5			
(p-£	- 2	0.1	٦	0.01	- 8	- 2	-	×		2 P	- 2	-	0.01	1 P	- 2	Ξ		3	3	0.2	- 2
RfDo (mg/kg-d)	0.0005	0	0.001	0:0	0.008	0.005	0.004	0.003			0.0075	0.01	0.0	0.0001	0.0005			0.003	0.0003	0.	0.05
CAS	79-01-6	95-95-4	88-06-2	93-76-5	93-72-1	9-77-865	96-18-4	96-19-5	121-44-8	112-27-6	1582-09-8	92-63-6	108-67-8	55-63-0	118-96-7	108-05-4	593-60-2	75-01-4	81-81-2	1330-20-7	12122-67-7
Regulated Substance	TRICHLOROETHYLENE (TCE)	TRICHLOROPHENOL, 2,4,5-	TRICHLOROPHENOL, 2,4,6-	TRICHLOROPHENOXYACETIC ACID, 2.4.5- (2.4.5-T)	TRICHLOROPHENOXYPROPIONIC ACID, 2,4,5- (2,4,5-TP)(SILVEX)	TRICHLOROPROPANE, 1,1,2-	TRICHLOROPROPANE, 1,2,3-	TRICHLOROPROPENE, 1,2,3-	TRIETHYLAMINE	TRIETHYLENE GLYCOL	TRIFLURALIN	TRIMETHYLBENZENE, 1,3,4- (TRIMETHYLBENZENE, 1,2,4-)	TRIMETHYLBENZENE, 1,3,5-	TRINITROGLYCEROL (NITROGLYCERIN)	TRINITROTOLUENE, 2,4,6-	VINYL ACETATE	VINYL BROMIDE (BROMOETHENE)	VINYL CHLORIDE	WARFARIN	XYLENES (TOTAL)	ZINEB

Appendix A Table 5—Physical and Toxicological Properties B. Inorganic Regulated Substances

Regulated Substance	CAS	RfDo (mg/kg-c	1)	CSFo (mg/kg-d _i) ⁻¹	RfCi (mg/m³)		IUR (ug/m³) ⁻	1	Kd
ALUMINUM	7429-90-5	1	Р			0.005	Р			9.9
ANTIMONY	7440-36-0	0.0004								45
ARSENIC	7440-38-2	0.0003		1.5	Ι	0.000015	С	0.0043	Ι	29
BARIUM AND COMPOUNDS	7440-39-3	0.2	Ι			0.0005	Н			41
BERYLLIUM	7440-41-7	0.002	Ι			0.00002	ı	0.0024	I	790
BORON AND COMPOUNDS	7440-42-8	0.2				0.02	Н			3
CADMIUM	7440-43-9	0.0005				0.00001	D	0.0018	Ι	75
CHROMIUM III	16065-83-1	1.5	Ι							1,800,000
CHROMIUM VI	18540-29-9	0.003	Ι	0.5	С	0.000008	I	0.012	Ι	19
COBALT	7440-48-4	0.0003	Р			0.000006	Р	0.009	Р	45
COPPER	7440-50-8	0.0325	Н							430
CYANIDE, FREE	57-12-5	0.0006	Τ			0.0008	П			9.9
FLUORIDE	16984-48-8	0.04	С			0.013	С			
IRON	7439-89-6	0.7	Р							25
LEAD	7439-92-1			0.0085	С			0.000012	С	900
LITHIUM	7439-93-2	0.002	Р							300
MANGANESE	7439-96-5	0.14	Τ			0.00005	Τ			65
MERCURY	7439-97-6	0.00016	С			0.0003	Ι			52
MOLYBDENUM	7439-98-7	0.005	Ι			0.002	D			20
NICKEL	7440-02-0	0.02	Ι			0.00009	D	0.00024	Is	65
NITRATE NITROGEN	14797-55-8	1.6	Ι							
NITRITE NITROGEN	14797-65-0	0.1	Ι							
PERCHLORATE	7790-98-9	0.0007	Ι							0
SELENIUM	7782-49-2	0.005	Ι			0.02	С			5
SILVER	7440-22-4	0.005								8.3
STRONTIUM	7440-24-6	0.6	Ι							
THALLIUM	7440-28-0	0.00001	Χ							71
TIN	7440-31-5	0.6	Н							250
VANADIUM	7440-62-2	0.00007	Р			0.0001	D			1,000
ZINC	7440-66-6	0.3	Ι							62

Toxicity Value Sources:

C = California EPA Cancer Potency Factor

D = ATSDR Minimal Risk Level

H = Health Effects Assessment Summary Table (HEAST)

I = Integrated Risk Information System (IRIS)

P = EPA Provisional Peer-Reviewed Toxicity Value

X = EPA Provisional Peer-Reviewed Toxicity Value Appendix

Appendix A
Table 6—Threshold of Regulation Compounds

		ALLAOLIEED	Residential	Non-Res M	Non-Residential Soil MSCs	
REGULATED SUBSTANCE	CASRN	GROUNDWATER MSC (µq/L)	Soil MSC (mg/kg)	Surface Soil (mg/kg)	Subsurface Soil (mg/kg)	Soil to Groundwater¹ (mg/kg)
			0—15 feet	0—2 feet	2—15 feet	
ACETIC ACID	64-19-7	5	100	100	100	0.5
ACETIC ANHYDRIDE	108-24-7	5	100	100	100	0.5
AMYL ACETATE, N-	628-63-7	5	100	100	100	0.5
AMYL ACETATE, SEC-	626-38-0	5	100	100	100	0.5
ANTU (ALPHA-NAPHTHYLTHIOUREA)	86-88-4	5	100	100	100	0.5
BHC, DELTA	319-86-8	5	100	100	100	0.5
BROMOPHENYL PHENYL ETHER, 4-	101-55-3	5	100	100	100	0.5
BUTYL ACETATE, N-	123-86-4	5	100	100	100	0.5
BUTYL ACETATE, SEC-	105-46-4	5	100	100	100	0.5
BUTYL ACETATE, TERT-	540-88-5	5	100	100	100	0.5
BUTYLAMINE, N-	109-73-9	5	100	100	100	0.5
CALCIUM CHROMATE	13765-19-0	5	100	100	100	0.5
CALCIUM CYANAMIDE	156-62-7	5	100	100	100	0.5
CARBONYL FLUORIDE	353-50-4	5	100	100	100	0.5
CATECHOL	120-80-9	5	100	100	100	0.5
CHLOROETHYL VINYL ETHER, 2-	110-75-8	5	100	100	100	0.5
CHLOROPHENYL PHENYL ETHER, 4-	7005-72-3	5	100	100	100	0.5
DECABORANE	17702-41-9	5	100	100	100	0.5
DIETHYLAMINE	109-89-7	5	100	100	100	0.5
DIGLYCIDYL ETHER (DGE)	2238-07-5	5	100	100	100	0.5
DIMETHYL PHTHALATE	131-11-3	5	100	100	100	0.5
DIMETHYL SULFATE	77-78-1	5	100	100	100	0.5
DIMETHYLPHENETHYLAMINE, ALPHA, ALPHA-	122-09-8	5	100	100	100	0.5
DIOXATHION	78-34-2	5	100	100	100	0.5
ETHYL METHANESULFONATE	62-50-0	5	100	100	100	0.5
ETHYLAMINE	75-04-7	5	100	100	100	0.5
FAMPHUR	52-85-7	5	100	100	100	0.5
FENSULFOTHION	115-90-2	5	100	100	100	0.5

Appendix A
Table 6—Threshold of Regulation Compounds

		ALLAOLITEED	Residential	Non-Resi M	Non-Residential Soil MSCs	
REGULATED SUBSTANCE	CASRN	GROUNDWATER MSC	Soil MSC (mg/kg)	Surface Soil (ma/ka)	Subsurface Soil (ma/ka)	Soil to Groundwater¹ (ma/ka)
		(µg/L)	0—15 feet	0—2 feet	2—15 feet	(66)
HEXACHLOROPROPENE	1888-71-7	5	100	100	100	0.5
IODOMETHANE	74-88-4	5	100	100	100	0.5
ISOAMYL ACETATE	123-92-2	5	100	100	100	0.5
ISOBUTYL ACETATE	110-19-0	5	100	100	100	0.5
ISODRIN	465-73-6	5	100	100	100	0.5
ISOPHORONE DIISOCYANATE	4098-71-9	5	100	100	100	0.5
ISOSAFROLE	120-58-1	5	100	100	100	0.5
LITHIUM HYDRIDE	7580-67-8	5	100	100	100	0.5
MANGANESE CYCLOPENTADIENYL TRICARBONYL	12079-65-1	5	100	100	100	0.5
METHYL ISOAMYL KETONE	110-12-3	5	100	100	100	0.5
METHYL MERCAPTAN	74-93-1	5	100	100	100	0.5
METHYLAMINE	74-89-5	5	100	100	100	0.5
MONOCROTOPHOS	6923-22-4	5	100	100	100	0.5
NAPHTHOQUINONE, 1,4-	130-15-4	5	100	100	100	0.5
NITRIC ACID	7697-37-2	5	100	100	100	0.5
NITROQUINOLINE-1-OXIDE, 4-	56-57-5	5	100	100	100	0.5
OSMIUM TETROXIDE	20816-12-0	5	100	100	100	0.5
PENTABORANE	19624-22-7	5	100	100	100	0.5
PERCHLOROMETHYL MERCAPTAN	594-42-3	5	100	100	100	0.5
PICOLINE, 2-	109-06-8	5	100	100	100	0.5
PROPANOL, 1-	71-23-8	5	100	100	100	0.5
PROPIONIC ACID	79-09-4	5	100	100	100	0.5
PROPIONITRILE (ETHYL CYANIDE)	107-12-0	5	100	100	100	0.5
PROPYLENE IMINE	75-55-8	5	100	100	100	0.5
QUINONE (p-BENZOQUINONE)	106-51-4	5	100	100	100	0.5
SELENIUM HEXAFLUORIDE	7783-79-1	5	100	100	100	0.5
SODIUM BISULFITE	7631-90-5	5	100	100	100	0.5
SULFIDE	18496-25-8	5	100	100	100	0.5

Table 6—Threshold of Regulation Compounds Appendix A

	Soil to Groundwater¹ (mg/kg)		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Non-Residential Soil MSCs	Subsurface Soil (mg/kg)	2—15 feet	100	100	100	100	100	100	100	100
Non-Resi M	Surface Soil (mg/kg)	0—2 feet	100	100	100	100	100	100	100	100
Residential	Soil MSC (mg/kg)	<i>0</i> —15 feet	100	100	100	100	100	100	100	100
A NOTHERD	GROUNDWATER MSC (µg/L)		5	5	5	5	5	5	5	2
	CASRN		10025-67-9	7664-93-9	13494-80-9	7783-80-4	107-49-3	509-14-8	297-97-2	126-68-1
	REGULATED SUBSTANCE		SULFUR MONOCHLORIDE	SULFURIC ACID	TELLURIUM	TELLURIUM HEXAFLUORIDE	TEPP (TETRAETHYL PYROPHOSPHATE)	TETRANITROMETHANE	THIONAZIN	TRIETHYLPHOSPHOROTHIOATE,

¹ The value in the table is 100 time the groundwater MSC. The option to use the SPLP is also available to calculate the soil to groundwater numeric value (See § 250.310 (relating to minimum threshold MSCs))

	Appendix A		
Table 7—Default Values for			ions for Lead
1	Values Used in UBK	v	
	for residential exposu	re scenario)	
Geometric Standard Deviation	1.42	Drinking water	Model default
(GSD)	(default)	intake	
Outdoor air lead concentration	$0.2 \ \mu g/m^3$		
	(default)	Soil lead level	495 μg/g
Indoor air lead concentration	30	Indoor dust lead	495 μg/g
(% of outdoor)		level	
Time spent outdoors	Model default	Soil/dust ingestion	45
		weighting factor (%)	
Ventilation rate	Model default	Paint lead intake	Model default
Lung absorption	Model default	Maternal	Infant model
		contribution method	
Dietary lead intake	Model default	Mother's blood lead	7.5 µg/dL blood
		at birth	(model default)
GI method/bioavailability	Non-linear	Target blood lead	10 μg/dL blood
		level	
Lead concentration in drinking water	4.00 μg/L		
	(default)		

Input Values Used in SEG	H Equation
(for nonresidential exposu	re scenario)
Concentration of lead in soil (S)	987 μg/g
Target blood lead level in adults (T)	20 μg/dL blood
Geometric standard deviation of blood lead	
distribution (G)	1.4
Baseline blood lead level in target population (B)	4 μg/dL blood
Number of standard deviations corresponding to	
degree of protection required for the target	1.645 (for 95% of population)
population (n)	
Slope of blood lead to soil lead relationship (δ)	7.5 μg/dL blood per μg/g soil

REFERENCE

WIXSON, B.G. (1991). The Society for Environmental Geochemistry and Health (SEGH) Task Force Approach to the Assessment of Lead in Soil. Trace Substances in Environmental Health. 11—20.

 $[Pa.B.\ Doc.\ No.\ 21\text{-}1920.\ Filed\ for\ public\ inspection\ November\ 19,\ 2021,\ 9:00\ a.m.]$

PROPOSED RULEMAKING

DEPARTMENT OF LABOR AND INDUSTRY

[34 PA. CODE CH. 231] Minimum Wage

In accordance with sections 4 and 9 of the Minimum Wage Act of 1968 (43 P.S. §§ 333.104(c) and 333.109), the Department of Labor and Industry (Department) is submitting this proposed rulemaking for the purpose of carrying out the Minimum Wage Act of 1968 (act) (43 P.S. §§ 333.101—333.115) and to safeguard the minimum wage rates established thereby.

The Department proposes the following regulations for minimum wages under the act as set forth in Annex A. *Statutory Authority*

This proposed rulemaking is issued under the authority provided in section 4(c) of the act, which requires the Secretary to promulgate regulations for overtime, and section 9 of the act which provides:

The secretary shall enforce this act. The secretary shall make and, from time to time, revise regulations. with the assistance of the board, when requested by the secretary, which shall be deemed appropriate to carry out the purposes of this act and to safeguard the minimum wage rates thereby established. Such regulations may include, but are not limited to, regulations defining and governing bona fide executive, administrative, or professional employes and outside salespersons, learners and apprentices, their number, proportion, length of learning period, and other working conditions; handicapped workers; parttime pay; overtime standards; bonuses; allowances for board, lodging, apparel, or other facilities or services customarily furnished by employers to employes; allowances for gratuities; or allowances for such other special conditions or circumstances which may be incidental to a particular employer-employe relationship.

Background

Tipped Employees

Section 4(a.1) of the act (43 P.S. § 333.104(a.1)), provides that every employer shall pay to each of his or her employees a minimum wage of \$7.25 per hour. However, there is a special provision for tipped employees. Section 3 of the act (43 P.S. § 333.103), defines "wage" in the context of tipped employees as follows:

In determining the hourly wage an employer is required to pay a tipped employe, the amount paid such employe by his or her employer shall be an amount equal to: (i) the cash wage paid the employe which for the purposes of the determination shall be not less than the cash wage required to be paid the employe on the date immediately prior to the effective date of this subparagraph; and (ii) an additional amount on account of the tips received by the employe which is equal to the difference between the wage specified in subparagraph (i) and the wage in effect under section 42 of this act.

Section 3 of the act was a statutory amendment effective December 21, 1998. The day before the effective date of the amendment to the law, the tipped minimum

wage was \$2.83 per hour. This figure was calculated because at the time of the amendment, the act's language concerning tipped employees read as such, "In determining the hourly wage of a tipped employe, the amount paid such employe by his employer shall be deemed to be increased on account of tips by an amount determined by the employer, but not by an amount in excess of forty-five percent of the applicable minimum wage rate." minimum wage at that time was \$5.15 per hour. 43 P.S. § 333.104(a)(6). Thus, an employer can only increase the tipped wage by up to 45% of \$5.15 per hour which is \$2.32 per hour. If you subtract \$2.32 from \$5.15 then you get \$2.83 which was the lowest base rate to pay an employee. Since the tipped wage is \$2.83, that is the minimum wage employers are required to pay tipped employees. Employers may take a tip credit for the difference between the base hourly wage for tipped employees as long as the tips and base wage equal \$7.25 per hour. In addition, section 3 of the act provides that tips are the property of the employee, and that tip pooling is allowed amongst all employees that customarily and regularly receive tips.

The existing regulation in § 231.1 (relating to definitions), defines a tipped employee as "an employee engaged in an operation in which the employee customarily and regularly receives more than \$30 a month in tips." However, there is no regulation addressing the performance of non-tipped duties by tipped workers, the deduction of credit card service fees from tips, the institution of service charges and tip pooling.

In addition to the act, the Fair Labor Standards Act of 1938 (FLSA) (29 U.S.C.A. §§ 201—219) addresses tipped employees. Section 3 of the FLSA (29 U.S.C.A. § 203) defines a tipped employee as an employee engaged in an occupation in which that employee customarily and regularly receives tips. This provision has been in the FLSA since November 1, 1977.

Currently, the Department does not have any regulations addressing whether an employer can pay an employee a tipped wage and have the employee perform any duties that do not directly generate tips.

The United States Department of Labor (USDOL) does not have a regulation addressing this issue. However, USDOL has long enforced the "80/20 rule" which was outlined in a USDOL subregulatory policy. WHD Field Operations Handbook 30d00(e), Revision 563 (Dec. 9, 1988). The 80/20 rule permits employers to take the tip credit for an employee as long as that employee does not spend more than 20% of the employee's workweek performing duties that do not directly generate tips.

On December 30, 2020, USDOL published a final rule revising its regulations concerning tipped employees. See 85 FR 86756, 86771 (December 30, 2020). In its final rule, USDOL announced that it was allowing employers to institute tip pools with employees who do not customarily and regularly receive tips if the employer does not take a tip credit. However, these tips pools may not include managers or supervisors. In addition, these regulations would allow employers to take a tip credit for any time spent performing duties that are related to those that customarily and regularly produce tips and which are done contemporaneously with tipped duties or for a reasonable time immediately before or after tipped duties. This rulemaking would have ended the 80/20 rule. USDOL's tipped employee rule was to be effective on March 1, 2021.

On January 21, 2021, the Commonwealth of Pennsylvania, along with the Commonwealth of Massachusetts, the States of Delaware, Illinois, Maryland, Michigan, New Jersey and New York along with the District of Columbia filed a lawsuit against USDOL charging that USDOL's tip rule was contrary to USDOL's statutory jurisdiction, authority and limitations in violation of section 706(2)(C) of the Federal Administrative Procedures Act (APA) (5 U.S.C. § 706(2)(C)), and was arbitrary, capricious, an abuse of discretion, and otherwise not in accordance with law under section 706(2)(A) of the APA. This lawsuit is stayed because on February 26, 2021, USDOL decided to reconsider the implementation of this regulation. On March 25, 2021, USDOL postponed the effective date for parts of the final regulation until December 31, 2021. See 86 FR 15811 (March 25, 2021). However, on April 29, 2021, USDOL allowed the part of the regulation regarding tip pooling to go into effect. USDOL's regulation allows employees who traditionally perform tipped work to participate in tip pools with employees who do not typically perform tipped work. See 86 FR 22597 (April 29, 2021). On September 24, 2021, USDOL clarified that managers and supervisors may keep tips provided directly to them but could not receive tips from tip pools. 86 FR 52973 (September 24, 2021).

On October 29, 2021, USDOL published a proposed regulation which would codify the 80/20 rule for the first time. 86 FR 32818 (June 23, 2021). Specifically, the proposed regulation would allow an employer to take a tip credit when an employee performs work that directly generates tips or performs work that directly supporting tip-producing work, provided that the directly supporting work "does not (1) exceed, in aggregate, 20 percent of the employee's hours worked during the work week or (2) is performed for a continuous period of time exceeding 30 minutes."

Neither the Department nor USDOL have issued regulations regarding service charges or the deduction of credit card processing fees from employee tips.

Overtime for Salaried Employees

Section 4 of the act requires that "Employes shall be paid for overtime not less than one and one-half times the employe's regular rate as prescribed in regulations promulgated by the secretary." The Department has regulations defining the term "regular rate." See § 231.43 (relating to regular rate). However, these regulations do not address the calculation of the base rate for salaried employees who are entitled to overtime.

The USDOL allows for a fluctuating workweek to determine the regular rate for salaried employees. See 29 CFR 778.114 (relating to Fluctuating Workweek Method of Computing Overtime). Under the fluctuating workweek, an employer pays an employee a flat weekly salary regardless of the regular hours worked in a week, which may vary from week to week. For all hours worked in excess of 40 in a week under the fluctuating workweek, the worker is entitled to overtime at 0.5 their regular rate. Federal law allows for the "regular rate" to be calculated based on either a 40-hour workweek or the total hours worked, including overtime hours. Typically, the "regular rate" in a fluctuating workweek agreement is calculated based on total hours worked, which benefits the employer and disadvantages the employee since it results in a lower "regular rate."

The Pennsylvania Supreme Court has addressed the issue of the overtime for salaried employees and decided that the act requires that a 1.5 multiplier to be applied to

determine an employee's overtime rate when the employee works a fluctuating workweek. *Chevalier v. General Nutrition Ctrs.*, *Inc.*, 220 A.3d. 1038 (Pa. 2019).

At issue in *Chevalier* was the provision in section 4(c) of the act that "[e]mploye[e]s shall be paid for overtime not less than one and one-half times the employe[e]'s regular rate as prescribed in regulations promulgated by the secretary." The Department's regulations in § 231.41 (relating to rate) provide that "each employee shall be paid for overtime not less than 1 1/2 times the employee's regular rate of pay for all hours in excess of 40 hours in a workweek," However, this regulation does not further prescribe how to define the base rate to be used to calculate overtime for salaried employees who work a fluctuating workweek.

In *Chevalier*, Plaintiffs were salaried store managers paid a set weekly salary plus commissions regardless of the hours worked. Thus, their weekly wages compensate them for the hours they work whether they work 30 or 60 hours.

The Pennsylvania Supreme Court noted that for employees paid based on an hourly rate, the overtime formula is simple: 1.5 × hourly rate × number of hours over 40. But this generic overtime formula is ambiguous with respect to employees with different compensation structures that may include salaries, commissions, payment based on the work completed or a combination of these compensation structures. The Pennsylvania Supreme Court, however, did not address the calculation of the "regular rate" for these employees, noting that the "parties now agree with the Superior Court majority that the regular rate should be calculated by using the actual hours worked." Thus, the Superior Court's holding on this point that the "regular rate" was calculated by taking total compensation and dividing it by actual hours worked was not disturbed by the Pennsylvania Supreme Court.

Compliance with Executive Order 1996-1, Regulatory Review and Promulgation

In December 2020, the Department solicited input about the act's regulations from a wide range of stakeholders, including members of the Minimum Wage Advisory Board, by e-mail. This solicitation included:

- \bullet Restaurant Opportunities Centers United—Philadelphia
- Restaurant Opportunities Centers United—Pittsburgh
- National Employment Law Project, Catherine Ruckelshaus
- The Economy League of Greater Pennsylvania, Jeff Hornstein
 - Winebrake & Santillo, LLC, Pete Winebrake
 - Economic Policy Institute, Heidi Shierholz
 - PA AFL-CIO, Rick Bloomingdale
 - PA Building Trades, Frank Sirianni
 - SEIU Healthcare Pennsylvania, Matt Yarnell

The Minimum Wage Advisory Board is comprised of the following members:

- Knouse Foods Cooperative, Inc., Scott Briggs
- PA Chamber of Business and Industry, Alex Halper
- Keystone Research Center, Stephen Herzenberg
- Community Legal Services, Nadia Hewka

- Hudak & Company, Wayne Hudak
- SEIU State Council, Reesa Kossoff
- United Food and Commercial Workers Union, Local 1776, John Meyerson
- United Food and Commercial Workers Union, Local 1776, Barbara Johnson
 - PA AFL-CIO, Samantha Shewmaker

On February 4, 2021, the Department received written comments in the form of a joint letter from the following individuals and organizations:

Justice at Work Pennsylvania
Outten and Golden, LLP
Community Legal Services of Philadelphia
National Employment Law Project
PA AFL-CIO
Lichten & Liss-Riordan
Duquesne Law School, Unemployment Compensation
Clinic
Keystone Research Center

On February 5, 2021, the Department received a written comment from the Pennsylvania Chamber of Business and Industry.

The Department has also conducted meetings with private stakeholder groups.

Purpose

This proposed rulemaking amends the Department's existing minimum wage regulations in §§ 231.1, 234.34, 231.43 and 231.101. This rulemaking proposes to add §§ 231.111—231.114.

Summary of Proposed Rulemaking

PA Budget and Policy Center

§ 231.1. Definitions

The Department proposes to amend the definition for "Bureau" to change the definition from "Bureau of Labor Standards" to "Bureau of Labor Law Compliance." This change reflects the current name of the bureau charged with enforcing this chapter.

The Department proposes to add a definition for "tip credit" to provide clarity to its regulations. This definition will make it clear that a tip credit is the difference between the statutory minimum wage outlined in section 4 of the act and the base hourly rate that employers pay to tipped employees.

The Department proposes to amend the definition for "tipped employee" to raise the tipped employee threshold from \$30 per month to \$135 per month. The tipped salary threshold was set in 1977. When the \$30 tip threshold was last updated, a tipped employee had to earn over 13 times the minimum wage in tips before an employer could claim a tip credit for that employee. Today, a tipped employee in this Commonwealth must earn just over four times the minimum wage in tips before their employer can claim a tip credit. By updating this threshold, the regulation will ensure that the monetary threshold found in the definition of tipped workers accounts for 44 years of inflation and that tipped employees' wages reflect current market values.

§ 231.34. Tipped employees

The Department proposes to amend paragraph 3 to align the language of this regulation with the language currently found in section 3 of the act. The language in the current regulation mirrored the language found in

section 3 of the act before it was amended by the act of December 21, 1998 (P.L. 1290, No. 168).

The Department proposes to add paragraph (6) which would require employers to keep records of the names and positions of each employee participating in a tip pool and the amount distributed to that person. This paragraph is necessary for the Department to fulfill its duties under section 7 of the act (43 P.S. § 333.107), and ensure that employees are complying with the proposed tip pooling regulations.

§ 231.43. Regular rate

The Department proposes to add "(a)" to indicate the first subsection of the regulation. This subsection currently has no designation.

The Department proposes to amend subsection (a)(1) to replace "at Christmas time" with "during any holiday." This is being done to reflect that sums paid for any holiday should count towards the calculation of the regular rate.

The Department proposes to amend subsection (b) and replace the words "he" and "his" with the words "the" and "the employee." This will make the language of the regulation gender neutral.

The Department proposes to add new subsection (g) which provides, "[t]he regular rate for salaried employees who are not exempt from overtime is determined by totaling all remuneration for employment to or on behalf of the employee received in a workweek, except sums, payments, contributions and compensation enumerated in subsection (a), divided by 40 hours."

The Department's regulation had been silent on how to calculate the regular rate of pay for employees who are paid a salary. This updated regulation addresses the omission in existing regulations and clarifies that the "regular rate" in all cases should be calculated based on a regular, 40-hour workweek and not the total hours worked including overtime, which may be irregular and inconsistent from week to week. This would be consistent with the act's purpose because it would result in more overtime pay for salaried employees who are not exempt from overtime and, as such, be consistent with the act's remedial purpose of protecting these salaried workers from unreasonably low wages.

§ 231.101. Minimum wage increase

The Department proposes to amend subsection (b) and (b)(1) to provide clarity that employers may pay a lower hourly wage to tipped employees and must pay the difference if that hourly wage and the employee's tips do not equal the State minimum wage of \$7.25 per hour.

The Department proposes to amend subsection (b)(2) to reflect the proposed increase of the tipped employee threshold to \$135 per month.

§ 231.111. Tip credit for non-tipped duties

The Department proposes to add this section to its regulations because, other than record keeping requirements outlined in § 231.34 (relating to tipped employees), the Department has no regulations governing tipped employees. This regulation would eliminate confusion for employers in this Commonwealth that may have resulted from USDOL's frequently changing guidance.

Subsection (a) would provide that an employer can only take a tip credit if that employee spends at least 80% of that employee's workweek performing duties that directly generate tips and if the other duties that the employee performs support the duties that directly generate tips.

This proposed regulation is needed because the Commonwealth law and regulations presently are silent on the amount of time per week an employee can be directed to work on non-tip-generating activities while being paid the tipped minimum wage of at least \$2.83 per hour. The proposed regulation will ensure that employees who receive the lower tipped minimum wage are actually performing duties that generate tips. Finally, the Department provides that an employer cannot take a tip credit if an employee spends more than 30 continuous minutes performing duties that do not directly generate tips. The Department's proposed regulation is in accordance with section 4 of the act which requires employees to receive the minimum wage. It also mirrors a final regulation and longstanding guidance from USDOL that to be classified as a tipped employee, an employee must spend 80% of the employee's time performing tipped work and must spend no more than 30 continuous minutes performing duties that do not directly generate tips.

Although the Department's proposed regulation mirrors USDOL's proposed regulation, there are several reasons that make it prudent for the Department to issue its own regulation on the 80/20 rule. First, USDOL has proposed two very different regulatory packages within the past year regarding the 80/20 rule. This creates uncertainly at the Federal level and the Department wishes to remove the uncertainty at the State level. Second, the Department has examined USDOL's current proposal and has concluded that it provides strong protection to workers from being misclassified as a tipped employee while recognizing the employer's right to pay a lower base hourly wage for employees who perform tipped work. Finally, the Courts have criticized the Department for failing to enact regulations which explain whether the Department is complying with or departing from Federal guidance. The Department's proposed regulation provides clarity on its position regarding tipped workers performing non-tipped work.

Subsection (b) provides that employers have to pay the minimum wage for any time where an employer cannot take a tip credit. The Department is proposing this to clarify and reinforce that the lower tipped minimum wage is an exception to the requirement that employers pay employees the minimum wage required by section 4 of the act.

§ 231.112. Tip pooling

The Department proposes this new section because, while the act permits tip pooling, there are no regulations addressing this subject. This regulation will remove any confusion for employers that may have been caused by USDOL's frequently changing guidance.

Subsection (a) would clarify that tip pooling is reserved for employees who customarily and regularly perform tipped duties. The Department proposes this because section 3 of the act allows for tip pooling amongst employees who customarily and regularly perform duties that generate tips. Furthermore, limiting tip pools to employees who customarily and regularly receive tips ensures that lower paid tipped employees keep the tips that they earn.

Subsection (b) would exclude owners, partners, employees who perform any duties that the FLSA classifies as executive duties and employees who do not spend 80% of their workweek performing duties that customarily and regularly generate tips from participating in tip pools. The Department proposes this to ensure that only employees who customarily and regularly perform tipped

work can participate in tip pooling and to prohibit higher paid upper-level supervisors from participating in tip pooling. This regulation would allow lower-level supervisors to participate in tip pools provided that they do not have an ownership or partnership interest and spend at least 80% of their shift performing duties that customarily and regularly generate tips.

Subsection (c) would require employers to notify employees of tip pooling arrangements. This notice must be provided at the time of employment or at least one pay period before the tip pooling arrangement takes effect. The Department proposes this to ensure that workers are fully aware of tip pooling arrangements before they are required to participate in them. Notifying employees of tip pooling arrangements furthers the intent of section 1 of the act (43 P.S. § 333.101), because it will help in alleviating the unequal bargaining power between employers and employees.

The Department is declining to adopt USDOL's rule because it does not align with the act's remedial purpose. "It is permissible for a state to enact more beneficial wage and hour laws. Indeed, the federal statute establishes only a national floor under which wage protections cannot drop, but more generous protections provided by a state are not precluded." Bayada Nurses, Inc. v. Com., Dep't of Labor & Indus., 8 A.3d 866, 883 (Pa. 2010). Tipped workers, such as servers, lose control of their earned tips if forced to participate in tip pooling with non-tipped workers because the tip pooling effectively subsidizes the wages of non-tipped employees. This results in a loss of wages for the tipped worker and creates an incentive for employers to lower the hourly wage for non-tipped workers because those workers would not experience a loss in income.

§ 231.113. Credit card fees

The Department proposes to add this section as there are no regulations addressing whether employers are permitted to deduct credit card processing fees from an employee's tips. The Department proposes to prohibit employers from deducting credit card processing and other fees from employee tips. This is consistent with section 3 of the act, which states that tips are the property of the employee.

The proposed regulation provides greater protection than found in Federal law. The proposed regulation implements and is compelled by the express language of the act. Section 3 of the act states "the gratuity shall become the property of the employee." The FLSA does not contain this language, which evidences an intent for the act to provide greater protection than the FLSA.

§ 231.114. Service charges

The Department proposes to add this section to address service charges that employers may choose to charge patrons. There currently is no regulation which addresses service charges as they affect tipped employees. This is in accordance with section 9 of the act (43 P.S. § 333.109), which grants the Department's authority to issue regulations regarding tipped employees and to protect employees from unreasonably low wages.

Subsection (a) would require employers who charge patrons service fees to provide patrons notice in the contract with the patron and on a menu provided to the patron. The Department proposes this regulation to clarify to patrons that a service charge is different than a tip.

Subsection (b) would require a service charge notice to state that the charge is for the administration of the banquet, special function or package deal and is not a tip to be distributed to employees. The Department proposes this regulation to clarify to patrons that a service charge is different than a tip.

Subsection (c) would require billing statements to contain separate lines for service charges and tips. The Department proposes this regulation to further clarify to patrons that a service charge is different than a tip.

Affected Persons

This proposed rulemaking will affect all employers in this Commonwealth covered by the act and all individuals who are employed by these entities who performed tipped work or are salaried employees eligible for overtime.

The Department estimates that this regulation will benefit the approximately 199,285 tipped workers in this Commonwealth, as defined by the act's current regulations.

Fiscal Impact

The Department does not anticipate that this regulation change will create a significant impact on its enforcement budget.

The regulation may have a fiscal impact for employers. Costs related to compliance may include costs of becoming familiar with the regulation and costs of adjusting operations to the regulation. Regulatory familiarization and adjustment costs will likely be limited in duration.

Specifically, the regulatory familiarization cost to the regulated community in this Commonwealth in Fiscal Year (FY) 2021-2022 is \$1,958,580 (based on an average hourly wage of \$33.13 for a human resources specialist in this Commonwealth in May 2020 plus benefits cost equaling 46% base salary plus overhead cost at 17% base salary multiplied by 1 hour multiplied by the total number of establishments that are likely to be required to comply, 36,270). The adjustment cost to the regulated community in this Commonwealth in FY 2021-2022 is up to \$15,303,060 (based on an average hourly wage of \$33.13 for a human resources specialist in this Commonwealth plus benefits cost equaling 46% base salary plus overhead cost at 17% base salary multiplied by 1.25 hours multiplied by the total number of affected workers in Year 1 who are customarily and regularly tipped—up to 199,285—and who are paid for overtime using a fluctuating workweek method, 27,427).

Reporting, Recordkeeping and Paperwork Requirements

This proposed rulemaking will not require the creation of new forms. However, employers who institute a tip pooling arrangement will have to keep record of the employees who are part of the tip pool and the dates and amounts of tips disbursed to these employees. These employers will have to make these records available to the Department upon request.

Sunset Date

A sunset date is not appropriate for this proposed rulemaking because it is not appropriate to sunset a regulation that protects workers from unreasonably low wages. However, the Department will continue to monitor the impact and effectiveness of the regulations.

Effective Date

This proposed rulemaking will take effect 60 days after publication of the final-form rulemaking in the *Pennsylvania Bulletin*.

Contact Person

Interested persons are invited to submit written comments, suggestions or objections regarding this proposed rulemaking to Bryan M. Smolock, Director, Department of Labor and Industry, Bureau of Labor Law Compliance, 651 Boas Street, Harrisburg, PA 17121 or by e-mail to bsmolock@pa.gov within 30 days of publication in the *Pennsylvania Bulletin*.

Regulatory Review

Under section 5(a) of the Regulatory Review Act (71 P.S. § 745.5(a)), on November 5, 2021, the Department submitted a copy of this proposed rulemaking and a copy of a Regulatory Analysis Form to the Independent Regulatory Review Commission (IRRC) and to the Chairpersons of the Senate Committee on Labor and Industry and the House Committee on Labor and Industry. A copy of this material is available to the public upon request.

Under section 5(g) of the Regulatory Review Act, IRRC may convey any comments, recommendations, or objections to the proposed rulemaking to the Department within 30 days of the close of the public comment period. The comments, recommendations or objections shall specify the regulatory review criteria in section 5.2 of the Regulatory Review Act (71 P.S. § 745.5b) which have not been met. The Regulatory Review Act specifies detailed procedures for review, prior to final publication of the rulemaking by the Department, the General Assembly and the Governor.

JENNIFER L. BERRIER.

Secretary

Fiscal Note: 12-114. No fiscal impact; (8) recommends adoption.

Annex A

TITLE 34. LABOR AND INDUSTRY PART XII. BUREAU OF LABOR LAW COMPLIANCE CHAPTER 231. MINIMUM WAGE GENERAL PROVISIONS

§ 231.1. Definitions.

* * * * *

(b) In addition to the provisions of subsection (a), the following words and terms, when used in this chapter, have the following meanings, unless the context clearly indicates otherwise:

* * * * *

Bona fide training program—One which must involve either formal instruction or on-the-job training during a period when the learner is entrusted with limited responsibility and is under supervision or guidance.

Bureau—The Bureau of Labor [Standards] <u>Law</u> <u>Compliance</u> of the Department.

Department—The Department of Labor and Industry of the Commonwealth.

Taxicab driver—An individual employed to drive an automobile equipped to carry no more than seven passengers which is used in the business of carrying or transporting passengers for hire on a zone or meter fare basis and which is not operated over fixed routes, between fixed terminals or under contract.

Tip credit—The difference between the statutory minimum wage outlined in section 4 of the act (43 P.S. § 333.104) and the hourly wage paid to tipped employees.

Tipped employee—An employee engaged in an operation in which the employee customarily and regularly receives more than [\$30] \$135 a month in tips.

Tips—Voluntary monetary contributions received by an employee from a guest, patron[,] or customer for services rendered.

EMPLOYER RECORDS

§ 231.34. Tipped employees.

Supplementary to the provisions of any section of this chapter pertaining to the payroll records to be kept with respect to employees, every employer shall also maintain and preserve payroll or other records containing the following additional information with respect to each tipped employee whose wages are determined under section 3(d) of the act (43 P.S. § 333.103(d)):

- (1) A symbol or letter placed on the pay records identifying each employee whose wage is determined in part by tips.
- (2) Weekly or monthly amount reported by the employee, to the employer, of tips received. This may consist of reports made by the employees to the employer on IRS Form 4070.
- (3) Amount by which the wages of each tipped employee have been deemed to be increased by tips, as determined by the employer[, not in excess of 45% of the applicable statutory minimum wage until January 1, 1980 and thereafter 40% of the applicable statutory minimum wage]. The amount per hour which the employee takes as a tip credit shall be reported to the employee in writing each time it is changed from the amount per hour taken in the preceding week. An employee failing or refusing to report to the employer the amount of tips received in any workweek shall not be permitted to show that the tips received were less than the amount determined by the employer in the workweek.
- (4) Hours worked each workday in any occupation in which the tipped employee does not receive tips and total daily or weekly straight-time payment made by the employer for such hours.
- (5) Hours worked each workday in occupations in which the employee received tips and total daily or weekly straight-time earnings for the hours.
- (6) For employers who implement tip pools, the names and position of each participant in the tip pool and the amount distributed to each participant in the tip pool.

OVERTIME PAY

§ 231.43. Regular rate.

- (a) For purposes of [these] §§ 231.41—231.43 (relating to overtime pay), the regular rate at which an employee is employed shall be deemed to include all remuneration for employment paid to or on behalf of the employee, but it shall not be deemed to include the following:
- (1) Sums paid as gifts, payments in the nature of gifts made [at Christmas time] during any holiday or on other special occasions as a reward for service, the amounts of which are not measured by or dependent on hours worked, production or efficiency.
- (2) Payments made for occasional periods when no work is performed due to vacation, holiday, illness, failure

- of the employer to provide sufficient work or other similar cause, reasonable payments for traveling expenses or other expenses incurred by an employee in the furtherance of his employer's interests and properly reimbursable by the employer, and other similar payments to an employee which are not made as compensation for the employee's hours of employment.
- (3) Sums paid in recognition of services performed during a given period if:
- (i) Both the fact that payment is to be made and the amounts of the payment are determined at the sole discretion of the employer at or near the end of the period and not pursuant to any prior contract, agreement or promise causing the employee to expect such payments regularly.
- (ii) The payments are made pursuant to a bona fide profit-sharing plan or trust or bona fide thrift or savings plan without regard to hours of work, production or efficiency.
- (iii) The payments are talent fees paid to performers, including announcers on radio and television programs.
- (4) Contributions irrevocably made by an employer to a trustee or third person under a bona fide plan for providing old-age, retirement, life, accident or health insurance or similar benefits for employees.
- (5) Extra compensation provided by a premium rate for certain hours worked by the employee in any day or workweek because [such] the hours are hours worked in excess of 8 in a day or in excess of the maximum workweek applicable to the employee under § 231.41 (relating to rate) or in excess of the normal working hours or regular working hours of the employee, as the case may be.
- (6) Extra compensation provided by a premium rate paid for work by the employee on Saturdays, Sundays, holidays or regular days of rest, or on the sixth or seventh day of the workweek, where [such] the premium rate is not less than 1 1/2 times the rate established in good faith for like work performed in nonovertime hours on other days.
- (7) Extra compensation provided by a premium rate paid to the employee in pursuance of an applicable employment contract or collective bargaining agreement for work outside of the hours established in good faith by the contract or agreement as the basic, normal or regular workday not exceeding 8 hours or workweek not exceeding the maximum workweek applicable to the employee under § 231.41 [(relating to rate)], where the premium rate is not less than 1 1/2 times the rate established in good faith by the contract or agreement for like work performed during the workday or workweek.
- (b) If the employee is paid a flat sum for a day's work or for doing a particular job without regard to the number of hours worked in the day or at the job and if [he] the employee receives no other form of compensation for services, [his] the employee's regular rate is determined by totaling all the sums received at the day rates or job rates in the workweek and dividing by the total hours actually worked. [He] The employee is then entitled to extra half-time pay at this rate for hours worked in excess of 40 in the workweek.
- (c) No employer may be deemed to have violated [these] §§ 231.41—231.43 [(relating to overtime pay)] by employing an employee for a workweek in

excess of the maximum workweek applicable to the employee under § 231.41 [(relating to rate)] if the employee is employed under a bona fide individual contract or under an agreement made as a result of collective bargaining by representatives of employees, if the duties of the employee necessitate substantially irregular hours of work. For example, where neither the employee nor the employer can either control or anticipate with a degree of certainty the number of hours the employee must work from week to week, where the duties of the employee necessitate significant variations in weekly hours of work both below and above the statutory weekly limit on nonovertime hours, or where the substantially irregular hours of work are not attributable to vacation periods, holidays, illness, failure of the employer to provide sufficient work, or other similar causes, and the contract or

- (1) Specifies a regular rate of pay of not less than the minimum hourly rate and compensation at not less than 1 1/2 times the rate for hours worked in excess of the maximum workweek.
- (2) Provides a weekly guaranty of pay for not more than 60 hours based on the rates [so] specified.

* * * * *

- (e) Extra compensation paid as described in subsection (a)(5)—(7) shall be creditable toward overtime compensation payable under [these] §§ 231.41—231.43 [(relating to overtime pay)].
- (f) No employer may be deemed to have violated **[these]** §§ 231.41—231.43 by employing an employee of a retail or service establishment for a workweek in excess of 40 hours if:
- (1) The regular rate of pay of the employee is in excess of 1 1/2 times the minimum hourly rate applicable.
- (2) More than half of the employee's compensation for a representative period, not less than 1 month, represents commissions on goods or services. In determining the proportion of compensation representing commissions, all earnings resulting from the application of a bona fide commission rate shall be deemed commissions on goods or services without regard to whether the computed commissions exceed the draw or guarantee.
- (g) The regular rate for salaried employees who are not exempt from overtime is determined by totaling all remuneration for employment to or on behalf of the employee received in a workweek, except sums, payments, contributions and compensation enumerated in subsection (a), divided by 40 hours.

MINIMUM WAGE INCREASE AND TRAINING WAGE—STATEMENT OF POLICY

§ 231.101. Minimum wage increase.

- (a) Under section 4(a) of the act (43 P.S. § 104(a)), an employer shall pay the following wage rates to all employees for all hours worked subject to exclusions and exemptions contained in the act and this chapter:
 - (1) Until December 31, 2006, \$5.15 an hour.
 - (2) Beginning January 1, 2007, \$6.25 an hour.
 - (3) Beginning July 1, 2007, \$7.15 an hour.
 - (4) Beginning July 24, 2009, \$7.25 an hour.

- (b) The minimum wage [credit] for tipped employees is \$2.83 per hour under section 3(d) of the act (43 P.S. § 333.103(d)) with all of the following conditions:
- (1) An employer shall pay the difference when the employee's tips plus the **[credit]** hourly wage for tipped employees does not meet the Pennsylvania minimum wage contained in subsection (a).
- (2) The tip credit applies only if an employee received over [\$30] \$135 in tips for a month.

(*Editor's Note*: The following sections are proposed to be added and are printed in regular type to enhance readability.)

TIPPED EMPLOYEES

§ 231.111. Tip credit for non-tipped duties.

- (a) An employer may take a tip credit for any time in which an employee performs duties that do not directly generate tips if all of the following conditions are met:
- (1) The employee spends at least 80% of the employee's workweek performing duties that directly generate tips.
- (2) The duties that do not directly generate tips support the duties that directly generate tips.
- (3) The employee spends less than 30 continuous minutes performing duties that do not directly generate tips.
- (b) If an employer may not take a tip credit under subsection (a), the employer shall pay the employee at least the minimum wage required under section 4 of the act (43 P.S. § 333.104).

§ 231.112. Tip pooling.

- (a) An employer may establish a tip pooling arrangement among tipped employees.
 - (b) Tip pools may not include the following:
- (1) A person with an ownership or partnership interest in the business.
- (2) An employee who meets any part of the duties test outlined in 29 CFR 541.100(2)—(4) (relating to the general rule for executive employees).
- (3) An employee who does not spend at least 80% of that employee's workweek performing duties that customarily or regularly generate tips.
- (c) At or before the time the employer makes an employment offer or at least one pay period before the tip pooling arrangement takes effect, an employer shall provide affected employees written notice of the tip pooling arrangement.

§ 231.113. Credit card fees.

An employer that permits patrons to pay tips by credit card shall pay the tipped employee the full amount of the tip authorized by the patron and may not deduct credit card payment processing fees or costs that the credit card company may charge to the employer.

§ 231.114. Service charges.

- (a) An employer that charges for the administration of a banquet, special function or package deal shall notify patrons of this charge by providing notice:
- (1) in the statement in a contract or agreement with the patron; or
 - (2) on any menu provided to the patron.

- (b) The notice required under subsection (a) must state that the administrative charge is for administration of the banquet, special function or package deal and does not include a tip to be distributed to the employees who provided service to the guests.
- (c) When an employer chooses to charge for the administration of the banquet, special function or package deal, any billing statement must contain separate lines for service charges and tips.

 $[Pa.B.\ Doc.\ No.\ 21\text{-}1921.\ Filed\ for\ public\ inspection\ November\ 19,\ 2021,\ 9:00\ a.m.]$

CAPITOL PRESERVATION COMMITTEE

Request for Proposals

CPC 21.180: Pennsylvania Civil War Battle Flag Exhibit. The Capitol Preservation Committee seeks proposals from qualified museum exhibit design firms to design and install a new, long-term exhibition of Civil War artifacts, print and graphic media. Construction and installation to adhere to museum standards as outlined in the specification. Museum lighting requirements must be maintained. Proposers will be provided with background research to aid in the design of the exhibit.

A \$100 deposit is required for issuance of project documents. The issue date of the request for proposal documents will be Monday, November 15, 2021. A mandatory preproposal conference and walk through will be held on December 8, 2021, at 10 a.m. in the Pennsylvania Civil War Flag Education Center, 2221 Forster Street at the east end of the parking lot. The proposal receipt date is January 20, 2022, at 2 p.m. Project documents may be obtained in Room 630, Main Capitol Building, Harrisburg, PA or by contacting Tara Pyle at (717) 783-6484.

DAVID L. CRAIG, Executive Director

[Pa.B. Doc. No. 21-1922. Filed for public inspection November 19, 2021, 9:00 a.m.]

CAPITOL PRESERVATION COMMITTEE

Request for Proposals

CPC 21.181: Conservation Maintenance of the Barnard Statuary and Mexican War Monument. This project involves the yearly cyclical preservation maintenance of the Barnard Statuary and Mexican War Monument. Conservation/maintenance includes repair of microcracks, mortar joints, cementitious composite patch material, sealant joint and fabrication and installation of elective replacement Dutchman for the Barnard Statuary.

Preventive cleaning, rinsing and application of an antimicrobial treatment for the Barnard Statuary and Mexican War Monument. The work also includes detailed review, condition assessment and reporting of conditions in electronic and hard copy formats.

A \$100 deposit is required for issuance of project documents. The issue date of the request for proposals will be on November 15, 2021. A mandatory preproposal conference and walk through will be held on December 8, 2021, in Room 630 of the Main Capitol at 1 p.m. The proposal receipt date is January 20, 2022, at 2 p.m. Project documents may be obtained in Room 630, Main Capitol Building, Harrisburg, PA or by contacting Tara Pyle at (717) 783-6484.

DAVID L. CRAIG, Executive Director

 $[Pa.B.\ Doc.\ No.\ 21\text{-}1923.\ Filed\ for\ public\ inspection\ November\ 19,\ 2021,\ 9:00\ a.m.]$

CAPITOL PRESERVATION COMMITTEE

Request for Proposals

CPC 21.183: Maintenance Relamping of the House Chamber. This project includes scaffolding to access four large and two small ceiling hung chandeliers to relamp and clean the chandeliers. The successful proposer will be responsible for all protection, labor, supervision and materials (save the lamps) to execute this project.

The issue date of the request for proposals will be on November 22, 2021. A mandatory preproposal conference and walk through will be held on December 9, 2021, in Room 630 of the Main Capitol at 10:30 a.m. The proposal receipt date is January 20, 2022, at 2 p.m. Project documents may be obtained in Room 630, Main Capitol Building, Harrisburg, PA or by contacting Tara Pyle at (717) 783-6484.

DAVID L. CRAIG, Executive Director

 $[Pa.B.\ Doc.\ No.\ 21\text{-}1924.\ Filed\ for\ public\ inspection\ November\ 19,\ 2021,\ 9:00\ a.m.]$

DEPARTMENT OF BANKING AND SECURITIES

Actions on Applications

The Department of Banking and Securities (Department), under the authority in the Banking Code of 1965 (7 P.S. §§ 101—2204), the Department of Banking and Securities Code (71 P.S. §§ 733-1—733-1203) and 17 Pa.C.S. (relating to Credit Union Code), has taken the following actions on applications received for the week ending November 9, 2021.

Under section 503.E of the Department of Banking and Securities Code (71 P.S. § 733-503.E), any person wishing to comment on the following applications, with the exception of branch applications, may file comments in writing with the Department of Banking and Securities, Bank Supervision or Credit Union and Trust Supervision (as applicable), 17 North Second Street, Suite 1300, Harrisburg, PA 17101-2290. Comments must be received no later than 30 days from the date notice regarding receipt of the application is published in the *Pennsylvania Bulletin*. The nonconfidential portions of the applications are on file at the Department and are available for public inspection, by appointment only, during regular business hours. To schedule an appointment, for banks (717) 783-8240 and for credit unions and trust companies (717) 783-2253. Photocopies of the nonconfidential portions of the applications may be requested consistent with the Department's Right-to-Know Law Records Request policy.

BANKING INSTITUTIONS Holding Company Acquisitions

Date Name and Location of Applicant Action

11-04-2021 Mid Penn Bancorp, Inc. Approved

Millersburg Dauphin County

Application for approval to acquire 100% of Riverview Financial Corporation, Harrisburg,

PA, and, thereby, indirectly acquire 100% of Riverview Bank, Marysville, PA.

Consolidations, Mergers and Absorptions

Date Name and Location of Applicant Action

11-04-2021 Mid Penn Bank Approved

Millersburg Dauphin County

Application for approval to merge Riverview Bank, Marysville, PA, with and into Mid Penn

Bank, Millersburg, PA.

CREDIT UNIONS

Consolidations, Mergers and Absorptions

Date Name and Location of Applicant Action

11-03-2021 Delco Postal Credit Union Approved

Upper Darby Delaware County

Application for approval to merge Delco Postal Credit Union, Upper Darby, with and into

Forge Federal Credit Union, Upper Darby.

11-08-2021 Wawa Employees Credit Union Filed

Wawa

Delaware County

Application for approval to merge Wawa Employees Credit Union, Wawa, with and into

Franklin Mint Federal Credit Union, Chadds Ford.

Articles of Amendment

DateName and Location of InstitutionAction11-05-2021Franklin Oil-Region Credit UnionFiled

Franklin Venango County

Amendment to Article 8 of the institution's Articles of Incorporation provides for a change to

the Credit Union's field of membership.

Articles of Amendment provide for the institution's Articles of Incorporation to be amended

and restated in their entirety.

The Department's web site at www.dobs.pa.gov includes public notices for more recently filed applications.

RICHARD VAGUE,

Secretary

 $[Pa.B.\ Doc.\ No.\ 21\text{-}1925.\ Filed\ for\ public\ inspection\ November\ 19,\ 2021,\ 9:00\ a.m.]$

DEPARTMENT OF CONSERVATION AND NATURAL RESOURCES

Execution of Oil and Gas Lease for Publicly-Owned Streambeds

Effective March 15, 2021, an Oil and Gas Lease for Publicly-Owned Streambeds, Contract No. M-2102042-11, was executed by and between the Commonwealth, acting through the Department of Conservation and Natural Resources (Department) (lessor), and BKV Operating, LLC (lessee), with its principal place of business located at 1200 17th Street, Suite 2100, Denver, CO 80202.

The lease is for Streambed Tract 2042 on the Susquehanna River encompassing a total of 198.5 acres of submerged lands located in Mehoopany and Washington Townships, Wyoming County. The lease was recorded at the Wyoming County Courthouse on August 8, 2021,

Instrument No. 2021-2921. The lease allows for the development of oil and natural gas below and between the ordinary low water marks of the Susquehanna River solely by means of directional, including horizontal, drilling on a nondevelopment basis that will not disturb the river or its bed. Contract No. M-2102042-11 may be viewed online at https://patreasury.gov/transparency/elibrary/ContractFiles/613585_M-2102042-11%20-%20BKV %20Operating%20LLC%20Streambed%20Lease%2003_15_2021.pdf.

Questions regarding this lease should be directed to the Department's Bureau of Forestry, Minerals Division, (717) 787-2703.

CINDY ADAMS DUNN, Secretary

[Pa.B. Doc. No. 21-1926. Filed for public inspection November 19, 2021, 9:00 a.m.]

DEPARTMENT OF ENVIRONMENTAL PROTECTION

Applications, Actions and Special Notices

APPLICATIONS

THE PENNSYLVANIA CLEAN STREAMS LAW AND THE FEDERAL CLEAN WATER ACT

APPLICATIONS FOR NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) PERMITS AND WATER QUALITY MANAGEMENT (WQM) PERMITS UNDER THE CLEAN STREAMS LAW AND FEDERAL CLEAN WATER ACT

This notice provides information about persons who have applied to the Department of Environmental Protection (DEP) for a new, renewed, or amended NPDES or WQM permit, or a permit waiver for certain stormwater discharges, or have submitted a Notice of Intent (NOI) for coverage under a General Permit. The applications and NOIs concern, but are not limited to, effluent discharges from sewage treatment facilities and industrial facilities to surface waters or groundwater; stormwater discharges associated with industrial activity (industrial stormwater), construction activity (construction stormwater), and municipal separate storm sewer systems (MS4s); the application of pesticides; the operation of Concentrated Animal Feeding Operations (CAFOs); and the construction of sewage, industrial waste, and manure storage, collection and treatment facilities. This notice is provided in accordance with 25 Pa. Code Chapters 91 and 92a and 40 CFR Part 122, implementing The Clean Streams Law (35 P.S. §§ 691.1—691.1001) and the Federal Clean Water Act (33 U.S.C.A. §§ 1251—1376). More information on the types of NPDES and WQM permits that are available can be found on DEP's website (visit www.dep.pa.gov and select Businesses, Water, Bureau of Clean Water, Wastewater Management, and NPDES and WQM Permitting Programs).

Section Category

I Individual and General WQM Permit Applications/NOIs Received, General NPDES Permit NOIs Received, and All Transfer and Minor Amendment Applications/NOIs Received

II Individual NPDES Permits—New, Renewal, and Major Amendment Applications and Draft Permits for Discharges Relating to Sewage, Industrial Waste, Industrial Stormwater, MS4s, Pesticides and CAFOs

III Individual NPDES Permit Applications for Discharges of Stormwater Associated with Construction Activity

Section I identifies the following applications and NOIs that have been received by DEP:

- Individual and General WQM Permit Applications Received—DEP provides a 15-day public comment period for Individual WQM Permit Applications for new and reissued permits. There is no public comment period for General WQM Permit NOIs.
 - General NPDES Permit NOIs Received—There is no public comment period for General NPDES NOIs received.
- All Transfer and Minor Amendment Applications/NOIs Received—Transfer and Minor Amendment Applications/NOIs received for Individual and General WQM Permits and Individual and General NPDES Permits are identified but do not have public comment periods. DEP provides a 15-day public comment period for Individual WQM Permit Applications for amendments.

Additional information on these applications and NOIs may be reviewed by generating the "Applications and NOIs without Comment Periods Report" or, for Individual WQM Permit Applications, the "Applications Received with Comment Periods Report" on DEP's website at www.dep.pa.gov/CWPublicNotice.

Section II identifies individual NPDES permit applications received and draft permits issued by DEP relating to sewage, industrial waste, industrial stormwater, MS4s, pesticides and CAFOs. A 30-day public comment period applies to these applications, except when a site-specific water quality criterion is used to establish effluent limitations, in which case a 45-day public comment period applies. The period for comment may be extended at the discretion of the Department for one additional 15-day period. Additional information, including links to draft permits and fact sheets that explain the basis for DEP's tentative determinations may be reviewed by generating the "Applications Received with Comment Periods Report" on DEP's website at www.dep.pa.gov/CWPublicNotice. Notification of 15-day extensions for comment will be provided in the "Applications Received with Comment Periods Report" (Comments column).

Section III provides notice of applications and draft individual permits for stormwater discharges associated with construction activities. Where indicated, DEP has made tentative determinations, based on preliminary review, to issue permits subject to proposed effluent limitations consisting of best management practices identified in the erosion and sediment control (E&S) plans and post-construction stormwater management (PCSM) plans submitted with the applications, as well as other terms and conditions based on the permit applications. A 30-day public comment period applies to these applications.

Applications and NOIs may be reviewed at the DEP office that received the application or NOI. Contact information for each DEP office for Sections I & II is listed as follows. Contact information for Section III is available within the table. Members of the public are encouraged to use DEP's website to obtain additional information as discussed previously.

Comments received within the appropriate comment periods for WQM and NPDES permit applications will be retained by DEP and considered in the final determinations regarding the applications. A comment submittal should include the name, address and telephone number of the writer and a concise statement to inform DEP of the exact basis of a comment and the relevant facts upon which it is based.

DEP office contact information to review applications and NOIs in Sections I & II and to submit comments for those application and NOIs, when applicable, is as follows:

DEP Southeast Regional Office (SERO)—2 E. Main Street, Norristown, PA 19401-4915. File Review Coordinator: 484.250.5910. Email: RA-EPNPDES_SERO@pa.gov.

DEP Northeast Regional Office (NERO)—2 Public Square, Wilkes-Barre, PA 18701-1915. File Review Coordinator: 570.826.5472. Email: RA-EPNPDES_NERO@pa.gov.

DEP Southcentral Regional Office (SCRO)—909 Elmerton Avenue, Harrisburg, PA 17110. File Review Coordinator: 717.705.4732. Email: RA-EPNPDES_SCRO@pa.gov.

DEP Northcentral Regional Office (NCRO)—208 W. Third Street, Suite 101, Williamsport, PA 17701. File Review Coordinator: 570.327.3693. Email: RA-EPNPDES_NCRO@pa.gov.

DEP Southwest Regional Office (SWRO)—400 Waterfront Drive, Pittsburgh, PA 15222. File Review Coordinator: 412.442.4286. Email: RA-EPNPDES_SWRO@pa.gov.

DEP Northwest Regional Office (NWRO)—230 Chestnut Street, Meadville, PA 16335. File Review Coordinator: 814.332.6340. Email: RA-EPNPDES_NWRO@pa.gov.

DEP Bureau of Clean Water (BCW)—400 Market Street, Harrisburg, PA 17105. File Review Coordinator: 717.787.5017. Email: RA-EPNPDES_Permits@pa.gov.

DEP will also accept requests or petitions for public hearings on applications. The request or petition must indicate the interest of the party filing and the reasons why a hearing is warranted. A hearing will be held if the Department determines that there is a significant public interest. If a hearing is scheduled, a notice of the hearing will be published in the *Pennsylvania Bulletin* and a newspaper of general circulation within the relevant geographical area. DEP will postpone its final determination until after a public hearing is held.

Persons with a disability who require an auxiliary aid, service, including TDD users, or other accommodations to seek additional information should contact the Department through the Pennsylvania Hamilton Relay Service at (800) 654-5984.

I. Individual and General WQM Permit Applications/NOIs Received, General NPDES Permit NOIs Received, and All Transfer and Minor Amendment Applications/NOIs Received.

Application Number	Permit Type	Application Type	Applicant Name & Address	Municipality, County	DEP Office
0916831	Joint DEP/PFBC Pesticides Permit	Renewal	Plumstead Township Bucks County P.O. Box 387 Plumsteadville, PA 18949-0387	Buckingham Township Bucks County	SERO
0919816	Joint DEP/PFBC Pesticides Permit	Transfer	Tait Bob 5727 Twin Silos Road Doylestown, PA 18901	Plumstead Township Bucks County	SERO
4616829	Joint DEP/PFBC Pesticides Permit	Renewal	Duff Jack 795 Lewis Lane Ambler, PA 19002-5117	Whitpain Township Montgomery County	SERO
1070202	Major Industrial Waste Treatment Facility Individual WQM Permit	Transfer	Cleveland Cliffs Steel Corp 9227 Centre Pointe Drive West Chester, OH 45069-4822	Butler City Butler County	NWRO
1078205	Major Industrial Waste Treatment Facility Individual WQM Permit	Transfer	Cleveland Cliffs Steel Corp 9227 Centre Pointe Drive West Chester, OH 45069-4822	Butler City Butler County	NWRO
1079202	Major Industrial Waste Treatment Facility Individual WQM Permit	Transfer	Cleveland Cliffs Steel Corp 9227 Centre Pointe Drive West Chester, OH 45069-4822	Butler City Butler County	NWRO
1088201	Major Industrial Waste Treatment Facility Individual WQM Permit	Transfer	Cleveland Cliffs Steel Corp 9227 Centre Pointe Drive West Chester, OH 45069-4822	Butler City Butler County	NWRO

Application Number	Permit Type	Application Type	Applicant Name & Address	Municipality, County	DEP Office
1738	Major Industrial Waste Treatment Facility Individual WQM Permit	Transfer	Cleveland Cliffs Steel Corp 9227 Centre Pointe Drive West Chester, OH 45069-4822	Butler City Butler County	NWRO
6708410	Major Sewage Treatment Facility Individual WQM Permit	Amendment	Dover Township Sewer Authority York County 2480 W Canal Road Dover, PA 17315	Dover Township York County	SCRO
4091202	Minor and Non-NPDES Industrial Waste Treatment Facility Individual WQM Permit	Amendment	PA American Water Co. 852 Wesley Drive Mechanicsburg, PA 17055	Jackson Township Luzerne County	NERO
4092202	Minor and Non-NPDES Industrial Waste Treatment Facility Individual WQM Permit	Amendment	PA American Water Co. 852 Wesley Drive Mechanicsburg, PA 17055	Plains Township Luzerne County	NERO
4099201	Minor and Non-NPDES Industrial Waste Treatment Facility Individual WQM Permit	Amendment	PA American Water Co. 852 Wesley Drive Mechanicsburg, PA 17055	Dallas Township Luzerne County	NERO
NOEXNW167	No Exposure Certification	Renewal	Cronimet Specialty Metals USA, Inc. 209 Reynolds Industrial Park Drive Greenville, PA 16125-8216	Pymatuning Township Mercer County	NWRO
PAG043934	PAG-04 NPDES General Permit for Small Flow Treatment Facilities	Transfer	Sergey & Olga Pinchuk 1363 Gabriel Lane Warwick, PA 18974	Hopewell Township Huntingdon County	SCRO
6721408	Pump Stations Individual WQM Permit	New	Jackson Township Sewer Authority York County 439 Roth Church Road Spring Grove, PA 17362-8872	Jackson Township York County	SCRO
PA0272329	Single Residence STP Individual NPDES Permit	Transfer	Husband Robert A 81 Plum Street Greenville, PA 16125-1804	Sugar Grove Township Mercer County	NWRO
PA0288071	Single Residence STP Individual NPDES Permit	Transfer	Sun Alaria 174 Brook Road Clarion, PA 16214-3406	Monroe Township Clarion County	NWRO
1620401	Single Residence Sewage Treatment Plant Individual WQM Permit	Transfer	Sun Alaria 174 Brook Road Clarion, PA 16214-3406	Monroe Township Clarion County	NWRO
2121407	Single Residence Sewage Treatment Plant Individual WQM Permit	New	Barrick Scott 35 Mel Ron Court Carlisle, PA 17015-8421	Middlesex Township Cumberland County	SCRO

Application Number 4241405	Permit Type Single Residence Sewage Treatment Plant Individual WQM	Application Type New	Applicant Name & Address Tyler Wilber 2035 West Washington Street Bradford, PA 16701	Municipality, County Bradford Township McKean County	<i>DEP</i> Office NWRO
4319407	Permit Single Residence Sewage Treatment Plant Individual WQM	Transfer	Husband Robert A 81 Plum Street Greenville, PA 16125-1804	Sugar Grove Township Mercer County	NWRO
1287402	Permit Small Flow Treatment Facility Individual WQM	Amendment	Grove Township Cameron County 246 Railroad Street Singapologian PA 15861 1691	Grove Township Cameron County	NCRO
WQG013111301	Permit WQG-01 WQM General Permit	Transfer	Sinnamahoning, PA 15861-1621 Sergey & Olga Pinchuk 1363 Gabriel Lane Warwick, PA 18974	Hopewell Township Huntingdon County	SCRO

II. Individual NPDES Permits—New, Renewal, and Major Amendment Applications and Draft Permits for Discharges Relating to Sewage, Industrial Waste, Industrial Stormwater, MS4s, Pesticides and CAFOs.

Northeast Regional Office

PA0276405, Industrial, SIC Code 1389, Eureka Resources, LLC, 315 Second Street, Williamsport, PA 17701. Facility Name: Eureka Resources—Susquehanna Facility. This proposed facility is located in Dimock Township, Susquehanna County.

Description of Proposed Activity: The application is for a new NPDES permit for a new discharge of treated industrial waste.

The receiving stream, Tributary 29418 to Burdick Creek (CWF/MF), is located in State Water Plan watershed 4-G and is classified for Cold Water Fishes and Migratory Fishes, aquatic life, water supply and recreation. The discharge is not expected to affect public water supplies.

The proposed effluent limits for Outfall 001 are based on a design flow of 0.168 MGD.

	Mass Units	s (lbs/day)		Concentrate	tions (mg/L)	
Parameters	Average	Daily	Instant.	Average	Daily	Instant.
	Monthly	Max	Minimum	Monthly	Maximum	Maximum
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0
Dissolved Oxygen	XXX	XXX	6.0	XXX	XXX	XXX
Temperature Increase (°F)	XXX	XXX	XXX	XXX	XXX	2.0
Biochemical Oxygen	XXX	XXX	XXX	53.0	163	163
Demand (BOD ₅)						
Total Suspended Solids	XXX	XXX	XXX	61.3	216	216
Total Dissolved Solids	XXX	XXX	XXX	500	1,000	1,250
Osmotic Pressure (mOs/kg)	XXX	XXX	XXX	Report	Report	XXX
Oil and Grease	XXX	XXX	XXX	$15.\overline{0}$	30.0	37.5
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX
Total Nitrogen	Report	XXX	XXX	Report	XXX	XXX
Ammonia-Ñitrogen	Report	XXX	XXX	1.44	2.88	2.88
Total Kjeldahl Nitrogen	Report	XXX	XXX	Report	XXX	XXX
Total Phosphorus	Report	XXX	XXX	Report	XXX	XXX
Antimony, Total	XXX	XXX	XXX	0.0058	0.0091	0.0146
Arsenic, Total	XXX	XXX	XXX	0.0104	0.0162	0.026
Barium, Total	XXX	XXX	XXX	2.5	3.9	6.2
Cadmium, Total	XXX	XXX	XXX	0.00003	0.00004	0.00007
Chromium, Trivalent	XXX	XXX	XXX	0.0076	0.0119	0.0191
Chromium, Hexavalent	XXX	XXX	XXX	0.0108	0.0169	0.0271
Cobalt, Total	XXX	XXX	XXX	0.0198	0.0309	0.0495
Copper, Total	XXX	XXX	XXX	0.00074	0.00086	0.00086
Iron, Dissolved	XXX	XXX	XXX	Report	Report	XXX
Lead, Total	XXX	XXX	XXX	0.00007	0.00011	0.00018
Mercury, Total	XXX	XXX	XXX	0.00005	0.00008	0.00013
Nickel, Total	XXX	XXX	XXX	0.0042	0.0066	0.0107
Selenium, Total	XXX	XXX	XXX	0.0052	0.0081	0.013
Silver, Total	XXX	XXX	XXX	0.00002	0.00002	0.00002

	Mass Units	(lbs/day)		Concentration	ions (mg/L)	
Parameters	Average	Daily	Instant.	Average	\overline{Daily}	Instant.
	Monthly	Max	Minimum	Monthly	Maximum	Maximum
Strontium, Total	XXX	XXX	XXX	4.1	6.5	10.4
Sulfate, Total	XXX	XXX	XXX	Report	Report	XXX
Uranium, Total	XXX	XXX	XXX	Report	Report	XXX
Thallium, Total	XXX	XXX	XXX	0.0002	0.0003	0.0006
Zinc, Total	XXX	XXX	XXX	0.0093	0.0097	0.0097
o-Cresol	XXX	XXX	XXX	0.561	1.92	1.92
2,4,6-Trichlorophenol	XXX	XXX	XXX	0.0023	0.0036	0.0058
Phenol	XXX	XXX	XXX	1.08	3.65	3.65
Acetone	XXX	XXX	XXX	3.64	5.68	9.11
Acetophenone	XXX	XXX	XXX	0.0562	0.114	0.14
Benzene	XXX	XXX	XXX	0.0009	0.0014	0.0022
BTEX, Total	XXX	XXX	XXX	0.1	0.2	0.25
Chloride	XXX	XXX	XXX	250	500	625
Bromide	XXX	XXX	XXX	Report	Report	XXX
2-Butanone	XXX	XXX	XXX	1.85	4.81	4.81
p-Cresol	XXX	XXX	XXX	0.167	0.260	0.417
Pyridine	XXX	XXX	XXX	0.182	0.370	0.455
Gross Alpha Radioactivity (pCi/L)	XXX	XXX	XXX	Report	Report	XXX
Radium-226 and Radium-228,	XXX	XXX	XXX	Report	Report	XXX
Total (pCi/L)						
1,4-Dioxane	XXX	XXX	XXX	Report	XXX	XXX
				Avg Qrtly		

The proposed monitoring requirements and effluent limits for implementation of Pennsylvania's Chesapeake Bay Watershed Implementation Plan are as follows for Outfall 001.

	Mass Ur	rits (lbs)		Concentrate	tions (mg/L)	
Parameters	Monthly	$Total\ Annual$	Monthly	Monthly Average	Maximum	Instant. Maximum
Total Nitrogen (Total Load, lbs)	XXX	Report	XXX	XXX	XXX	XXX
Effluent Net	XXX	0	XXX	XXX	XXX	XXX
Total Phosphorus (Total Load, lbs)	XXX	Report	XXX	XXX	XXX	XXX
Effluent Net	XXX	0	XXX	XXX	XXX	XXX

*This permit contains conditions which authorize the permittee to apply nutrient reduction credits to meet the Net Total Nitrogen and the Net Total Phosphorus effluent mass limits, under the Department's Chapter 96 regulations. The condition includes the requirement to report the application of these credits in Supplemental Discharge Monitoring Reports (DMRs) submitted to the Department.

In addition, the permit contains the following major special conditions:

- Chesapeake Bay Nutrient Requirements
- Schedule of Compliance
- WQBELs Below Quantitation Limits
- Chemical Additives
- Requirements Applicable to Stormwater

You may make an appointment to review the DEP files on this case by calling the File Review Coordinator at 570-826-5472.

The EPA Waiver is in effect.

PA0046388, Sewage, SIC Code 4952, **Butler Township**, 415 W. Butler Drive, Drums, PA 18222. Facility Name: St. Johns STP. This existing facility is located in Butler Township, **Luzerne County**.

Description of Existing Activity: The application is for a renewal of an NPDES permit for an existing discharge of treated sewage.

The receiving stream, Nescopeck Creek (TSF/MF), is located in State Water Plan watershed 5-D and is classified for Migratory Fishes and Trout Stocking, aquatic life, water supply and recreation. The discharge is not expected to affect public water supplies.

The proposed effluent limits for Outfall 001 are based on a design flow of 2.2 MGD.

(From Permit Effective Date to Permit Expiration Date)

	Mass Unit	s (lbs/day)		Concentration	lons (mg/L)	
Parameters	Average Monthly	Weekly Average	Instanta- neous	Average Monthly	Weekly Average	Instant. Maximum
	v	Ö	Minimum	v	O	
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0
Dissolved Oxygen	XXX	XXX	5.0	XXX	XXX	XXX
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.2	XXX	0.3
Carbonaceous Biochemical Oxygen Demand (CBOD ₅)	459	734	XXX	25.0	40.0	50.0
Biochemical Oxygen Demand (BOD_5)	XXX	XXX	XXX	Report	XXX	XXX
Raw Sewage Influent	550	000	VVV	20.0	45.0	CO 0
Total Suspended Solids	550 XXX	826 XXX	XXX XXX	30.0	45.0 XXX	60.0 XXX
Raw Sewage Influent Fecal Coliform (No./100 ml)	ΛΛΛ	λλλ	ΛΛΛ	Report	ΛΛΛ	ΛΛΛ
Oct 1 - Apr 30	XXX	XXX	XXX	2,000 Geo Mean	XXX	10,000
May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1,000
E. Coli	XXX	XXX	XXX	XXX	XXX	Report
Ultraviolet light transmittance (%)	XXX	XXX	Report	Report	XXX	XXX
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX
(Total Load, lbs) (lbs)	Report Total Mo	XXX	XXX	XXX	XXX	XXX
Total Nitrogen	Report	XXX	XXX	Report	XXX	XXX
(Total Load, lbs) (lbs)	Report Total Mo	XXX	XXX	XXX	XXX	XXX
Ammonia-Nitrogen	10001 1110					
Nov 1 - Apr 30	257	XXX	XXX	14.0	XXX	28.0
May 1 - Oct 31	86	XXX	XXX	4.7	XXX	9.3
(Total Load, lbs) (lbs)	Report Total Mo	XXX	XXX	XXX	XXX	XXX
Total Kjeldahl Nitrogen	XXX	XXX	XXX	Report	XXX	XXX
(Total Load, lbs) (lbs)	Report Total Mo	XXX	XXX	XXX	XXX	XXX
Total Phosphorus	Report	XXX	XXX	Report	XXX	XXX
(Total Load, lbs) (lbs)	Report Total Mo	XXX	XXX	XXX	XXX	XXX
Aluminum, Total	XXX	XXX	XXX	Report	XXX	XXX
Manganese, Total	XXX	XXX	XXX	Report	XXX	XXX
Zinc, Total	XXX	XXX	XXX	Report	XXX	XXX

The proposed effluent limits for Outfall 001 are based on a design flow of 2.2 MGD.

(From Permit Effective Date to 4 Years After Permit Effective Date)

	Mass Units	s (lbs/day)	Concentrations (mg/L)				
Parameters	Average	Average	Minimum	Average	Daily	Instant.	
	Monthly	Weekly		Monthly	Maximum	Maximum	
Copper, Total	XXX	XXX	XXX	Report	Report	XXX	
3,3-Dichlorobenzidine	XXX	XXX	XXX	Report	Report	XXX	
1,3-Dichloropropylene	XXX	XXX	XXX	Report	Report	XXX	
Benzo(a)Anthracene	XXX	XXX	XXX	Report	Report	XXX	
Benzo(a)Pyrene	XXX	XXX	XXX	Report	Report	XXX	
Benzo(k)Fluoranthene	XXX	XXX	XXX	Report	Report	XXX	
3,4-Benzofluoranthene	XXX	XXX	XXX	Report	Report	XXX	
Chrysene	XXX	XXX	XXX	Report	Report	XXX	
Dibenzo(a,h) Anthracene	XXX	XXX	XXX	Report	Report	XXX	
Hexachlorobutadiene	XXX	XXX	XXX	Report	Report	XXX	
Indeno (1,2,3-cd) Pyrene	XXX	XXX	XXX	Report	Report	XXX	
Phenanthrene	XXX	XXX	XXX	Report	Report	XXX	

The proposed effluent limits for Outfall 001 are based on a design flow of 2.2 MGD.

(From 4 Years After Permit Effective Date to Permit Expiration Date)

	$Mass\ Units$	s (lbs/day)	$Concentrations \ (mg/L)$				
Parameters	Average	Average	Minimum	Average	Daily	Instant.	
	Monthly	$Weekar{l}y$		Monthly	Maximum	Maximum	
Copper, Total	XXX	XXX	XXX	0.0206	0.0321	0.0514	
3,3-Dichlorobenzidine	XXX	XXX	XXX	0.00048	0.00074	0.00119	
1,3-Dichloropropylene	XXX	XXX	XXX	0.0025	0.0040	0.0064	
Benzo(a)Anthracene	XXX	XXX	XXX	0.00001	0.00001	0.00002	
Benzo(a)Pyrene	XXX	XXX	XXX	0.000001	0.000001	0.000002	
Benzo(k)Fluoranthene	XXX	XXX	XXX	0.000095	0.00015	0.00024	
3,4-Benzofluoranthene	XXX	XXX	XXX	0.00001	0.00001	0.00002	
Chrysene	XXX	XXX	XXX	0.0011	0.0017	0.0028	
Dibenzo(a,h) Anthracene	XXX	XXX	XXX	0.000001	0.000001	0.000002	
Hexachlorobutadiene	XXX	XXX	XXX	0.000095	0.00015	0.00024	
Indeno (1,2,3-cd) Pyrene	XXX	XXX	XXX	0.00001	0.00001	0.00002	
Phenanthrene	XXX	XXX	XXX	0.0024	0.0037	0.0059	

The proposed effluent limits for Outfall 002 are based on a design flow of 0 MGD (stormwater).

(From Permit Effective Date to Permit Expiration Date)

	Mass Unit	Mass Units (lbs/day)			Concentrations (mg/L)		
Parameters	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	
Total Suspended Solids Oil and Grease	XXX XXX	XXX XXX	XXX XXX	XXX XXX	Report Report	XXX XXX	

The proposed effluent limits for Outfall 003 are based on a design flow of 0 MGD (stormwater).

(From Permit Effective Date to Permit Expiration Date)

	Mass Unit	$Mass\ Units\ (lbs/day)$			Concentrations (mg/L)		
Parameters	Average	Average	Minimum	Average	Daily	Instant.	
	Monthly	Weekly		Monthly	Maximum	Maximum	
Total Suspended Solids	XXX	XXX	XXX	XXX	Report	XXX	
Oil and Grease	XXX	XXX	XXX	XXX	Report	XXX	

The proposed effluent limits for Outfall 004 are based on a design flow of 0 MGD (stormwater).

(From Permit Effective Date to Permit Expiration Date)

	Mass Unit	$Mass\ Units\ (lbs/day)$			Concentrations (mg/L)			
Parameters	Average	Average	Minimum	Average	Daily	Instant.		
	Monthly	Weekly		Monthly	Maximum	Maximum		
Total Suspended Solids	XXX	XXX	XXX	XXX	Report	XXX		
Oil and Grease	XXX	XXX	XXX	XXX	Report	XXX		

The proposed monitoring requirements and effluent limits for implementation of Pennsylvania's Chesapeake Bay Watershed Implementation Plan are as follows for Outfall 001.

(From Permit Effective Date to Permit Expiration Date)

	Mass Un	its (lbs)		Concentrat		
Parameters	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum
Total Nitrogen (Total Load, lbs) (lbs) Effluent Net	XXX	40,182 Total Annual	XXX	XXX	XXX	XXX
Total Nitrogen (Total Load, lbs) (lbs)	XXX	Report Total Annual	XXX	XXX	XXX	XXX
Ammonia-Nitrogen (Total Load, lbs) (lbs)	XXX	Report Total Annual	XXX	XXX	XXX	XXX
Total Phosphorus (Total Load, lbs) (lbs)	XXX	Report Total Annual	XXX	XXX	XXX	XXX
Total Phosphorus (Total Load, lbs) (lbs) Effluent Net	XXX	5,357 Total Annual	XXX	XXX	XXX	XXX

*This permit contains conditions which authorize the permittee to apply nutrient reduction credits to meet the Net Total Nitrogen and the Net Total Phosphorus effluent mass limits, under the Department's Chapter 96 regulations. The condition includes the requirement to report the application of these credits in Supplemental Discharge Monitoring Reports (DMRs) submitted to the Department.

In addition, the permit contains the following major special conditions:

- Chesapeake Bay Nutrient Requirements
- Solids Management
- Water Quality-Based Effluent Limitations for Toxic Pollutants
- Whole Effluent Toxicity (WET)
- WQBELs Below Quantitation Limits
- Requirements Applicable to Stormwater Outfalls

You may make an appointment to review the DEP files on this case by calling the File Review Coordinator at 570-826-5472.

The EPA Waiver is not in effect.

Northwest Regional Office

PA0005860, Industrial, SIC Code 2022, **Dairy Farmers of America, Inc.**, 800 W Tampa Street, Springfield, MO 65802. Facility Name: Dairy Farmers of America. This existing facility is located in Wilmington Township, **Lawrence County**.

Description of Existing Activity: The application is for a renewal of an NPDES permit for an existing discharge of treated industrial waste.

The receiving stream(s), Shenango River (WWF), Unnamed Tributary to Little Neshannock Creek (TSF), and Buchanan Run (WWF), is located in State Water Plan watershed 20-A and is classified for Warm Water Fishes and Trout Stocking, aquatic life, water supply and recreation. The discharge is not expected to affect public water supplies.

The proposed effluent limits for Outfall 001 are based on a design flow of .5 MGD.—Limits.

	Mass Units (lbs/day)			Concentrations (mg/L)			
Parameters	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	IMAX	
Flow (MGD)	Report	XXX	XXX	XXX	XXX	XXX	
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	
			Inst Min				
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.5	XXX	1.6	
Biochemical Oxygen	420	1,050	XXX	Report	Report	150	
Demand (BOD_5)							
Total Suspended Solids	630	1,575	XXX	Report	Report	225	
Fecal Coliform (No./100 ml)							
Oct 1 - Apr 30	XXX	XXX	XXX	2,000	XXX	10,000	
				Geo Mean			
May 1 - Sep 30	XXX	XXX	XXX	200	XXX	1,000	
				Geo Mean			
Copper, Total (ug/L)	XXX	XXX	XXX	Report	XXX	XXX	

The proposed effluent limits for Outfall 002 are based on a design flow of 0 MGD.—Limits.

	Mass Unit	s (lbs/day)	Concentrations (mg/L)			
Parameters	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	IMAX
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX
pH (S.U.)	XXX	XXX	XXX	XXX	Report	XXX
Biochemical Oxygen	XXX	XXX	XXX	XXX	Report	XXX
Demand (BOD ₅)						
Chemical Oxygen Demand (COD)	XXX	XXX	XXX	XXX	Report	XXX
Total Suspended Solids	XXX	XXX	XXX	XXX	Report	XXX
Oil and Grease	XXX	XXX	XXX	XXX	Report	XXX
Nitrate-Nitrite as N	XXX	XXX	XXX	XXX	Report	XXX

The proposed effluent limits for Outfall 003 are based on a design flow of 0 MGD.—Limits.

	Mass Unit	s (lbs/day)		Concentrations (mg/L)		
Parameters	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	IMAX
	Monthly	weekiy		Monthly	Maximum	
pH (S.U.)	XXX	XXX	XXX	XXX	Report	XXX
Biochemical Oxygen	XXX	XXX	XXX	XXX	Report	XXX
Demand (BOD ₋)					_	

	Mass Units (lbs/day)			Concentrations (mg/L)		
Parameters	Average	Average	Minimum	Average	Daily	IMAX
	Monthly	$Weekar{l}y$		Monthly	Maximum	
Chemical Oxygen Demand (COD)	XXX	XXX	XXX	XXX	Report	XXX
Total Suspended Solids	XXX	XXX	XXX	XXX	Report	XXX
Oil and Grease	XXX	XXX	XXX	XXX	Report	XXX
Nitrate-Nitrite as N	XXX	XXX	XXX	XXX	Report	XXX

The proposed effluent limits for Outfall 004 are based on a design flow of 0 MGD.—Limits.

			_			
	Mass Unit	s (lbs/day)		Concentrations (mg/L)		
Parameters	Average	Average	Minimum	Average	Daily	IMAX
	Monthly	Weekly		Monthly	Maximum	
pH (S.U.)	XXX	XXX	XXX	XXX	Report	XXX
Biochemical Oxygen	XXX	XXX	XXX	XXX	Report	XXX
Demand (BOD_5)						
Chemical Oxygen Demand (COD)	XXX	XXX	XXX	XXX	Report	XXX
Total Suspended Solids	XXX	XXX	XXX	XXX	Report	XXX
Oil and Grease	XXX	XXX	XXX	XXX	Report	XXX
Nitrate-Nitrite as N	XXX	XXX	XXX	XXX	Report	XXX

The proposed effluent limits for Outfall 005 are based on a design flow of 0 MGD.—Limits.

	Mass Units (lbs/day)		Concentrations (mg/L)			
Parameters	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	IMAX
pH (S.U.)	XXX	XXX	XXX	XXX	Report	XXX
Biochemical Oxygen	XXX	XXX	XXX	XXX	Report	XXX
Demand (BOD_5)						
Chemical Oxygen Demand (COD)	XXX	XXX	XXX	XXX	Report	XXX
Total Suspended Solids	XXX	XXX	XXX	XXX	Report	XXX
Oil and Grease	XXX	XXX	XXX	XXX	Report	XXX
Nitrate-Nitrite as N	XXX	XXX	XXX	XXX	Report	XXX

In addition, the permit contains the following major special conditions:

- Chemical Additives
- Industrial Stormwater

You may make an appointment to review the DEP files on this case by calling the File Review Coordinator at 814-332-6078.

The EPA Waiver is in effect.

PA0101702, Sewage, SIC Code 6515, Rocky Ridge Village, LLC, 156 Maple Grove Circle, Franklin, PA 16323-3662. Facility Name: Rocky Ridge Village MHP. This existing facility is located in Sandycreek Township, Venango County.

Description of Existing Activity: The application is for a renewal of an NPDES permit for an existing discharge of treated sewage.

The receiving stream(s), Unnamed Tributary to Ditzenberger Run (EV (existing use)), is located in State Water Plan watershed 16-G and is classified for Warm Water Fishes, aquatic life, water supply and recreation. The discharge is not expected to affect public water supplies.

The proposed effluent limits for Outfall 001 are based on a design flow of .015 MGD.—Limits.

Parameters	Mass Unit Average Monthly	s (lbs / day) Average Weekly	Minimum	Concentrat Average Monthly	tions (mg/L) Maximum	IMAX
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0
Dissolved Oxygen	XXX	XXX	4.0 Inst Min	XXX	XXX	XXX
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.5	XXX	1.2
Carbonaceous Biochemical Oxygen Demand (CBOD ₅)	XXX	XXX	XXX	25	XXX	50
Total Suspended Solids	XXX	XXX	XXX	30	XXX	60

Parameters	Mass Units Average Monthly	s (lbs/day) Average Weekly	Minimum	Concentrate Average Monthly	ions (mg/L) Maximum	IMAX
Fecal Coliform (No./100 ml)						
Oct 1 - Apr 30	XXX	XXX	XXX	2,000	XXX	10,000
-				Geo Mean		
May 1 - Sep 30	XXX	XXX	XXX	200	XXX	1,000
				Geo Mean		
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report
Ammonia-Nitrogen						
Nov 1 - Apr 30	XXX	XXX	XXX	20	XXX	40
May 1 - Oct 31	XXX	XXX	XXX	6.5	XXX	13
Total Nitrogen	XXX	XXX	XXX	Report	XXX	XXX
_				Annl Avg		
Total Phosphorus	XXX	XXX	XXX	Report	XXX	XXX
				Annl Avg		

You may make an appointment to review the DEP files on this case by calling the File Review Coordinator at 814-332-6078.

The EPA Waiver is in effect.

PA0103608, Sewage, SIC Code 6515, Heather & Shaun Welsh, 11901 Country Acres Trailer Court 2, Guys Mills, PA 16327-4207. Facility Name: Country Acres MHP. This existing facility is located in East Mead Township, Crawford County.

Description of Existing Activity: The application is for a renewal of an NPDES permit for an existing discharge of treated sewage.

The receiving stream(s), Unnamed Tributary of Little Sugar Creek (CWF), is located in State Water Plan watershed 16-D and is classified for Cold Water Fishes, aquatic life, water supply and recreation. The discharge is not expected to affect public water supplies.

The proposed effluent limits for Outfall 001 are based on a design flow of .00875 MGD.—Limits.

Parameters	Mass Unit Average Monthly	s (lbs/day) Average Weekly	Minimum	Concentrat Average Monthly	ions (mg/L) Maximum	IMAX
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0
Dissolved Oxygen	XXX	XXX	4.0 Inst Min	XXX	XXX	XXX
Total Residual Chlorine (TRC) Carbonaceous Biochemical Oxygen Demand (CBOD ₅)	XXX XXX	XXX XXX	XXX XXX	$\begin{array}{c} 0.5 \\ 25 \end{array}$	XXX XXX	1.6 50
Total Suspended Solids Fecal Coliform (No./100 ml)	XXX	XXX	XXX	30	XXX	60
Oct 1 - Apr 30	XXX	XXX	XXX	2,000 Geo Mean	XXX	10,000
May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1,000
Ammonia-Nitrogen						
Nov 1 - Apr 30	XXX	XXX	XXX	9.0	XXX	18
May 1 - Oct 31	XXX	XXX	XXX	3.0	XXX	6
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report
Total Nitrogen	XXX	XXX	XXX	Report Annl Avg	XXX	XXX
Total Phosphorus	XXX	XXX	XXX	Report Annl Avg	XXX	XXX

You may make an appointment to review the DEP files on this case by calling the File Review Coordinator at 814-332-6078.

The EPA Waiver is in effect.

PA0221848, Sewage, SIC Code 4952, 7033, **USDA Forest Service**, 4 Farm Colony Drive, Warren, PA 16365-5206. Facility Name: Willow Bay Recreation Area STP. This existing facility is located at 4001 W Washington Street, Bradford, PA 16701, located in Corydon Township, **McKean County**.

Description of Existing Activity: The application is for a renewal of an NPDES permit for an existing discharge of treated sewage.

The receiving stream(s), Willow Creek (HQ-CWF), is located in State Water Plan watershed 16-B and is classified for, aquatic life, water supply and recreation. The discharge is not expected to affect public water supplies.

The proposed effluent limits for Outfall 001 are based on a design flow of .015 MGD.—Limits.

	Mass Unit	s (lbs/day)		Concentrations (mg/L)		
Parameters	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	IMAX
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX
pH (S.U.)	XXX	XXX	6.0 Daily Min	XXX	XXX	9.0
Dissolved Oxygen	XXX	XXX	6.0 Daily Min	XXX	XXX	XXX
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.5	XXX	1.2
Carbonaceous Biochemical Oxygen Demand (CBOD ₅)	XXX	XXX	XXX	10.0	XXX	20.0
Total Suspended Solids	XXX	XXX	XXX	10.0	XXX	20.0
Fecal Coliform (No./100 ml)	XXX	XXX	XXX	200 Geo Mean	XXX	1,000
Total Nitrogen	XXX	XXX	XXX	Report	XXX	XXX
Ammonia-Nitrogen	XXX	XXX	XXX	Report	XXX	XXX
Total Phosphorus	XXX	XXX	XXX	Report	XXX	XXX
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report

You may make an appointment to review the DEP files on this case by calling the File Review Coordinator at 814-332-6078.

The EPA Waiver is in effect.

PA0223018, Sewage, SIC Code 4952, Farmington Township, 596 Fairbanks Road, Russell, PA 16345-2712. Facility Name: Farmington Township STP Warren. This existing facility is located in Farmington Township, Warren County.

Description of Existing Activity: The application is for a renewal of an NPDES permit for an existing discharge of treated sewage.

The receiving stream, the Rollin Run Creek (CWF), is located in State Water Plan watershed 16-B and is classified for Cold Water Fishes, aquatic life, water supply and recreation. The discharge is not expected to affect public water supplies.

The proposed effluent limits for Outfall 001 are based on a design flow of 0.025 MGD.—Limits.

	Mass Units (lbs/day)			Concentrations (mg/L)		
Parameters	Average	Weekly	Minimum	Average	Weekly	IMAX
	Monthly	Average		Monthly	Average	
Flow (MGD)	Report	XXX	XXX	XXX	XXX	XXX
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0
D: 1 10	373737	373737	Inst Min	373737	373737	373737
Dissolved Oxygen	XXX	XXX	4.0	XXX	XXX	XXX
Total Residual Chlorine (TRC)	XXX	XXX	Inst Min XXX	0.33	XXX	1.0
Carbonaceous Biochemical	5.0	8.0	XXX	25.0	40.0	50
Oxygen Demand (CBOD ₅)	5.0	0.0	7474	20.0	40.0	50
Biochemical Oxygen	Report	XXX	XXX	Report	XXX	XXX
Demand (BOD_5)	1			1		
Raw Sewage Influent						
Total Suspended Solids	6.0	9.0	XXX	30.0	45.0	60
Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX
Fecal Coliform (No./100 ml)						
Oct 1 - Apr 30	XXX	XXX	XXX	2,000	XXX	10,000
				Geo Mean		
May 1 - Sep 30	XXX	XXX	XXX	200	XXX	1,000
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report
Total Nitrogen	XXX	XXX	XXX	Report	XXX	XXX
Ammonia-Nitrogen						
Nov 1 - Apr 30	2.5	XXX	XXX	13.5	XXX	27
May 1 - Oct 31	0.9	XXX	XXX	4.5	XXX	9
Total Phosphorus	XXX	XXX	XXX	Report	XXX	XXX

In addition, the permit contains the following major special conditions:

• Solids Management

You may make an appointment to review the DEP files on this case by calling the File Review Coordinator at 814-332-6078.

The EPA Waiver is in effect.

PA0289779, Sewage, SIC Code 8800, Susan & Tracy Tome, 10171 Krider Road, Meadville, PA 16335-6217. Facility Name: Susan & Tracy Tome SRSTP. This proposed facility is located in Vernon Township, Crawford County.

Description of Proposed Activity: The application is for a new NPDES permit for a new discharge of treated SRSTP sewage.

The receiving stream(s), Unnamed Tributary 52426 to French Creek (WWF), is located in State Water Plan watershed 16-D and is classified for Warm Water Fishes, aquatic life, water supply and recreation. The discharge is not expected to affect public water supplies.

The proposed effluent limits for Outfall 001 are based on a design flow of .0004 MGD.—Limits.

	Mass Units (lbs/day)			Concentrations (mg/L)		
Parameters	Average Monthly	Average Weekly	Minimum	Annual Average	Maximum	IMAX
Flow (GPD)	Report Annl Avg	XXX	XXX	XXX	XXX	XXX
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0
Biochemical Oxygen Demand (BOD ₅)	XXX	XXX	XXX	10.0	XXX	20
Total Suspended Solids	XXX	XXX	XXX	10.0	XXX	20
Fecal Coliform (No./100 ml)	XXX	XXX	XXX	200	XXX	XXX

You may make an appointment to review the DEP files on this case by calling the File Review Coordinator at 814-332-6078.

The EPA Waiver is in effect.

PA0290076, Sewage, SIC Code 4952, 8800, **Evandale Farm, LLC**, 456 W 6th Street, Erie, PA 16507-1216. Facility Name: Evandale Farm SFTF. This proposed facility is located in North East Township, **Erie County**.

Description of Proposed Activity: The application is for a new NPDES permit for a new discharge of treated sewage.

The receiving stream is an Unnamed Tributary of Sixteenmile Creek, located in State Water Plan watershed 15-A and classified for Cold Water and Migratory Fish, aquatic life, water supply and recreation. The discharge is not expected to affect public water supplies.

The proposed effluent limits for Outfall 001 are based on a design flow of 0.0008 MGD.

	Mass Units	s (lbs/day)	Concentrations (mg/L)			
Parameters	Average Monthly	Average Weekly	Minimum	Annual Average	Maximum	IMAX
Flow (GPD)	Report Annl Avg	XXX	XXX	XXX	XXX	XXX
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0
Biochemical Oxygen Demand (BOD ₅)	XXX	XXX	XXX	10.0	XXX	20.0
Total Suspended Solids Fecal Coliform (No./100 ml)	XXX XXX	XXX XXX	XXX XXX	$\begin{array}{c} 10.0 \\ 200 \end{array}$	XXX XXX	20.0 XXX

You may make an appointment to review the DEP files on this case by calling the File Review Coordinator at 814-332-6078.

The EPA Waiver is in effect.

Southeast Regional Office

PA0244236, Sewage, SIC Code 4952, Upper Makefield Township, 1076 Eagle Road, Newtown, PA 18940-2818. Facility Name: The Enclave WWTP. This existing facility is located in Upper Makefield Township, Bucks County.

Description of Existing Activity: The application is for a renewal of an NPDES permit for an existing discharge of treated sewage.

The receiving stream(s), Houghs Creek, is located in State Water Plan watershed 2-E and is classified for aquatic life, water supply and recreation. The discharge is not expected to affect public water supplies.

The proposed effluent limits for Outfall 001 are based on a design flow of 0.05555 MGD.—Limits.

	Mass Units (lbs/day)			Concentrations (mg/L)		
Parameters	Average Monthly	Average Weekly	$Daily\\Minimum$	Average Monthly	Maximum	IMAX
Flow (MGD)	Report	XXX	XXX	XXX	XXX	XXX
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0
			Inst Min			
Dissolved Oxygen	XXX	XXX	6.0	XXX	XXX	XXX
			Inst Min			

Parameters	Mass Units (lbs/day) Average Average		Daily	Average	0	
	Monthly	Weekly	Minimum	Monthly		
Carbonaceous Biochemical Oxygen Demand (CBOD ₅)	XXX	XXX	XXX	10	XXX	20
Biochemical Oxygen Demand (BOD ₅) Raw Sewage Influent	XXX	XXX	XXX	Report	XXX	Report
Total Suspended Solids	XXX	XXX	XXX	10	XXX	20
Raw Sewage Influent	XXX	XXX	XXX	Report	XXX	Report
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	50 Geo Mean	XXX	1,,000
May 1 - Sep 30	XXX	XXX	XXX	50 Geo Mean	XXX	1000
Ultraviolet light intensity (mW/cm ²)	XXX	XXX	Report	XXX	XXX	XXX
Total Nitrogen Ammonia-Nitrogen	XXX	XXX	XXX	10	XXX	20
Nov 1 - Apr 30	XXX	XXX	XXX	3.0	XXX	6
May 1 - Oct 31	XXX	XXX	XXX	1.5	XXX	3
Total Phosphorus	XXX	XXX	XXX	0.1	XXX	0.2

The proposed effluent limits for Outfall 001 are based on a design flow of 0.05555 MGD.—Limits.

	Mass Units (lbs/day)			Concentrations (mg/L)		
Parameters	Average	Average	Daily	Average	Maximum	IMAX
	Monthly	$Weekar{l}y$	Minimum	Monthly		
Total Dissolved Solids	XXX	XXX	XXX	1,000.0	XXX	2,000
				Avg Qrtly		
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report
Nitrate-Nitrite as N	XXX	XXX	XXX	Report	XXX	XXX
				Avg Qrtly		

In addition, the permit contains the following major special conditions:

- No stormwater discharge into sewage
- · Proper disposal of solids, sludge, and slurries
- Designation of responsible operator
- Operation and Maintenance (O & M) Plan
- Seasonal Fecal Coliform monitoring requirements
- UV Disinfection System requirements

You may make an appointment to review the DEP files on this case by calling the File Review Coordinator at 484-250-5910.

The EPA Waiver is in effect.

Southwest Regional Office

PA0255777, Industrial, SIC Code 4911, **GenOn Power Midwest, LP**, P.O. Box 65, Cheswick, PA 15024-0065. Facility Name: Monarch Mine Dewatering Plant. This proposed facility is located in Indiana Township, **Allegheny County**.

Description of Proposed Activity: The application is for a new NPDES permit for an existing discharge of treated industrial waste, previously covered under the Cheswick Generating Station NPDES permit PA0001627.

The receiving stream(s), Little Deer Creek (TSF), is located in State Water Plan watershed 18-A and is classified for Trout Stocking, aquatic life, water supply and recreation. The discharge is not expected to affect public water supplies.

The proposed effluent limits for Outfall 002 are based on a design flow of 12.4 MGD.—Limits.

	Mass Units (lbs/day)			Concentrat		
Parameters	Average	Daily	Instant	Average	Daily	IMAX
	Monthly	Maximum	Minimum	Monthly	Maximum	
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0
Total Residual Chlorine (TRC)	XXX	XXX	XXX	Report	Report	XXX
Total Suspended Solids	XXX	XXX	XXX	35	70	XXX
Total Dissolved Solids	Report	Report	XXX	Report	Report	XXX
Osmotic Pressure (mOs/kg)	XXX	XXX	XXX	50	100	XXX
Aluminum, Total	49.64	99.28	XXX	0.48	0.96	1.2
Beryllium, Total	XXX	XXX	XXX	0.01	0.02	0.025
Cadmium, Total	XXX	XXX	XXX	0.0003	0.0006	0.00075

	Mass Units (lbs/day)			Concentrat		
Parameters	Average Monthly	Daily Maximum	Instant Minimum	Average Monthly	Daily Maximum	IMAX
Chromium, Hexavalent	XXX	XXX	XXX	0.006	0.012	0.015
Copper, Total	XXX	XXX	XXX	0.009	0.018	0.023
Cyanide, Free	XXX	XXX	XXX	Report	Report	XXX
Iron, Total	155.24	310.25	XXX	$1.\overline{5}$	3.0°	3.75
Manganese, Total	89.97	179.95	XXX	0.87	1.74	2.18
Selenium, Total	XXX	XXX	XXX	0.005	0.01	0.0125
Silver, Total	XXX	XXX	XXX	0.003	0.006	0.0075
Sulfate, Total	Report	Report	XXX	Report	Report	XXX
Thallium, Total	$\overline{\mathrm{XXX}}$	$X\overline{X}X$	XXX	0.002	0.004	0.005
Pentachlorophenol	XXX	XXX	XXX	0.0003	0.0006	0.00075
Chloride	Report	Report	XXX	Report	Report	XXX
Bromide	Report	Report	XXX	Report	Report	XXX

The proposed effluent limits for Outfall 005 are based on a design flow of 0 MGD.—Limits.

	$Mass\ Units\ (lbs/day)$			Concentrations (mg/L)		
Parameters	Average	Average	Instant	Average	\overline{Daily}	IMAX
	Monthly	Weekly	Minimum	Monthly	Maximum	
pH (S.U.)	XXX	XXX	Report	XXX	XXX	Report
Total Suspended Solids	XXX	XXX	XXX	Report	Report	XXX
Aluminum, Total	XXX	XXX	XXX	Report	Report	XXX
Iron, Total	XXX	XXX	XXX	Report	Report	XXX
Manganese, Total	XXX	XXX	XXX	Report	Report	XXX

The proposed effluent limits for Outfall 010 are based on a design flow of 0 MGD.—Limits.

	Mass Unit	Mass Units (lbs/day)			Concentrations (mg/L)	
Parameters	Average	Average	Instant	Semi-	\overline{Daily}	IMAX
	Monthly	$Weekar{l}y$	Minimum	Annual	Maximum	
	-	-		Average		
pH (S.U.)	XXX	XXX	Report	XXX	XXX	Report
Total Suspended Solids	XXX	XXX	XXX	Report	Report	XXX
Aluminum, Total	XXX	XXX	XXX	Report	Report	XXX
Iron, Total	XXX	XXX	XXX	Report	Report	XXX
Manganese, Total	XXX	XXX	XXX	Report	Report	XXX

The proposed effluent limits for Outfall 011 are based on a design flow of 0 MGD.—Limits.

	Mass Unit	Mass Units (lbs/day)			Concentrations (mg/L)	
Parameters	Average	Average	Instant	Average	Daily	IMAX
	Monthly	Weekly	Minimum	Monthly	Maximum	
pH (S.U.)	XXX	XXX	Report	XXX	XXX	Report
Total Suspended Solids	XXX	XXX	XXX	Report	Report	XXX
Aluminum, Total	XXX	XXX	XXX	Report	Report	XXX
Iron, Total	XXX	XXX	XXX	Report	Report	XXX
Manganese, Total	XXX	XXX	XXX	Report	Report	XXX

In addition, the permit contains the following major special conditions:

- Chemical Additives
- Stormwater Outfalls
- Sedimentation Basin Cleaning

You may make an appointment to review the DEP files on this case by calling the File Review Coordinator at 412-442-4000.

The EPA Waiver is in effect.

Southcentral Regional Office

PA0260274, Concentrated Animal Feeding Operation (CAFO), Hillside Poultry Farm, Inc. (Hillside Poultry Farm CAFO), 1849 Letterkenny Road, Chambersburg, PA 17201-8733.

Description of Proposed Activity: Hillside Poultry Farm Inc. has submitted an application for an Individual NPDES permit for a renewal of a CAFO known as Hillside Poultry Farm CAFO, located in Greene Township, **Franklin County**.

The CAFO is situated near Unnamed Tributary of Conococheague Creek (CWF, MF) in Watershed 13-C, which is classified for Cold Water Fishes and Migratory Fishes. The CAFO is to maintain an animal population of approximately 1,041.77 animal equivalent units (AEUs) consisting of 355,868 layers and 10 calves. Manure is stored in solid stacking areas at each barn and liquid washwater is sent to the sewer system. A release or discharge to waters of the Commonwealth under normal operating conditions is not expected. Normal operating conditions are defined as conditions below a 100-year, 24-hour storm event.

The Department has conducted administrative and technical reviews of the application. Based on the preliminary review and application of lawful standards and regulations, the Department has made a tentative determination to issue an NPDES permit for the operation subject to the terms and conditions and monitoring and reporting requirements specified in the permit.

You may make an appointment to review the DEP files on this case by calling the File Review Coordinator at 717-705-4732.

The EPA Waiver provision under 40 CFR 123.24(e) does not apply to this NPDES permit.

III. Individual NPDES Permit Applications for Discharges of Stormwater Associated with Construction Activity.

Application Number	Application Type	Applicant Name & Address	Municipality, County	Office
PAD510211	New	NP Whitaker Ave Industrial, LLC 4825 NW 41st Street Riverside, MO 64150	City of Philadelphia Philadelphia County	SERO
PAD380017	New	PPL Electric Utilities Corp Two North Ninth Street GENN4 Allentown, PA 18101	Heidelberg Township Millcreek Township Lebanon County Heidelberg Township Berks County	SCRO

PUBLIC WATER SUPPLY PERMITS

Under the Pennsylvania Safe Drinking Water Act (35 P.S. §§ 721.1—721.17), the following parties have applied for PWS permits to construct or substantially modify public water systems.

Persons wishing to comment on permit applications are invited to submit statements to the office listed before the application within 30 days of this public notice. Comments received within this 30-day comment period will be considered in the formulation of the final determinations regarding an application. A comment should include the name, address and telephone number of the writer and a concise statement to inform the Department of the exact basis of a comment and the relevant facts upon which it is based. A public hearing may be held after consideration of comments received during the 30-day public comment period.

Following the comment period, the Department will make a final determination regarding the proposed permit. Notice of this final determination will be published in the *Pennsylvania Bulletin* at which time this determination may be appealed to the Environmental Hearing Board.

The permit application and related documents are on file at the office listed before the application and available for public review. Arrangements for inspection and copying information should be made with the office listed before the application.

Persons with a disability that require an auxiliary aid, service or other accommodations to participate during the 30-day public comment period should contact the office listed before the application. TDD users may contact the Department through the Pennsylvania Hamilton Relay Service at (800) 654-5984.

SAFE DRINKING WATER

Applications Received Under the Pennsylvania Safe Drinking Water Act (35 P.S. §§ 721.1—721.17).

Northeast Region: Safe Drinking Water Program, 2 Public Square, Wilkes-Barre, PA 18711-0790, 570-826-2511 Contact: Gillian Ostrum, Clerk Typist 2, 570-830-3077.

Application No. 6620504, Public Water Supply.

Applicant

Exeter Township
Senior Center &
Apartment Complex
2690 Sullivan's Trail Road
Falls, PA 18615

Township

Exeter Township

Township Exeter Township
County Wyoming County
Responsible Official Richard Wilbur

Chairman
Board of Supervisors

P.O. Box 88 Falls, PA 18615

Type of Facility

Consulting Engineer

Joseph S. Durkin, PE
Reilly Associates
49 S. Main Street

Suite 200 Pittston, PA 18640

Application Received Received December 4, 2020 Date Administratively Complete

August 23, 2021

Description of Action Applicant proposes modifications

to an existing PWS system to upgrade their water system facilities primarily including disinfection components, storage,

and booster pumps.

Southcentral Region: Safe Drinking Water Program, 909 Elmerton Avenue, Harrisburg, PA 17110.

Permit No. 0121511, Public Water Supply.

Applicant Possum Valley
Municipal Authority

Municipality Menallen Township

County Adams

Responsible Official Michael Johnson

Chairman

609 Clearview Road Aspers, PA 17304

Type of Facility Public Water Supply
Consulting Engineer Terrence L. Sheldon, P.E

ngineer Terrence L. Sheldon, P.E. 3195-A Biglerville Road

Biglerville, PA 17307

Application Received: September 23, 2021

Description of Action Replacement of the membrane

filter modules.

Permit No. 0621518, Public Water Supply.

Applicant Reading Area Water Authority

Municipality Upper Tulpehocken Township

County Berks

Responsible Official William Murray

Executive Director 1801 Kutztown Road Reading, PA 19604

Type of Facility Public Water Supply

Consulting Engineer Brian Hassinger, P.E. SSM Group, Inc.

1047 North Park Road Reading, PA 19610-0307

Application Received: May 27, 2021

Description of Action New water system, including two

new wells, new arsenic/antimony treatment, pH adjustment, chlorine disinfection, distribution

pumps, and storage tank.

Permit No. 3821503, Public Water Supply.

Applicant Bell & Evans Realty LLC

Municipality Bethel Township

County Lebanon

Responsible Official Mike Bracrella, COO

154 West Main Street

P.O. Box 39

Fredericksburg, PA 17026

Type of Facility Public Water Supply Consulting Engineer Paul Lutzkanin, P.E.

Steckbeck Engineering &

Surveying Inc.

279 North Zinns Mill Road

P.O. Box 39 Lebanon, PA 17042

Application Received: June 17, 2021

Description of Action Installation of three (3) wells

and the construction of a water

system for Plant 3.

OPERATE WASTE PROCESSING OR DISPOSAL AREA OR SITE

Application(s) Received Under the Solid Waste Management Act (35 P.S. §§ 6018.101—6018.1003), the Municipal Waste Planning, Recycling and Waste Reduction Act (53 P.S. §§ 4000.101—4000.1904) and Regulations to Operate Solid Waste Processing or Disposal Area or Site.

Southwest Region: Regional Solid Waste Manager, 400 Waterfront Drive, Pittsburgh, PA 15222-4745.

Permit ID No. 100281. Greenridge Reclamation Landfill, Greenridge Reclamation, LLC, 234 Landfill Road, Scottdale, PA 15683, East Huntingdon Township, Westmoreland County. An application for expansion of the Greenridge Reclamation Landfill located at 234 Landfill Road, Scottdale, PA 15683 was received on April 5, 2019. The application was deemed administratively complete by the Southwest Regional Office on November 4, 2021

Comments concerning the application should be directed to the Southwest Regional Office Resource Account at RA-EP-EXTUPLSWRO@pa.gov. Persons interested in obtaining more information about the permit application may contact Regional Files, Southwest Regional Office, 412-442-4000. TDD users may contact the Department through the Pennsylvania Hamilton Relay Service, (800) 654-5984. Public comments must be submitted within 60 days of this notice and may recommend revisions to, and approval or denial of the application.

Permit Application No. 101723. Recycle Source, LLC, 50 Vespucius Street, Pittsburgh, PA 15207, Pittsburgh City, **Allegheny County**. An application to operate a municipal waste transfer facility at 50 Vespucius Street, Pittsburgh, PA 15207 was received on February 11, 2019. The application was deemed administratively complete by the Southwest Regional Office on November 1, 2021.

Comments concerning the application should be directed to the Southwest Regional Office Resource Account at RA-EP-EXTUPLSWRO@pa.gov. Persons interested in obtaining more information about the permit application may contact Regional Files, Southwest Regional Office, 412-442-4000. TDD users may contact the Department through the Pennsylvania Hamilton Relay Service, (800) 654-5984. Public comments must be submitted within 60 days of this notice and may recommend revisions to, and approval or denial of the application.

AIR QUALITY

PLAN APPROVAL AND OPERATING PERMIT APPLICATIONS

The Department has developed an "integrated" plan approval, State Operating Permit and Title V Operating Permit program. This integrated approach is designed to make the permitting process more efficient for the Department, the regulated community and the general public. This approach allows the owner or operator of a facility to submit permitting documents relevant to its application for all sources related to a facility or a proposed project, affords an opportunity for public input, and provides for a decision on the issuance of the necessary permits.

The Department received applications for Plan Approvals or Operating Permits from the following facilities. Copies of the application, the Department's analysis, all pertinent documents used in the evaluation of the application and subsequently prepared proposed plan approvals/operating permits are available for public review during normal business hours at the appropriate Department Regional Office. Appointments for scheduling a review must be made by calling the appropriate Department Regional Office. The address and phone number of the Regional Office is listed before the application notices.

Persons wishing to file a written protest or provide comments or additional information, which they believe

should be considered prior to the issuance of a permit, may submit the information to the Department's Regional Office. A 30-day comment period from the date of this publication will exist for the submission of comments, protests and information. Each submission must contain the name, address and telephone number of the person submitting the comments, identification of the proposed Plan Approval/Operating Permit including the permit number and a concise statement regarding the relevancy of the information or objections to issuance of the permit.

A person wishing to request a hearing may do so during the 30-day comment period. A public hearing may be held, if the Department, in its discretion, decides that a hearing is warranted based on the information received. Persons submitting comments or requesting a hearing will be notified of the decision to hold a hearing by publication in the newspaper, the *Pennsylvania Bulletin* or by telephone, when the Department determines this type of notification is sufficient. Requests for a public hearing and any relevant information should be directed to the appropriate Department Regional Office.

Permits issued to the owners or operators of sources subject to 25 Pa. Code Chapter 127, Subchapter D or E, or located within a Title V facility or subject to 25 Pa. Code § 129.51(a) or permits issued for sources with limitations on their potential to emit used to avoid otherwise applicable Federal requirements may be submitted to the United States Environmental Protection Agency for review and approval as a revision to the State Implementation Plan. Final Plan Approvals and Operating Permits will contain terms and conditions to ensure that the sources are constructed and operating in compliance with applicable requirements in the Air Pollution Control Act (35 P.S. §§ 4001—4015), 25 Pa. Code Chapters 121—145, the Federal Clean Air Act (42 U.S.C.A. §§ 7401—7671q) and regulations adopted under the Federal Clean Air Act.

Persons with a disability who wish to comment and require an auxiliary aid, service or other accommodation to participate should contact the Regional Office listed before the application. TDD users may contact the Department through the Pennsylvania Hamilton Relay Service at (800) 654-5984.

Intent to Issue Plan Approvals and Intent to Issue or Amend Operating Permits under the Air Pollution Control Act (35 P.S. §§ 4001—4015) and 25 Pa. Code Chapter 127, Subchapter B. These actions may include the administrative amendments of an associated operating permit.

Northcentral Region: Air Quality Program, 208 West Third Street, Williamsport, PA 17701.

Contact: Muhammad Q. Zaman, Program Manager, (570) 327-3648.

18-00035A: Mas Wayne RNG (3340 Peachtree Lane, Suite 170, Atlanta, GA 33406) has submitted an application to the Pennsylvania Department of Environmental Protection for plan approval to construct and operate a renewable natural gas (RNG) facility located in Wayne Township, Clinton County. The proposed RNG facility will convert landfill gas (LFG) to natural gas with a nominal maximum rated output of 2,500 standard cubic feet per minute. The Department's review of the information submitted by Mas Wayne RNG indicates that the sources will meet all applicable air quality regulatory requirements, including the Best Available Technology requirements of 25 Pa. Code §§ 127.1 and 127.12 pertain-

ing to air contamination sources and the emission of air contaminants. Based on these findings, the Department intends to issue plan approval for the construction of the proposed project.

The following is a list of the conditions that the Department proposes to place in the plan approval to ensure compliance with all applicable regulatory requirements:

- 1. Pursuant to the best available technology requirements of 25 Pa. Code §§ 127.1 and 127.12, the permittee shall not permit the following air contaminant emissions from the exhaust of Control Device C101A associated with Source P101 in excess of the following limitations: nitrogen oxides (NO_x, expressed as NO₂)—0.06 pound per million Btu of heat input, carbon monoxide (CO)—0.20 pound per million Btu of heat input, sulfur oxides (SO_x, expressed as SO₂)—1.15 pounds per hour, particulate matter (PM₁₀/PM_{2.5})—0.29 pound per hour and 0.003 grain per dry standard cubic foot of exhaust gas, non-methane organic compounds (NMOC)—0.01 pound per hour.
- 2. Pursuant to the best available technology requirements of 25 Pa. Code §§ 127.1 and 127.12, the permittee shall not permit the following air contaminant emissions from the exhaust of Control Device C101B associated with Source P101 in excess of the following limitations: nitrogen oxides (NO_x, expressed as NO₂)—0.068 pound per million Btu of heat input, carbon monoxide (CO)—0.31 pound per million Btu of heat input, sulfur oxides (SO_x, expressed as SO₂)—0.30 pound per hour, particulate matter (PM₁₀/PM_{2.5})—1.25 pounds per hour and 0.013 grain per dry standard cubic foot of exhaust gas, non-methane organic compounds (NMOC)—0.03 pound per hour.
- 3. Pursuant to the best available technology requirements of 25 Pa. Code §§ 127.1 and 127.12, Control Device C101A associated with Source P101 shall reduce the non-methane organic compound emissions by 99% or greater or reduce the outlet non-methane organic compound concentration to not equal or exceed 20 parts per million, by volume, dry basis (ppmdv) at 3% oxygen.
- 4. Pursuant to the best available technology requirements of 25 Pa. Code §§ 127.1 and 127.12, there shall be no visible emissions from Control Devices C101A and B, except for periods not to exceed a total of five (5) minutes during any two (2) consecutive hours.
- 5. Pursuant to the best available technology requirements of 25 Pa. Code §§ 127.1 and 127.12, the combustion chamber temperature of Control Device C101A shall not be less than 1,600°F, at any time.
- 6. Pursuant to the best available technology requirements of 25 Pa. Code §§ 127.1 and 127.12, the residence time of the air contaminants in Control Device C101A shall be greater than 1.0 second.
- 7. Pursuant to the best available technology requirements of 25 Pa. Code §§ 127.1 and 127.12, Control Device C101A shall be equipped with instrumentation to continuously monitor and record the combustion temperature and having a minimum accuracy of +/- one percent in degrees Celsius of the temperature being monitored.
- 8. Pursuant to the best available technology requirements of 25 Pa. Code §§ 127.1 and 127.12, Control Device C101A shall be equipped with instrumentation to monitor the gas flow to the flare and record the flow once every 15 minutes.
- 9. Pursuant to the best available technology requirements of 25 Pa. Code §§ 127.1 and 127.12, Control Device

C101A shall be equipped with an automatic pilot ignition system that utilizes natural gas as a separate fuel source which ensures complete and immediate combustion of the landfill gas.

- 10. Pursuant to the best available technology requirements of 25 Pa. Code §§ 127.1 and 127.12, Control Device C101A shall be equipped with an ultraviolet scanner with controller to confirm that a flame is present anytime that landfill gas is present.
- 11. Pursuant to the best available technology requirements of 25 Pa. Code §§ 127.1 and 127.12, Control Device C101A shall be designed such that there are no visible flames during normal operation.
- 12. Pursuant to the best available technology requirements of 25 Pa. Code §§ 127.1 and 127.12, Control Device C101A shall be equipped with a low-NO_x burner.
- 13. Pursuant to the best available technology requirements of 25 Pa. Code §§ 127.1 and 127.12, the permittee shall not send off-spec gas to Control Device C101B for more than 4 hours at any one time. If the off-spec gas condition is longer than four (4) hours, then Mas Wayne shall send the LFG to Clinton County Solid Waste Authority's Control Device C001 in TVOP 18-00009 until the LFG meets specification as established by Mas Wayne RNG.
- 14. Pursuant to the best available technology requirements of 25 Pa. Code §§ 127.1 and 127.12, Control Device C101B shall not be operated more than 500 hours in any 12 consecutive month period.

The facility is a State Only facility. If the Department determines that the sources are constructed and operated in compliance with the plan approval conditions and the specification of the application for Plan Approval 18-00035A, the requirements established in the plan approval will be incorporated into State Only Operating Permit 18-00035 pursuant to the administrative amendment provisions of 25 Pa. Code § 127.450. All documentation used in the evaluation of the application is available for public review during normal business hours at the Department's Northcentral Regional Office, 208 West Third Street, Suite 101, Williamsport, PA 17701. Appointments for scheduling a review must be made by calling 570-327-3636.

Northwest Region: Air Quality Program, 230 Chestnut Street, Meadville, PA 16335-3481.

Contact: David Balog, New Source Review Chief, (814) 332-6940.

37-00300C: North American Forgemasters (710 Moravia Street, New Castle, PA 16101). Notice is hereby given in accordance with 25 Pa. Code §§ 127.44—127.46 and 127.424 that the Department of Environmental Protection (Department) intends to issue Air Quality Plan Approval PA-37-00300C to North American Forgemasters to authorize the installation and temporary operation of forge and heat treat furnaces at their facility located in the City of New Castle, Lawrence County.

The new equipment includes: One (1) Forge Furnace (F26) that is a natural gas-fired, R2 car bottom forge furnace rated at 33.6 MMBtu/hr, equipped with eight (8) 4.2 MMBtu/hr, low $\mathrm{NO_x}$, Fives North American Model 4441-8-B burners with a DMC mode and one (1) Heat Treat Furnace (F27) that is a natural gas-fired, R3 car bottom heat treat furnace rated at 30.6 MMBtu/hr, equipped with eighteen (18), 1.7 MMBtu/hr, ultra-low $\mathrm{NO_x}$, Fives North American Model 4441-6 Tempest burners each rated at with a DMC mode.

The annual potential to emit from the two furnaces is estimated to be 0.97 ton of particulate matter (PM), 0.97 ton of particulate matter less than 10 microns (PM₁₀), and 0.97 ton of particulate matter less than 2.5 microns (PM_{2.5}), 9.54 tons of nitrogen oxides (NO_x), 5.17 tons of carbon monoxide (CO), 0.70 ton of volatile organic compounds (VOC), 0.08 ton of sulfur oxides (SO_v), and 0.24 ton of hazardous air pollutants (HAP). Best available technology (BAT) for the control of emissions from the new natural gas-fired combustion sources is the use of low NOx burners and installation, operation and maintenance in accordance with manufacturer's specifications, and good operating practices. These measures are consistent with BAT determinations at other facilities and with the BAT control measures described in GP-1 for small gas and No. 2 oil-fired combustion units (boilers) with rated capacities less than 50 MMBtu/hr.

The authorization is subject to State regulations including 25 Pa. Code §§ 123.1, 123.2, 123.31, 127.12b and 129.14. The Plan Approval has been conditioned to ensure compliance with all applicable rules. This includes testing, work practice, monitoring, recordkeeping, and reporting conditions. Once compliance with the Plan Approval is demonstrated, the applicant will subsequently apply for a State Only Operating Permit in accordance with 25 Pa. Code Subchapter F.

Copies of the application, the Department's analysis, and other documents used in the evaluation are available for public inspection between the hours of 8 a.m. and 4 p.m. weekdays at the following address. To make an appointment, contact Records Management at 814-332-6340.

Anyone wishing to provide the Department with additional information they believe should be considered may submit the information to the following address. Comments must be received by the Department within 30 days of the last day of publication. Written comments should include the name, address, and telephone number of the person submitting comments, identification of the proposed Plan Approval No. PA-37-00300C and a concise statement regarding the relevancy of the information or any objections to issuance of the Plan Approval.

A public hearing may be held, if the Department of Environmental Protection, in its discretion, decides that such a hearing is warranted on the comments received during the public comment period. All persons submitting comments or requesting a hearing will be notified of the decision to hold a hearing by publication in a local newspaper of general circulation or the *Pennsylvania Bulletin* or by telephone, where the Department determines such notification is sufficient. Written comments or requests for a public hearing should be directed to Eric Gustafson, Regional Air Quality Manager, Department of Environmental Protection, Northwest Regional Office, 230 Chestnut St., Meadville, PA 16335, 814-332-6940.

OPERATING PERMITS

Intent to Issue Title V Operating Permits under the Air Pollution Control Act (35 P.S. §§ 4001—4015) and 25 Pa. Code Chapter 127, Subchapter G.

Northcentral Region: Air Quality Program, 208 West Third Street, Williamsport, PA 17701.

Contact: Muhammad Q. Zaman, Program Manager, 570-327-3648.

19-00002: Foam Fabricators, Inc. (7050 Columbia Boulevard, 17 Industrial Drive, Bloomsburg, PA 17815) to

issue a renewal Title V operating permit for their facility located in South Centre Township, **Columbia County**. The facility is currently operating under Title V Operating Permit 19-00002. The facility's sources include one 350 horsepower boiler, one 250 horsepower boiler, twelve 82,500 Btu per hour heat radiators, a Hirsch preexpander, twenty-seven pre-puff storage bags, fifteen molding machines, a finished product warehouse and a parts washer.

The facility has the potential to emit 4.73 tons of nitrogen oxides (NO_x) per year, 8.45 tons of carbon monoxide (CO) per year, 86.35 tons of volatile organic compounds (VOCs) per year, 0.07 ton of sulfur oxides (SO_x), 0.83 ton of particulate matter (PM, including PM₁₀) per year and 0.21 ton of hazardous air pollutants. No emission or equipment changes are being proposed by this action. The emission limits, throughput limitations and work practice standards along with testing, monitoring, recordkeeping and reporting requirements have been included in the operating permit to ensure the facility complies with all applicable Federal and State air quality regulations. These operating permit conditions have been derived from the applicable requirements of Subpart Dc of 40 CFR Part 60 and 25 Pa. Code Article III, Chapters 121—145. All pertinent documents used in the evaluation of the application are available for public review during normal business hours at the Department's Northcentral Regional Office, 208 West Third Street, Suite 101, Williamsport, PA 17701. Appointments for scheduling a review must be made by calling 570.327.3636.

Intent to Issue Operating Permits under the Air Pollution Control Act (35 P.S. §§ 4001—4015) and 25 Pa. Code Chapter 127, Subchapter F.

Southeast Region: Air Quality Program, 2 East Main Street, Norristown, PA 19401.

Contact: Janine Tulloch-Reid, Facilities Permitting Chief, (484) 250-5920.

09-00102: Clean Earth of Southeast PA (7 Steel Road East, Morrisville, PA 19067) for the renewal of a Synthetic Minor State Only Operating Permit. The initial permit was issued on January 20, 2005, for operation of their soil remediation operations in Falls Township, Bucks County. This permit renewal also incorporates Request for Determination Nos. 7934, to replace parts of a dust collector (Source C03), and 9161, to replace a Sandvik Screen (Source 107) with another Sandvik Screen operated by a Caterpillar engine (Source 108). Other sources at the facility include a Primary Treatment Unit (Source 101), Storage Building & Piles (Source 103), another diesel-powered screen (Source 106), and a Pugmill Mixer (Source 109). VOC emissions from the Primary Treatment Unit are reduced by an Afterburner (Source C02). Emissions of PM from the Primary Treatment Unit are controlled by a 36-cone Multi-cone Cyclone (Source C05) and a Baghouse (Source C03). There are no emission increases being authorized under the State Only Operating Permit renewal. The following are potential site-wide emissions: NO_x—22.66 TPY; SO_x—34.38 TPY; PM—11.75 TPY; CO—16.72 TPY; VOC—10.72 TPY; and HAP—7.95 TPY. The permit will continue to include monitoring, recordkeeping and reporting requirements designed to keep the facility operating within all applicable air quality requirements.

Anyone wishing to request information regarding this action can do so by contacting the Southeast Regional Office through the contact person listed in the previously listed header. Comments on the draft permit can be

submitted through the Air Quality resource account at RA-EPSEROPUBCOM@pa.gov.

46-00235: North Penn School District (1340 South Valley Forge Road, Lansdale, PA 19446) for a renewal of State Only Operating Permit for North Penn High School in Towamencin Township, Montgomery County. This Operating Permit renewal contains a change of status of this permit from Synthetic Minor to Natural Minor. The sources at the facility consist of 5 heating boilers, 4 water heaters and 4 generators. The renewal also contains all State and Federal regulations applicable to the facility including emission limitations, operating restrictions, work practice, monitoring, and recordkeeping requirements designed to keep the facility operating within all applicable air quality requirements.

Anyone wishing to request information regarding this action can do so by contacting the Southeast Regional Office through the contact person listed in the previously listed header. Comments on the draft permit can be submitted through the Air Quality resource account at RA-EPSEROPUBCOM@pa.gov.

Northcentral Region: Air Quality Program, 208 West Third Street, Williamsport, PA 17701.

Contact: Muhammad Q. Zaman, Program Manager, 570-327-3648.

17-00074: Adamson Funeral Chapel & Crematorium, Inc. (1312 Chestnut Ave., DuBois, PA 15801) for initial Air Quality State Only Operating Permit for continued operation of a human and pet animal crematory located in Sandy Township, Clearfield County. There is two cremation unit sources in operation at this facility which is a Matthews model IE43-PPI (Source ID 001 within the permit) and Matthews Environmental Solutions model IEB Series 16 (# IE43-IEB 16) (Source ID 002 within the permit). The Potential to Emit for the facility is, as follows: 0.7 ton per year (TPY) for carbon monoxide, 0.83 TPY nitrogen oxides (as NO_2), 0.51 TPY for sulfur dioxide (as SO_2), 1.10 TPY for PM_{-10} & $PM_{2.5}$, 0.07 TPY for volatile organic compounds, and 1.1 TPY for hazardous air pollutants (HAP). Sources 001 & 002 are subject to the Best Available Technology requirements of 25 Pa. Code §§ 127.1 and 127.12. The units are equipped with a secondary combustion chamber for the control of the air contaminant emissions. The operating temperature of the secondary chambers must be maintained at or above 1,800 degrees Fahrenheit during each cremation (cycle). The operating permit will incorporate the applicable plan approval requirements for Sources 001 & 002 in addition to all other applicable Air Quality regulatory requirements, based on the application information provided to the Department. The applicable requirements were derived from 25 Pa. Code Article III, relating to the PA DEP Air Resources rules and regulations. All pertinent documents used in the evaluation of the application are available for public review during normal business hours at the Department's Northcentral Regional Office, 208 West Third Street, Suite 101, Williamsport, PA 17701. Appointments for scheduling a review must be made by calling 570.327.3636.

12-00006: Lewis & Hockenberry, Inc. (4725 Rich Valley Road, Emporium, PA 15834) to issue a renewal State Only Operating Permit for their Rich Valley Plant located in Shippen Township, Cameron County. The facility is currently operating under State Only Operating Permit 12-00006. The facility's main sources include one (1) wood-fired boiler, one (1) coating booth, thirteen wood drying kilns and few woodworking equipment. The facility

has potential emissions of 32.84 tons per year (tpy) of particulate matter/particulate matter with an effective aerodynamic diameter of less than or equal to 10 micrometer, 16.50 tpy of nitrogen oxides, 36.20 tpy of carbon monoxide, 6.66 tpy of volatile organic compounds, 1.50 tpy of sulfur oxides and trace amounts of hazardous air pollutants. No major emission or equipment changes are being proposed by this action at the site. The wood fired boiler is subject to 40 CFR Part 63, Subpart JJJJ-National Emission Standards for Hazardous Air Pollutants for Industrial, Commercial, and Institutional Boilers Area Sources. The emission limits, throughput limitations and work practice standards along with testing, monitoring, recordkeeping and reporting requirements have been included in the operating permit to ensure the facility complies with all applicable Federal and State air quality regulations. These operating permit conditions have been derived from the applicable requirements of 25 Pa. Code Chapters 121-145 as well as 40 CFR Part 63. All pertinent documents used in the evaluation of the application are available for public review during normal business hours at the Department's Northcentral Regional Office, 208 West Third Street, Suite 101, Williamsport, PA 17701. Appointments for scheduling a review must be made by calling 570-327-

Southwest Regional Office, Air Quality Program, 400 Waterfront Drive, Pittsburgh, PA 15222-4745.

Contact: Thomas Joseph, Facilities Permitting Chief, 412.442.4336.

OP-11-00280: Northern Cambria School District (601 Joseph St., Northern Cambria, PA 15714-1232). In accordance with 25 Pa. Code §§ 127.424, 127.425 and 127.521, the Department is providing notice that it intends to issue a renewal Synthetic Minor Operating Permit for operation of the Northern Cambria High School located in Northern Cambria Borough, Cambria County.

Equipment at this facility includes a CNB tri-fuel boiler rated at 6.4 MMBtu/hr equipped to burn either coal or fuel oil, an H.B. Smith fuel oil-fired boiler rated at 5.2 MMBtu/hr, and an Onan emergency generator engine rated at 60 kW fired on propane. Potential emissions from the facility are based on a limit of burning 2,000 tons of coal per consecutive 12-month period in the tri-fuel boiler, 8,760 hours of operation for the fuel oil-fired boiler, and 500 hours of operation per consecutive 12-month period for the emergency generator and are estimated to be 12.8 tons $\mathrm{NO_x}$, 1.4 tons VOC, 11.8 tons CO, 5.1 tons particulate matter, 89.1 tons $\mathrm{SO_2}$, 1.41 tons HAP, and 11,134 tons GHG.

The facility is subject to the applicable requirements of 25 Pa. Code Chapters 121—145. The proposed operating permit contains applicable emission limitations, monitoring, recordkeeping, work practice standards, and reporting requirements for the facility.

The application, DEP's Review Memorandum, and the proposed permit are available for public review during normal business hours at DEP's Southwest Regional Office, 400 Waterfront Drive, Pittsburgh, PA 15222. A file review can be scheduled through the DEP's website at https://www.dep.pa.gov/Citizens/PublicRecords/Pages/Informal-File-Review.aspx.

Any person may submit comments, a request for the Department to hold a public hearing, or a protest to the proposed operating permit or a condition thereof by submitting the information to Nick Waryanka, P.E., Air

Quality Engineer, at the Southwest Regional Office. A 30-day comment period from the date of publication of this notice will exist for the submission of comments. Each written comment must contain the name, address, and telephone number of the person submitting the comments, identification of the proposed permit (specify Operating Permit 11-00280) and concise statements regarding the relevancy of the information in the proposed permit or objections to issuance of the permit.

A public hearing may be held in accordance with 25 Pa. Code § 127.429, if the Department, in its discretion, decides that such a hearing is warranted based on the information received. If a public hearing is held, all persons who have properly filed a protest under 25 Pa. Code § 127.426 may appear and give testimony. The applicant, the protestant, and other participants will be notified of the decision to hold a hearing (and the time, place and purpose of such hearing) by publication in the newspaper or by the *Pennsylvania Bulletin*, or by telephone, where the Department determines such notification by telephone is sufficient.

COAL & NONCOAL MINING ACTIVITY APPLICATIONS

Applications under the Surface Mining Conservation and Reclamation Act (52 P.S. §§ 1396.1—1396.31); the Noncoal Surface Mining Conservation and Reclamation Act (52 P.S. §§ 3301—3326); the Clean Streams Law (35 P.S. §§ 691.1—691.1001); the Coal Refuse Disposal Control Act (52 P.S. §§ 30.51—30.66); the Bituminous Mine Subsidence and Land Conservation Act (52 P.S. §§ 1406.1—1406.21). Mining activity permits issued in response to such applications will also address the applicable permitting requirements of the following statutes: the Air Pollution Control Act (35 P.S. §§ 4001—4015); the Dam Safety and Encroachments Act (32 P.S. §§ 693.1—693.27); and the Solid Waste Management Act (35 P.S. §§ 6018.101—6018.1003).

The following permit applications to conduct mining activities have been received by the Department of Environmental Protection. A copy of the application is available for inspection at the District Mining Office indicated above each application. Notices of requests for 401 Water Quality Certifications are included in individual application notices, as noted.

Written comments or objections, or requests for an informal conference, or a public hearing, as applicable, on a mining permit application may be submitted by any person or any officer or head of any Federal, State or local government agency or authority to the Department at the address of the District Mining Office indicated above each application within 30-days of this publication, or within 30-days after the last publication of the applicant's newspaper advertisement, as provided by 25 Pa. Code §§ 77.121—77.123 and 86.31—86.34 (relating to public notices of filing of permit applications, opportunity for comment, and informal conferences).

Written comments or objections related to a mining permit application should contain the name, address and telephone number of persons submitting comments or objections; application number; and a statement of sufficient detail to inform the Department on the basis of comment or objection and relevant facts upon which it is based

Requests for an informal conference, or a public hearing, as applicable, on a mining permit application, as provided by 25 Pa. Code § 77.123 (relating to public hearing-informal conferences) or § 86.34 (relating to in-

formal conferences), must contain the name, address and telephone number of the requestor; the application number; a brief summary of the issues to be raised by the requestor at the conference; and a statement whether the requestor desires to have the conference conducted in the locality of the proposed mining activities.

Where a National Pollutant Discharge Elimination System (NPDES) number is listed, the mining activity permit application was accompanied by an application for an individual NPDES permit. A separate notice will be provided after the draft NPDES permit is prepared.

Coal Applications Received

Effluent Limits—The following range of effluent limits will apply to NPDES permits issued in conjunction with the associated coal mining activity permit and, in some cases, noncoal mining permits:

Table 1

Parameter	30-Day Average	Daily Maximum	$Instantaneous \ Maximum$	
Iron (total)	1.5 to 3.0 mg/l	3.0 to 6.0 mg/l	3.5 to 7.0 mg/l	
Manganese (total)	1.0 to 2.0 mg/l	2.0 to 4.0 mg/l	2.5 to 5.0 mg/l	
Suspended solids	10 to 35 mg/l	20 to 70 mg/l	25 to 90 mg/l	
Aluminum (Total)	0.75 to 2.0 mg/l	1.5 to 4.0 mg/l	2.0 to 5.0 mg/l	
$\mathrm{pH^1}$	greater than 6.0; less than 9.0			

Alkalinity greater than acidity¹

A settleable solids instantaneous maximum limit of 0.5 ml/l applied to: surface runoff (resulting from a precipitation event of less than or equal to a 10-year 24-hour event) from active mining areas; active areas disturbed by coal refuse disposal activities; and mined areas backfilled and revegetated; and drainage (resulting from a precipitation event of less than or equal to a 1-year 24-hour event) from coal refuse disposal piles.

Cambria District Mining Office: 286 Industrial Park Road, Ebensburg, PA 15931, (814) 472-1900, (Contact: Melanie Ford-Wigfield).

Permit No. 56860104 and NPDES No. PA0597601. Heritage Coal & Natural Resources, LLC, 550 Beagle Road, Rockwood, PA 15557, renewal to the NPDES permit of a bituminous surface mine in Summit and Brothersvalley Townships, Somerset County, affecting 507.0 acres. Receiving streams: unnamed tributaries to/and Blue Lick Creek classified for the following use: CWF. Application received: November 2, 2021.

Knox District Mining Office: P.O. Box 669, 310 Best Avenue, Knox, PA 16232-0669, (814) 797-1191, (Contact: Cayleigh Boniger)

Permit No. 33010102 and NPDES No. PA0241890. McKay Coal Company, Inc., P.O. Box 343, Punxsutawney, PA 15767. Renewal of an existing bituminous surface mine and associated NPDES permit in Perry Township, **Jefferson County**, affecting 69.2 acres. Receiving stream(s): Foundry Run classified for the following use(s): CWF. Application received: October 28, 2021.

New Stanton District Office: P.O. Box 133, New Stanton, PA 15672, (724) 925-5500, (Contact: Tracy Norbert).

Permit No. 65-21-01 and NPDES Permit No. PA0278530. David L. Patterson, Jr., 12 Short Cut Road, Smithfield, PA 15478. Application for commencement, operation and restoration for a Government Financed Construction Contract, located in Loyahlanna Township, Westmoreland County, affecting 3.9 acres. Receiving streams: unnamed tributaries to Kiskiminetas River and unnamed tributaries to Getty Run, classified for the following use: WWF. There is no potable water supply intake within 10 miles downstream from the point of discharge. Application received: November 5, 2021.

California District Office: 25 Technology Drive, Coal Center, PA 15423, (724) 769-1100, (Contact: Bonnie Herbert).

Coal Applications Withdrawn

Permit No. 32041301 and NPDES Permit No. PA0235644. Rosebud Mining Company, 301 Market Street, Kittanning, PA 16201, to revise the permit and related NPDES Permit to add 172.6 acres of underground permit and subsidence control plan area acres from the Barrett Deep Mine, back to the Brush Valley Mine. Also includes the deletion of 345.5 acres of underground permit and subsidence control plan area acres to be transferred to the Barrett Deep Mine for Brush Valley Mine located in Center and Brush Valley Townships, Indiana County, affecting 172.6 proposed subsidence control plan acres and underground acres, and 345.5 proposed subsidence control plan acres and underground ground acres. No additional discharges. The application was considered administratively complete on September 24, 2019. Application received: August 29, 2019. Permit Withdrawn: October 26, 2021.

Pottsville District Mining Office: 5 West Laurel Boulevard, Pottsville, PA 17901, (570) 621-3118, (Contact: Theresa Reilly-Flannery).

Permit No. 49151301. Peter Shingara Mining, 315 Shingara Lane, Sunbury, PA 17801, transfer of an existing underground mine operation from Clinton M. Wynn Mining in Zerbe Township, **Northumberland County**, affecting 3.5 acres. Application received: January 14, 2021. Application withdrawn: November 5, 2021.

Noncoal Applications Received

Effluent Limits—The following effluent limits will apply to NPDES permits issued in conjunction with a noncoal mining permit:

¹ The parameter is applicable at all times.

Table 2

Alkalinity exceeding acidity* pH*

H* greater than 6.0; less than 9.0 The parameter is applicable at all times.

A settleable solids instantaneous maximum limit of 0.5 ml/l applied to surface runoff resulting from a precipitation event of less than or equal to a 10-year 24-hour event. If coal will be extracted incidental to the extraction of noncoal minerals, at a minimum, the technology-based effluent limitations identified under coal applications will apply to discharges of wastewater to streams.

Knox District Mining Office: P.O. Box 669, 310 Best Avenue, Knox, PA 16232-0669, (814) 797-1191, (Contact: Cayleigh Boniger).

Permit No. 37940305. Slippery Rock Materials, Inc., 704 Golf Course Road, Volant, PA 16156. Revision to an existing large industrial mineral surface mine to merge with Surface Mining Permit No. 37060303 and transfer from Troy Sand and Gravel, Inc. in Plain Grove Township, **Lawrence County**. Receiving streams: None. Application received: October 25, 2021.

Moshannon District Mining Office: 186 Enterprise Drive, Philipsburg, PA 16866, (814) 342-8200, (Contact: Ashley Smith).

Permit No. 17210801. Thomas Morris, Jr., 7901 Ridge Road, Mahaffey, PA 15757, commencement, operation, and restoration of a small noncoal (industrial minerals) operation located in Burnside Township, **Clearfield County**, affecting 2.1 acres. Receiving stream(s): Unnamed Tributary to Deer Run classified for the following use(s): CWF. Application received: October 27, 2021.

NPDES No. PA0269956 (Mining Permit No. 17062802). Cynthia E. Russell, 2640 Greenville Pike, Grampian, PA 16838. NPDES Permit to provide for storm water discharges from a small noncoal operation in Pike Township, Clearfield County, affecting 5.0 acres. Receiving stream(s): Roaring Run, tributary to West Branch Susquehanna classified for the following use(s): HQ-CWF. Application received: October 28, 2021.

Permit No. 08212801. Johnson Quarries, Inc., P.O. Box 136, LeRaysville, PA 18829, commencement, operation, and restoration of a small industrial mineral (bluestone) operation in Tuscarora Township, **Bradford County**, affecting 5.0 acres. Receiving stream(s): Unnamed tributary to Bennet Creek, tributary to Wyalusing Creek to Susquehanna River. Application received: October 28, 2021.

New Stanton District Office: P.O. Box 133, New Stanton, PA 15672, (724) 925-5500, (Contact: Tracy Norbert).

Permit No. 65210302 and NPDES No. PA0278521. Curry & Kepple, Inc., 126 Ten School Road, New Alexandria, PA 15670, application for commencement, operation and restoration of large noncoal surface mine, located in Derry Township, Westmoreland County, affecting 86.6 acres. Receiving streams: unnamed tributaries to Loyalhanna Creek and Boatyard Run to Conemaugh River, classified for the following use: WWF. Application received: November 3, 2021.

Pottsville District Mining Office: 5 West Laurel Boulevard, Pottsville, PA 17901, (570) 621-3118, (Contact: Theresa Reilly-Flannery).

Permit No. 58970830. William H. Shay, 258 Shay Road, Thompson, PA 18465, Stage I & II bond release of a quarry operation in Gibson Township, **Susquehanna County**, affecting 1.0 acre on quarry owned by William H. Shay. Application received: October 29, 2021.

NPDES Permit No. PA0226246 (on GP-105 Permit No. 58212513). Gary Morrison, 478 Mountain View Estates, Montrose, PA 18801, NPDES Permit for discharge of treated mine drainage from a quarry operation in Liberty Township, Susquehanna County, affecting 10.0 acres. Receiving stream: unnamed tributary to Silver Creek, classified for the following use: HQ—cold water and migratory fishes. Application received: November 2, 2021.

MINING ACTIVITY NPDES DRAFT PERMITS

This notice provides information about applications for a new, amended or renewed NPDES permits associated with mining activity (coal or noncoal) permits. The applications concern industrial waste (mining) discharges to surface water and discharges of stormwater associated with mining activities. This notice is provided in accordance with 25 Pa. Code Chapters 91 and 92a and 40 CFR Part 122, implementing provisions of The Clean Streams Law (35 P.S. §§ 691.1—691.1001) and the Federal Clean Water Act (33 U.S.C.A. §§ 1251—1376).

The Department of Environmental Protection (Department) has prepared a draft NPDES permit and made a tentative determination to issue the NPDES permit in conjunction with the associated mining activity permit.

Effluent Limits for Coal Mining Activities

For coal mining activities, NPDES permits, when issued, will contain effluent limits that are the more stringent of technology-based (BAT) effluent limitations or Water Quality Based Effluent Limits (WQBEL).

The BAT limits for coal mining activities, as provided in 40 CFR Part 434 and 25 Pa. Code Chapters 87—90 are as follows:

Parameter	30-Day	Daily	Instantaneous
	Average	Maximum	Maximum
Manganese (Total)	2.0 mg/l	4.0 mg/l	5.0 mg/l
Suspended solids	35 mg/l	70 mg/l	90 mg/l
pH* Alkalinity greater than acidity*	S	greater than 6.0); less than 9.0

A settleable solids instantaneous maximum limit of 0.5 ml/l applies to: surface runoff (resulting from a precipitation event of less than or equal to a 10-year 24-hour event) from active mining areas; active areas disturbed by coal refuse disposal activities; mined areas backfilled and revegetated; and all other discharges and drainage (resulting from a precipitation event of greater than 1-year 24-hour to less than or equal to a 10-year 24-hour event) from coal refuse disposal piles. Similarly, modified BAT limits apply to iron, manganese and suspended solids in surface runoff, discharges and drainage resulting from these precipitation events and those of greater magnitude in accordance with 25 Pa. Code §§ 87.102, 88.92, 88.187, 88.292, 89.52 and 90.102.

Exceptions to BAT effluent limits may be applicable in accordance with 25 Pa. Code §§ 87.102, 88.92, 88.187, 88.292, 89.52 and 90.102.

Effluent Limits for Noncoal Mining Activities

*The parameter is applicable at all times.

The limits for noncoal mining activities as provided in 25 Pa. Code Chapter 77 are pH 6 to 9 and other parameters the Department may require.

Discharges from noncoal mines located in some geologic settings (for example, in the coal fields) may require additional water quality based effluent limits. If additional effluent limits are needed for an NPDES permit associated with a noncoal mining permit, then the permit description specifies the parameters.

In addition to BAT or WQBEL limits, coal and noncoal NPDES permits establish effluent limitations in the form of implemented Best Management Practices (BMPs) identified in the associated Erosion and Sedimentation Plan, the Reclamation Plan and the NPDES permit application. These BMPs restrict the rates and quantities of associated pollutants from being discharged into surface waters in this Commonwealth.

More restrictive effluent limitations, restrictions on discharge volume or restrictions on the extent of mining that may occur are incorporated into an NPDES permit when necessary for compliance with water quality standards and antidegradation requirements (in accordance with 25 Pa. Code Chapters 91—96).

The procedures for determining the final effluent limits, using a mass-balance equation or model, are found in Technical Guidance Document 563-2112-115, Developing National Pollutant Discharge Elimination System (NPDES) Permits for Mining Activities. Other specific factors to be considered include public comments and Total Maximum Daily Load(s). Additional discharge limitations may apply in the event that unexpected discharges occur.

Discharge rates for surface mining activities are precipitation driven. Discharge rates for proposed discharges associated with underground mining are noted in the permit description.

Persons wishing to comment on an NPDES draft permit should submit a written statement to the Department at the address of the district mining office indicated before each draft permit within 30-days of this public notice. Comments received within the comment period will be considered in the final determinations regarding the NPDES permit applications. Comments must include the name, address and telephone number of the writer and a concise statement to inform the Department of the exact basis of a comment and the relevant facts upon which it is based.

The Department will also accept requests or petitions for a public hearing on NPDES permit applications, as provided in 25 Pa. Code § 92a.82(d). The request or petition for a public hearing shall be filed within 30-days of this public notice and contain the name, address, telephone number and the interest of the party filing the request and state the reasons why a hearing is warranted. A public hearing may be held if the Department considers the public interest significant. If a hearing is scheduled, a notice of the hearing on the NPDES permit application will be published in the *Pennsylvania Bulletin* and a newspaper of general circulation within the relevant geographical area. When a public hearing is held, the Department will consider comments from the public hearing in the final determination on the NPDES permit application.

Coal NPDES Draft Permits

California District Mining Office: 25 Technology Drive, California Technology Park, Coal Center, PA 15423, (724) 769.1100.

NPDES No. PA0215228 (Mining Permit No. 32991301). Rosebud Mining Company, 301 Market Street, Kittanning, PA 16201, a renewal to the NPDES and mining activity permit for Nolo Deep Mine in Buffington Township, Indiana County, affecting 53.8 surface acres and 7,198.0 underground acres. Receiving stream(s): Unnamed Tributary Little Yellow Creek: HQ-CWF; Little Yellow Creek: HQ-CWF; and Unnamed Tributary Laurel Run: CWF. Kiskiminetas-Conemaugh River Watershed TMDL. The application was considered administratively complete: January 6, 2020. The application was received: November 25, 2019.

Unless otherwise noted for a specific outfall, the proposed effluent limits for all outfalls in this permit are the BAT limits described previously for coal mining activities.

Outfall 001 discharges to: Tributary 44155 Little Yellow Creek

The proposed effluent limits for Outfall 001 (Lat: 40° 33′ 24″; Long: -78° 58′ 43″) are:

The following effluent limitations and monitoring requirements apply to the subject outfall from Permit Effective Date to Permit Expiration Date:

Parameter		Minimum	30-Day Average	Daily Maximum	Instant. Maximum
Flow	(mgd)	-	_	-	Report
Iron	(mg/l)	-	1.5	3.0	3.8
Manganese	(mg/l)	-	1.0	2.0	2.5
Aluminum	(mg/l)	-	0.75	0.75	0.75
Suspended Solids	(mg/l)	-	35	70	90
pH	(s.u.)	6.0	-	-	9.0
Alkalinity, Total as CaCO ₃	(mg/l)	-	-	-	Report
Acidity, Total as CaCO ₃	(mg/l)	-	-	-	Report
Alkalinity, Net	(mg/l)	0.0	-	-	-
Osmotic Pressure	(mOs/kg)	-	-	-	Report
Total Dissolved Solids	(mg/l)	-	-	-	Report
Sulfate	(mg/l)	-	-	-	Report
Chloride	(mg/l)	-	-	-	Report
Dilution Ratio	<u> </u>		6:1		-

Outfall 003 discharges to: Little Yellow Creek

The proposed effluent limits for Outfall 003 (Lat: 40° 33′ 13″; Long: -78° 58′ 39″) are:

The following effluent limitations and monitoring requirements apply to the subject outfall from Permit Effective Date to Permit Expiration Date:

Parameter		Minimum	30-Day Average	$Daily\\ Maximum$	$Instant.\\Maximum$
Flow	(mgd)	-	-	-	Report
Iron	(mg/l)	-	1.5	3.0	$\tilde{3.8}$
Manganese	(mg/l)	-	1.0	2.0	2.5
Aluminum	(mg/l)	-	0.75	0.75	0.75
Suspended Solids	(mg/l)	-	35	70	90
pH	(s.u.)	6.0	-	-	9.0
Alkalinity, Total as CaCO ₃	(mg/l)	-	-	-	Report
Acidity, Total as CaCO ₃	(mg/l)	-	-	-	Report
Alkalinity, Net	(mg/l)	0.0	-	-	-
Osmotic Pressure	(mOs/kg)	-	-	-	Report
Total Dissolved Solids	(mg/l)	-			Report
Sulfate	(mg/l)	-	-	-	Report
Chloride	(mg/l)	-	-	-	Report
Dilution Ratio			6:1		•

Outfall 007 discharges to: Tributary 44186 Laurel Run

The proposed effluent limits for Outfall 007 (Lat: 40° 33′ 48″; Long: -78° 58′ 34″) are:

The following effluent limitations and monitoring requirements apply to the subject outfall from Permit Effective Date to Permit Expiration Date:

Parameter		Minimum	30-Day Average	Daily Maximum	$Instant.\\Maximum$
Flow	(mgd)	-	-	-	Report
Iron	(mg/l)	-	1.5	3.0	3.8
Manganese	(mg/l)	-	1.0	2.0	2.5
Aluminum	(mg/l)	-	0.75	0.75	0.75
Suspended Solids	(mg/l)	-	35	70	90
pH	(s.u.)	6.0	-	-	9.0
Alkalinity, Total as CaCO ₃	(mg/l)	-	-	-	Report
Acidity, Total as CaCO ₃	(mg/l)	-	-	-	Report
Alkalinity, Net	(mg/l)	0.0	-	-	-
Osmotic Pressure	(mOs/kg)	-	50	100	-
Total Dissolved Solids	(mg/l)	-	-	-	Report
Sulfate	(mg/l)	-	-	-	Report
Chloride	(mg/l)	-	-	-	Report

Outfall 008 discharges to: Tributary 44185 to Laurel Run

The proposed effluent limits for Outfall 008 (Lat: 40° 33' 31"; Long: -78° 59' 26") are:

The following effluent limitations and monitoring requirements apply to the subject outfall from Permit Effective Date to Permit Expiration Date:

00 D

Parameter		Minimum	30-Day Average	Daily Maximum	Instant. Maximum
Flow	(mgd)	-	-	-	Report

Parameter		Minimum	30-Day Average	Daily Maximum	Instant. Maximum
Iron	(mg/l)	-	1.5	3.0	3.8
Manganese	(mg/l)	-	1.0	2.0	2.5
Aluminum	(mg/l)	-	0.75	0.75	0.75
Suspended Solids	(mg/l)	-	35	70	90
pH	(s.u.)	6.0	-	-	9.0
Alkalinity, Total as CaCO ₃	(mg/l)	-	-	-	Report
Acidity, Total as CaCO ₃	(mg/l)	-	-	-	Report
Alkalinity, Net	(mg/l)	0.0	-	-	-
Osmotic Pressure	(mOs/kg)	-	50	100	-
Total Dissolved Solids	(mg/l)	-	-	-	Report
Sulfate	(mg/l)	-	-	-	Report
Chloride	(mg/l)	-	-	-	Report

The EPA Waiver is not in effect.

Cambria District Mining Office: 286 Industrial Park Road, Ebensburg, PA 15931, (814) 472.1900.

NPDES No. PA0279811 (Mining Permit No. 32210101). Alverda Enterprises, Inc., 10860 Route 553, Alverda, PA 15710, issuance of a NPDES permit for a bituminous surface mine in Pine Township, Indiana County, affecting 12.5 acres. Receiving stream(s): Yellow Creek, classified for the following use(s): CWF. This receiving stream is included in the Kiski-Conemaugh TMDL. Application received: June 17, 2021.

The following treated wastewater outfall discharges to Yellow Creek:

 $\begin{array}{ccc} \textit{Outfall Nos.} & \textit{New Outfall (Y/N)} \\ \textit{001 (Treatment Pond TF-1)} & \textit{Y} \end{array}$

The proposed effluent limits for the previously listed outfall 001 are as follows:

Outfall: 001 (TF-1)	30- Day	Daily	Instant.
Parameter	Average	Maximum	Maximum
Iron (mg/l)	1.5	3.0	3.7
Manganese (mg/l)	1.0	2.0	2.5
Aluminum (mg/l)	0.75	1.5	1.8
Total Suspended Solids (mg/l)	35.0	70.0	90.0

pH (S.U.): Must be between 6.0 and 9.0 standard units at all times.

Alkalinity must exceed acidity at all times.

Knox District Mining Office: White Memorial Building, P.O. Box 669, 310 Best Avenue, Knox, PA 16232-0669, (814) 797.1191.

NPDES No. PA0259594 (Permit No. 16140109). K & A Mining, 119 Atwell Lane, Kennerdell, PA 16374, renewal of an NPDES permit for a bituminous surface mine in Washington Township, Clarion County, affecting 70.0 acres. Receiving streams: Unnamed tributaries to East Sandy Creek, classified for the following uses: CWF. TMDL: None. Application received: August 16, 2021.

Unless otherwise noted for a specific outfall, the proposed effluent limits for all outfalls in this permit are the BAT limits described previously for coal mining activities.

The following outfalls discharge to Unnamed tributaries to East Sandy Creek:

$Outfall\ Nos.$	New Outfall (Y/N)
004	N
005	N
006	N
007	N

The proposed effluent limits for the previously listed outfalls are as follows:

		30- Day	Daily	Instant.
Parameter	Minimum	Average	Maximum	Maximum
pH^1 (S.U.)	6.0			9.0
Allralinites amouton than acidites1				

Alkalinity greater than acidity¹ The parameter is applicable at all times.

The following outfalls discharge to Unnamed tributaries to East Sandy Creek:

Outfall Nos.	New Outfall (Y/N)
001	N
002	N
003	N

The proposed effluent limits for the previously listed outfalls are as follows:

Parameter	Minimum	30-Day Average	Daily Maximum	$Instant.\ Maximum$
pH ¹ (S.U.)	6.0			9.0

Alkalinity greater than acidity¹

NPDES No. PA0241539 (Permit No. 33990109). McKay Coal Company, Inc., P.O. Box 343, Punxsutawney, PA 15767, renewal of an NPDES permit for a bituminous surface mine in Perry Township, **Jefferson County**, affecting 72.5 acres. Receiving streams: Unnamed tributaries to Perryville Run and Perryville Run, classified for the following uses: CWF. TMDL: None. Application received: September 16, 2021.

This proposed mine site also contains or is hydrologically connected to substandard discharges for which there is no responsible party. Pursuant to 25 Pa. Code § 87.201, effluent limits for those discharges will be based upon the existing baseline pollution load, or the standards found at 25 Pa. Code § 87.102(a) Group A, whichever is least stringent.

The following outfalls discharge to Unnamed tributaries to Perryville Run:

Outfall Nos.	New Outfall (Y/N)
003	N
004	N
005	N

The proposed effluent limits for the previously listed outfalls are as follows:

		30- Day	Daily	Instant.
Parameter	Minimum	Average	Maximum	Maximum
pH^1 (S.U.)	6.0			9.0
Īron (mg/l)		3.0	6.0	7.0
Manganese (mg/l)		2.0	4.0	5.0
Aluminum (mg/l)		2.0	4.0	5.0
Total Suspended Solids (mg/l)		35.0	70.0	90.0
Alkalinity greater than acidity ¹				

¹ The parameter is applicable at all times.

The following outfalls discharge to Unnamed tributaries to Perryville Run and Perryville Run:

Outfall Nos.	New Outfall (Y/N)
001	N
002	N

The proposed effluent limits for the previously listed outfalls are as follows:

Parameter	Minimum	30-Day Average	Daily Maximum	$Instant.\ Maximum$
pH^1 (S.U.)	6.0			9.0
Îron (mg/l)		3.0	6.0	7.0
Manganese (mg/l)		2.0	4.0	5.0
Aluminum (mg/l)		2.0	4.0	5.0
Total Suspended Solids (mg/l)		35.0	70.0	90.0
Alkalinity greater than acidity ¹				

¹ The parameter is applicable at all times.

Moshannon District Mining Office: 186 Enterprise Drive, Philipsburg, PA 16866, (814) 342.8200.

NPDES No. PA0257257 (Mining Permit No. 17090107). RES Coal, LLC, 224 Grange Hall Road, P.O. Box 228, Armagh, PA 15920, renewal of an NPDES permit for surface coal mining in Goshen Township, Clearfield County, affecting 442.1 acres. Receiving stream(s): Surveyor Run, Chubb Run, Unnamed Tributary B to West Branch Susquehanna River and Unnamed Tributary J to West Branch Susquehanna River, classified for the following use(s): CWF. These receiving streams are included in either the West Branch Susquehanna River of Surveyor Run TMDL. Application received: June 9, 2021.

The following outfall discharges to Unnamed Tributary B to West Branch Susquehanna River:

Outfall Nos.	New $Outfall\ (Y/N)$	Type
001	N	Sediment Pond B

The proposed effluent limits for the previously listed outfall are as follows:

Outfalls: 001 (All Weather Conditions) Parameter	30-Day Average	Daily Maximum	$Instant.\\Maximum$
Iron (mg/L)	2.2	4.4	5.5
Manganese (mg/L)	1.5	3.0	3.7
Aluminum (mg/L)	1.1	2.2	2.7
Total Suspended Solids (mg/L)	35.0	70.0	90.0

¹ The parameter is applicable at all times.

Outfalls: 001 (All Weather Conditions) 30-Day DailyInstant. Maximum ParameterAverage Maximum Sulfate (mg/L) Monitor & Report Flow (gpm) Monitor & Report Temperature (°C) Monitor & Report Specific Conductivity (µmhos/cm) Monitor & Report $p\bar{H}$ (S.U.): Must be between 6.0 and 9.0 standard units at all times. Alkalinity must exceed acidity at all times.

The following outfalls discharge to Unnamed Tributary J to West Branch Susquehanna River:

Outfall Nos.	$New\ Outfall\ (Y/N)$	Туре
002	N	Sediment Pond C
003	N	Sediment Pond D
015	N	Treatment Basin TB-4

The proposed effluent limits for the previously listed outfalls are as follows:

Outfalls: 002 and 003 (All Weather Conditions) Parameter	30-Day Average	Daily Maximum	$Instant.\\Maximum$
Iron (mg/L)	2.5	5.0	6.2
Manganese (mg/L)	1.7	3.4	4.2
Aluminum (mg/L)	1.2	2.4	3.0
Total Suspended Solids (mg/L)	35.0	70.0	90.0
Sulfate (mg/L)		Monitor d	& Report
Flow (gpm)		Monitor d	& Report
Temperature (°C)		Monitor d	& Report
Specific Conductivity (µmhos/cm)	Monitor & Report		
pH (S.U.): Must be between 6.0 and 9.0 standard un	nits at all times.		
Allralinity must around acidity at all times			

Alkalinity must exceed acidity at all times.

The proposed effluent limits for the previously listed outfalls are as follows:

Outfalls: 015 (All Weather Conditions) Parameter	30-Day Average	Daily Maximum	$Instant.\\Maximum$
Iron (mg/L)	2.5	5.0	6.2
Manganese (mg/L)	1.7	3.4	4.2
Aluminum (mg/L)	0.75	1.5	1.8
Total Suspended Solids (mg/L)	35.0	70.0	90.0
Sulfate (mg/L)		Monitor	& Report
Flow (gpm)		Monitor	& Report
Temperature (°C)		Monitor	& Report
Specific Conductivity (µmhos/cm)		Monitor	& Report

pH (S.U.): Must be between 6.0 and 9.0 standard units at all times.

Alkalinity must exceed acidity at all times.

Alkalinity must exceed acidity at all times.

The following outfalls discharge to Chubb Run:

$Outfall\ Nos.$	New Outfall (Y/N)	Type
004	N	Sediment Pond E
005	N	Sediment Pond F
006	N	Sediment Pond G
007	N	Sediment Pond H
011	N	Sediment Pond M

The proposed effluent limits for the previously listed outfalls are as follows:

Outfalls: 004—007 and 011 (All Weather Conditions) Parameter	30-Day Average	Daily Maximum	$Instant.\\Maximum$
Iron (mg/L)	3.0	6.0	7.0
Manganese (mg/L)	2.0	4.0	5.0
Aluminum (mg/L)	2.1	4.2	5.2
Total Suspended Solids (mg/L)	35.0	70.0	90.0
Sulfate (mg/L)		Monitor &	& Report
Flow (gpm)		Monitor &	& Report
Temperature (°C)		Monitor &	& Report
Specific Conductivity (µmhos/cm)		Monitor &	& Report
pH (S.U.): Must be between 6.0 and 9.0 standard units a	t all times.		

The following outfalls discharge to Surveyor Run:

$Outfall\ Nos.$	New Outfall (Y/N)	Туре
008	N	Sediment Pond J
009	N	Sediment Pond K
010	N	Sediment Pond L
013	N	Treatment Basin TB-2
014	N	Treatment Basin TB-3

The proposed effluent limits for the previously listed outfalls are as follows:

Outfalls: 008—010, 013 and 014 (All Weather Conditions) Parameter	30-Day Average	Daily Maximum	Instant. Maximum
Iron (mg/L)	3.0	6.0	7.0
Manganese (mg/L)	1.5	3.0	3.7
Aluminum (mg/L)	1.0	2.0	2.5
Total Suspended Solids (mg/L)	35.0	70.0	90.0
Sulfate (mg/L)		Monitor	& Report
Flow (gpm)			& Report
Temperature (°C)		Monitor	& Report
Specific Conductivity (µmhos/cm)		Monitor	& Report
TI (CII). Must be helicited to 0 and 0.0 standard units at all times			•

pH (S.U.): Must be between 6.0 and 9.0 standard units at all times.

Alkalinity must exceed acidity at all times.

This proposed mine site also contains or is hydrologically connected to substandard discharges for which there is no responsible party. Pursuant to 25 Pa. Code Chapter 87, Subchapter F, effluent limits for those discharges will be based upon the existing baseline pollution load, or the standards found at 25 Pa. Code Chapter 87.102(a) Group A, whichever is least stringent.

Noncoal NPDES Draft Permits

Knox District Mining Office: White Memorial Building, P.O. Box 669, 310 Best Avenue, Knox, PA 16232-0669, (814) 797.1191.

NPDES No. PA0241831 (Permit No. 37000302). IA Construction Corporation, 24 Gibb Road, Franklin, PA 16323, renewal of an NPDES permit for a large industrial mineral surface mine in Wayne Township, Lawrence County, affecting 82.0 acres. Receiving streams: Unnamed tributary to Connoquenessing Creek, classified for the following uses: WWF. Application received: September 21, 2021.

Unless otherwise noted for a specific outfall, the proposed effluent limits for all outfalls in this permit are the BAT limits described previously for noncoal mining activities.

The following outfall discharges to Unnamed tributary to Connoquenessing Creek:

Outfall Nos.	New Outfall (Y/N)
006	N

The proposed effluent limits for the previously listed outfalls are as follows:

Outfalls: Parameter	Minimum	30-Day Average	$egin{aligned} Daily\ Maximum \end{aligned}$	Instantaneous Maximum
r ar ameter	Millimum	Average	Maximum	Maximum
pH ¹ (S.U.)	6.0			9.0
Īron (mg/l)		3.0	6.0	7.0
Manganese (mg/l)		2.0	4.0	5.0
Total Suspended Solids (mg/l)		35.0	70.0	90.0
Alkalinity greater than acidity ¹				

¹ The parameter is applicable at all times.

NPDES No. PA0227218 (Permit No. 10960304). Allegheny Mineral Corporation, P.O. Box 1022, Kittanning, PA 16201, renewal of an NPDES permit for a large industrial mineral surface mine in Washington Township, Butler County, affecting 544.6 acres. Receiving streams: Unnamed tributaries to South Branch Slippery Rock Creek, classified for the following uses: CWF. Application received: September 20, 2021.

Unless otherwise noted for a specific outfall, the proposed effluent limits for all outfalls in this permit are the BAT limits described previously for noncoal mining activities.

The following outfalls discharge to Unnamed tributaries to South Branch Slippery Rock Creek:

$Outfall\ Nos.$	New Outfall (Y/N)
006	N
008	N

The proposed effluent limits for the previously listed outfalls are as follows:

Outfalls: Parameter	Minimum	30-Day	Daily Maximum	Instantaneous Maximum
pH ¹ (S.U.)	6.0	Average	Maximum	9.0
F (/ //				

Outfalls: Parameter	Minimum	30-Day Average	$\begin{array}{c} Daily\\ Maximum \end{array}$	Instantaneous Maximum
Iron (mg/l)		3.0	6.0	7.0
Manganese (mg/l)		2.0	4.0	5.0
Total Suspended Solids (mg/l)		35.0	70.0	90.0
Alkalinity greater than acidity1				

Alkalinity greater than acidity¹
¹ The parameter is applicable at all times.

The following outfalls discharge to Unnamed tributaries to South Branch Slippery Rock Creek:

Outfall Nos. 001 004	New Outfall (Y/N)
001	N
004	N

The proposed effluent limits for the previously listed outfalls are as follows:

Outfalls: Parameter	Minimum	30-Day Average	Daily Maximum	Instantaneous Maximum
pH^1 (S.U.)	6.0			9.0
Iron (mg/l)		3.0	6.0	7.0
Manganese (mg/l)		2.0	4.0	5.0
Total Suspended Solids (mg/l)		35.0	70.0	90.0
Alkalinity greater than acidity ¹				

¹ The parameter is applicable at all times.

NPDES No. PA0259683 (Permit No. 37150302). Amerikohl Aggregates, Inc., 202 Sunset Drive, Butler, PA 16001, revised NPDES permit for a large industrial mineral surface mine in Shenango Township, Lawrence County, affecting 233.8 acres. Receiving streams: Unnamed tributaries to McKee Run and McKee Run, classified for the following uses: WWF. Application received: June 14, 2021.

Unless otherwise noted for a specific outfall, the proposed effluent limits for all outfalls in this permit are the BAT limits described previously for noncoal mining activities.

The following outfalls discharge to Unnamed tributaries to McKee Run and McKee Run:

Outfall Nos. 006 007 008	New Outfall (Y/N)
006	N
007	N
008	N

The proposed effluent limits for the previously listed outfalls are as follows:

Outfalls: Parameter	Minimum	30-Day Average	Daily Maximum	Instantaneous Maximum
pH^1 (S.U.)	6.0			9.0
Îron (mg/l)		3.0	6.0	7.0
Manganese (mg/l)		2.0	4.0	5.0
Total Suspended Solids (mg/l)		35.0	70.0	90.0
Alkalinity greater than acidity ¹				

¹ The parameter is applicable at all times.

The following outfalls discharge to Unnamed tributaries to McKee Run and McKee Run:

Outfall Nos.	New Outfall (Y/N)
001	N
002	N
003	N

The proposed effluent limits for the previously listed outfalls are as follows:

Outfalls: Parameter	Minimum	30-Day Average	Daily Maximum	Instantaneous Maximum
pH^1 (S.U.)	6.0			9.0
Îron (mg/l)		3.0	6.0	7.0
Manganese (mg/l)		2.0	4.0	5.0
Total Suspended Solids (mg/l)		35.0	70.0	90.0
Alkalinity greater than acidity ¹				

¹ The parameter is applicable at all times.

Pottsville District Mining Office: 5 West Laurel Boulevard, Pottsville, PA 17901-2522, (570) 621.3118.

NPDES Permit No. PA0225509 (Mining Permit No. 64142501). Robert A. Coleman, P.O. Box 3, Susquehanna, PA 18847, renewal of NPDES permit related to General Permit for Bluestone mining (GP-105) in Scott Township, Wayne County, affecting 9.6 acres. Receiving stream: unnamed tributary to Balls Creek\West Branch Delaware River Watershed classified for the following uses: HQ-CWF, MF. No discharge is proposed. Non-Discharging Best Management Practices will be in effect. Application received: May 14, 2020.

FEDERAL WATER POLLUTION CONTROL ACT SECTION 401

The following permit applications, requests for Environmental Assessment approval and requests for 401 Water Quality Certification have been received by the Department of Environmental Protection. Section 401 of the Federal Water Pollution Control Act (FWPCA) (33 U.S.C.A. § 1341), requires the State to certify that the involved projects will not violate the applicable provisions of Sections 301-303, 306 and 307 of the FWPCA (33 U.S.C.A. §§ 1311—1313, 1316 and 1317), as well as relevant State requirements. Persons objecting to approval of a request for certification under Section 401 or to the issuance of a Dam Permit or Water Obstruction and Encroachment Permit, or the approval of an Environmental Assessment must submit any comments, suggestions or objections within 30-days of the date of this notice, as well as any questions to the office noted above the application. Comments should contain the name, address and telephone number of the person commenting, identification of the certification request to which the comments or objections are addressed, and a concise statement of comments, objections or suggestions including the relevant facts upon which they are based.

The Department may conduct a fact-finding hearing or an informal conference in response to comments if deemed necessary. Each individual will be notified, in writing, of the time and place of a scheduled hearing or conference concerning the certification request to which the comment, objection or suggestion relates. Maps, drawings and other data pertinent to the certification request are available for inspection between the hours of 8:00 AM and 4:00 PM on each working day at the office noted above the application.

If you are a person with a disability and wish to attend the hearing and you require an auxiliary aid, service or other accommodation to participate in the proceedings, please contact the specified program. TDD users may contact the Department through the Pennsylvania Hamilton Relay Service at (800) 654-5984.

WATER OBSTRUCTIONS AND ENCROACHMENTS

Applications Received Under the Dam Safety and Encroachments Act (32 P.S. §§ 693.1—693.27) and Section 302 of the Flood Plain Management Act (32 P.S. § 679.302) and Requests for Certification Under Section 401 of the Federal Water Pollution Control Act (33 U.S.C.A. § 1341(a)).

Northeast Region: Waterways & Wetlands Program, 2 Public Square, Wilkes-Barre, PA 18701-1915.

Contact: Gillian Pehala, Clerk Typist 2, 570-830-3077.

E3502221-008. Lackawanna Heritage Valley Authority, 213 Railroad Avenue, Scranton, PA 18505, in Dickson City Borough, Lackawanna County, U.S. Army Corps of Engineers, Baltimore District.

To construct and maintain the following water obstructions and encroachments associated with the Lackawanna Heritage Valley Dickson City Trail Extension Project:

- 1. A stream crossing of Hull Creek (HQ-CWF, MF) consisting of an 8-ft wide, 28.5-ft span, pre-stressed concrete slab pedestrian walking bridge.
- 2. A fill within the floodway of the Lackawanna River (HQ-CWF, MF) consisting of a 20-ft long, 8-ft wide portion of an at-grade asphalt walking trail.
- 3. A fill within the floodway of the Lackawanna River (HQ-CWF, MF) consisting of a 10-ft long, 8-ft wide portion of an at-grade asphalt walking trail.

The project is located directly south of 1716 Main Street in Olyphant, approximately 300-ft southwest of the intersection of W. Lackawanna Avenue and Main Street (Olyphant, PA Quadrangle Latitude: 41° 28′ 14.2″; Longitude: -75° 36′ 25.7″) in Dickson City Borough, Lackawanna County. (Olyphant, PA Quadrangle, Latitude: 41° 28′ 14.2″; Longitude: -75° 36′ 25.7″).

Eastern Region: Oil & Gas Management Program, 208 West Third Street, Suite 101, Williamsport, PA 17701-6448.

E0829221-016: Chesapeake Appalachia, LLC, 14 Chesapeake Lane, Sayre, PA 18840-1567, Harry Bra Pad in West Burlington Township, Bradford County, ACOE Baltimore District.

This Joint Permit Application is being submitted for after-the-fact authorization of permanent wetland impacts at the Harry Bra Pad in accordance with the Consent Decree *United States, et al. v. Chesapeake Appalachia, LLC*, Civil Action No. 4:21—00538-MWB CALLC entered into with the U.S. Environmental Protection Agency and PADEP on May 20, 2021. The project is to construct, operate and maintain 0.020 acre of permanent impact to on-site wetlands. All impacts are associated with the Harry Bra Pad construction in 2009.

There are no stream and floodway impacts associated with this after-the-fact authorization. The project will result in a total of 871 SF (0.020 acre) of permanent wetland impacts.

Wetland Impact Table:

wedana imp	ventura impact rabic.								
Resource Name	Municipality Quadrangle	Activity	$Cow.\ Class$	Listed Trout	Impact Length Temp. (LF)	Impact Area Temp. (SF)	Impact Length Perm. (LF)	Impact Area Perm. (SF)	Lat. Long.
Construction W-GJM-021	West Burlington East Troy	Temporary Workspace	PEM; EV	None			82	871	41.766847° 76.699258°
			TOTAL	IMPACTS			82	871	

E082921-014: Chief Oil and Gas, LLC, 1720 Sycamore Road, Montoursville, PA 17754, Leroy Township, Bradford County, ACOE Baltimore District.

To construct, operate and maintain:

1. A permanent access road with a precast concrete box culvert with two 5' x 7' openings, and a 12-inch HDPE buried waterline impacting 96 linear feet of Little Schrader Creek (EV, MF) and 5,209 square feet of its channel/floodway, and

temporary impacting 286 square feet of Palustrine Emergent Wetland (EV) (Leroy, PA Quadrangle Latitude: 41.62944°; Longitude: -76.73139°).

The project will result in 46 linear feet (0.018 acre) of permanent stream impacts, 50 linear feet (0.017 acre) of temporary stream impacts, 3,694 square feet (0.085 acre) of floodway impacts, 286 square feet (0.007 acre) of temporary PEM wetland impacts, all for the purpose of installing a natural gas well pad, a culvert replacement and an above ground water pipeline crossing for Marcellus Shale development in Leroy Township, Bradford County.

ACTIONS

THE PENNSYLVANIA CLEAN STREAMS LAW AND THE FEDERAL CLEAN WATER ACT

FINAL ACTIONS TAKEN FOR NPDES PERMITS AND WQM PERMITS

The Department has taken the following actions on previously received applications for new, amended, and renewed NPDES and WQM permits, applications for permit waivers, and NOIs for coverage under General Permits, as listed in the following tables. This notice of final action is published in accordance with 25 Pa. Code Chapters 91, 92a, and 102 and 40 CFR Part 122, implementing provisions of The Clean Streams Law (35 P.S. §§ 691.1—691.1001) and the Federal Clean Water Act (33 U.S.C.A. §§ 1251—1376). The official file for each listed action can be reviewed at the DEP or delegated county conservation district (CCD) office identified in the table for the action. DEP/CCD office contact information is listed as follows for Section I and is contained within the table for Section II. Additional information for permits issued under 25 Pa. Code Chapters 91 and 92a, including links to Individual NPDES and WQM Permits, may be reviewed by generating the "Final Actions Report" on DEP's website at www.dep.pa.gov/CWPublicNotice.

DEP office contact information to review official files relating to the final actions in Section I is as follows:

DEP Southeast Regional Office (SERO)—2 E. Main Street, Norristown, PA 19401-4915. File Review Coordinator: 484.250.5910. Email: RA-EPNPDES_SERO@pa.gov.

DEP Northeast Regional Office (NERO)—2 Public Square, Wilkes-Barre, PA 18701-1915. File Review Coordinator: 570.826.5472. Email: RA-EPNPDES_NERO@pa.gov.

DEP Southcentral Regional Office (SCRO)—909 Elmerton Avenue, Harrisburg, PA 17110. File Review Coordinator: 717.705.4732. Email: RA-EPNPDES_SCRO@pa.gov.

DEP Northcentral Regional Office (NCRO)—208 W. Third Street, Suite 101, Williamsport, PA 17701. File Review Coordinator: 570.327.3693. Email: RA-EPNPDES_NCRO@pa.gov.

DEP Southwest Regional Office (SWRO)—400 Waterfront Drive, Pittsburgh, PA 15222. File Review Coordinator: 412.442.4286. Email: RA-EPNPDES_SWRO@pa.gov.

DEP Northwest Regional Office (NWRO)—230 Chestnut Street, Meadville, PA 16335. File Review Coordinator: 814.332.6340. Email: RA-EPNPDES_NWRO@pa.gov.

DEP Bureau of Clean Water (BCW)—400 Market Street, Harrisburg, PA 17105. File Review Coordinator: 717.787.5017. Email: RA-EPNPDES_Permits@pa.gov.

Persons aggrieved by an action may appeal that action to the Environmental Hearing Board (Board) under section 4 of the Environmental Hearing Board Act (35 P.S. § 7514) and 2 Pa.C.S. §§ 501—508 and 701—704 (relating to Administrative Agency Law). The appeal should be sent to the Environmental Hearing Board, Second Floor, Rachel Carson State Office Building, 400 Market Street, P.O. Box 8457, Harrisburg, PA 17105-8457, (717) 787-3483. TDD users may contact the Board through the Pennsylvania Hamilton Relay Service, (800) 654-5984. Appeals must be filed with the Board within 30-days of publication of this notice in the *Pennsylvania Bulletin* unless the appropriate statute provides a different time period. Copies of the appeal form and the Board's rules of practice and procedure may be obtained from the Board. The appeal form and the Board's rules of practice and procedure are also available in Braille or on audiotape from the Secretary to the Board at (717) 787-3483. This paragraph does not, in and of itself, create a right of appeal beyond that permitted by applicable statutes and decisional law.

For individuals who wish to challenge an action, the appeal must reach the Board within 30-days. A lawyer is not needed to file an appeal with the Board.

Important legal rights are at stake, however, so individuals should contact a lawyer at once. Persons who cannot afford a lawyer may qualify for free pro bono representation. Call the Secretary to the Board at (717) 787-3483 for more information.

I. Final Actions on NPDES and WQM Permit Applications and NOIs for Sewage, Industrial Waste, Industrial Stormwater, MS4s, Pesticides and CAFOs.

Action DEPApplication NumberPermit Type Taken Permittee Name & Address Municipality, County Office PAS212216 Industrial Issued Frank Casilio & Sons, Inc. Upper Nazareth **NERO** Township Stormwater 1035 Mauch Chunk Road Individual NPDES Bethlehem, PA 18018-6622 Northampton County Permit.

Application		Action			DEP
Number	Permit Type	Taken	Permittee Name & Address	Municipality, County	Office
0914821	Joint DEP/PFBC Pesticides Permit	Issued	Levitt Bill 250 South 18th Street 10th Floor Philadelphia, PA 19103	Solebury Township Bucks County	SERO
0916831	Joint DEP/PFBC Pesticides Permit	Issued	Plumstead Township Bucks County P.O. Box 387 Plumsteadville, PA 18949-0387	Buckingham Township Bucks County	SERO
PA0026085	Major Sewage Facility >= 5 MGD Individual NPDES Permit	Issued	Upper Merion Sanitary and Stormwater Authority 175 West Valley Forge Road King of Prussia, PA 19406-1851	Upper Merion Township Montgomery County	SERO
PA0026131	Major Sewage Facility >= 5 MGD Individual NPDES Permit	Issued	Upper Merion Sanitary and Stormwater Authority 175 W Valley Forge Road King of Prussia, PA 19406-1851	Upper Merion Township Montgomery County	SERO
4876412	Major Sewage Treatment Facility Individual WQM Permit	Issued	Easton Area Joint Sewer Authority Northampton County 50A S Delaware Drive Easton, PA 18042-9405	Easton City Northampton County	NERO
PA0057916	Minor Industrial Waste Facility without ELG Individual NPDES Permit	Issued	Schlumberger Tech Corp 121 Industrial Boulevard Sugar Land, TX 77478-3127	Worcester Township Montgomery County	SERO
PA0112810	Minor Sewage Facility < 0.05 MGD Individual NPDES Permit	Issued	Stone Fortress Commercial, LLC 100 E 8th Street Milton, PA 17847-1414	Riverside Borough Northumberland County	NCRO
NNOEXSC50	No Exposure Certification	Issued	TE Connectivity Corp 209 Shellyland Road Manheim, PA 17545-8681	Rapho Township Lancaster County	SCRO
NNOEXSC59	No Exposure Certification	Issued	TE Connectivity Corp 1250 E Main Street Mount Joy, PA 17552-9338	Mount Joy Borough Lancaster County	SCRO
NOEXNE037	No Exposure Certification	Issued	Homeshield/Quanex Screens 6975 Ambassador Drive Allentown, PA 18106-9213	Upper Macungie Township Lehigh County	NERO
NOEXNE039	No Exposure Certification	Issued	Werner Enterprises Inc. 14507 Frontier Road P.O. Box 45308 Omaha, NE 68138-3808	Palmer Township Northampton County	NERO
NOEXNE040	No Exposure Certification	Issued	Insulation Co. of American LLC 2571 Mitchell Avenue Allentown, PA 18103-6609	Allentown City Lehigh County	NERO
NOEXSC139	No Exposure Certification	Issued	TE Connectivity Corp 3155 State Route 72 Jonestown, PA 17038-8741	Union Township Lebanon County	SCRO
NOEXSC371	No Exposure Certification	Issued	Harmony Products Inc. 20 Church Road P.O. Box 482 Emigsville, PA 17318-2006	Manchester Township York County	SCRO
NOEXSC372	No Exposure Certification	Issued	Old Dominion Freight Line, Inc. 500 Old Dominion Way Thomasville, NC 27360-8923	Allegheny Township Blair County	SCRO

Application		Action			DEP
\overline{Number}	Permit Type	Taken	Permittee Name & Address	Municipality, County	Office
NOEXSE334	No Exposure Certification	Issued	Gelest Inc. 11 East Steel Road Morrisville, PA 19067	Falls Township Bucks County	SERO
PAG033640	PAG-03 NPDES General Permit for Industrial Stormwater	Issued	Curry Rail Service 7324 Woodbury Pike Roaring Spring, PA 16673-2258	Frankstown Township Blair County	SCRO
PAG122212	PAG-12 NPDES General Permit for CAFOs	Issued	Will O Bett Farm 137 Bomboy Lane Berwick, PA 18603-6509	Salem Township Luzerne County	SCRO
PAG123511	PAG-12 NPDES General Permit for CAFOs	Issued	Goss Timothy R 123 Decatur Road McClure, PA 17841	Decatur Township Mifflin County	SCRO
PAG123530	PAG-12 NPDES General Permit for CAFOs	Issued	Joseph Burkholder & Son 1440 Division Highway Ephrata, PA 17522-8832	Ephrata Township Lancaster County	SCRO
PAG123562	PAG-12 NPDES General Permit for CAFOs	Issued	Sauder Noah Jr 401 Elco Drive Myerstown, PA 17067-2610	Jackson Township Lebanon County	SCRO
PAG123610	PAG-12 NPDES General Permit for CAFOs	Issued	Hege Michael J 11437 Gehr Road Waynesboro, PA 17268-9239	Washington Township Franklin County	SCRO
PAG123629	PAG-12 NPDES General Permit for CAFOs	Issued	King Farms LLC 338 2B Newport Road Ronks, PA 17572	Tulpehocken Township Berks County	SCRO
PAG123647	PAG-12 NPDES General Permit for CAFOs	Issued	Joe Jurgielewicz & Son, Ltd P.O. Box 257 Shartlesville, PA 19554-0257	Tilden Township Berks County	SCRO
PAG123652	PAG-12 NPDES General Permit for CAFOs	Issued	Pheasant Run Farms 48 Rehrersburg Road Richland, PA 17087	Tulpehocken Township Berks County	SCRO
PAG123719	PAG-12 NPDES General Permit for CAFOs	Issued	Sensenig Lamar 114 Huckleberry Road Jonestown, PA 17038	Union Township Lebanon County	SCRO
PAG123801	PAG-12 NPDES General Permit for CAFOs	Issued	North Mountain Gobbler 8310 Fort McCord Road Chambersburg, PA 17202	Hamilton Township Franklin County	SCRO
PAG123818	PAG-12 NPDES General Permit for CAFOs	Issued	Parx Casino & Racing 3001 Street Road Bensalem, PA 19020-2006	Bensalem Township Bucks County	SCRO
PAG123838	PAG-12 NPDES General Permit for CAFOs	Issued	Hillandale Gettysburg, LP 3910 Oxford Road Gettysburg, PA 17325	Reading Township Adams County	SCRO
PAG123870	PAG-12 NPDES General Permit for CAFOs	Issued	Peachey Marlin J 328 Coffee Run Road Reedsville, PA 17084-9319	Brown Township Mifflin County	SCRO
PAG123926	PAG-12 NPDES General Permit for CAFOs	Issued	Moyer Llewellyn J 650 Christmas Village Road Bernville, PA 19506-8809	Jefferson Township Berks County	SCRO
PAG124840	PAG-12 NPDES General Permit for CAFOs	Issued	Country View Family Farms, LLC 1301 Fulling Mill Road Suite 3000 Middletown, PA 17057-5990	Beaver Township Snyder County	SCRO
PAG124846	PAG-12 NPDES General Permit for CAFOs	Issued	Country View Family Farms, LLC 1301 Fulling Mill Road Suite 3000 Middletown, PA 17057-5990	Sullivan Township Tioga County	SCRO

Application Number	Permit Type	Action Taken	Permittee Name & Address	Municipality, County	DEP Office
0421406	Pump Stations Individual WQM Permit	Issued	Midland Borough Municipal Authority Beaver County 946 Railroad Avenue Midland, PA 15059-1521	Midland Borough Beaver County	SWRO
4821401	Pump Stations Individual WQM Permit	Issued	Easton City Northampton County 50 South Delaware Drive Easton, PA 18042	Easton City Northampton County	NERO
2500404	Sewage Treatment Facilities Individual WQM Permit	Issued	Sandra & William Thornton 14110 Route 226 Albion, PA 16401-7804	Conneaut Township Erie County	NWRO
2521417	Sewage Treatment Facilities Individual WQM Permit	Issued	Danielson Kim 9330 Dewey Road Waterford, PA 16441-2414	Greene Township Erie County	NWRO
2521423	Sewage Treatment Facilities Individual WQM Permit	Issued	Deborah & Richard Moran 5975 Buman Road McKean, PA 16426-1049	McKean Township Erie County	NWRO
2721403	Sewage Treatment Facilities Individual WQM Permit	Issued	Pink Cottage LLC 5019 Morrowick Road Charlotte, NC 28226-7366	Harmony Township Forest County	NWRO
4985407	Sewage Treatment Facilities Individual WQM Permit	Issued	Stone Fortress Commercial LLC 100 E 8th Street Milton, PA 17847-1414	Riverside Borough Northumberland County	NCRO
0692402	Sewer Extensions and Pump Stations Individual WQM Permit	Issued	PA American Water Co. 852 Wesley Drive Mechanicsburg, PA 17055	Exeter Township Berks County	SCRO
1521403	Sewer Extensions and Pump Stations Individual WQM Permit	Issued	Herr Foods Inc. 20 Herr Drive P.O. Box 300 Nottingham, PA 19362-9740	West Nottingham Township Chester County	SERO
6321402	Sewer Extensions and Pump Stations Individual WQM Permit	Issued	Mid Mon Valley Water Pollution Control Authority P.O. Box 197 1 Anderson Street Allenport, PA 15412-0197	Allenport Borough Washington County	SWRO
6321403	Sewer Extensions and Pump Stations Individual WQM Permit	Issued	Mid Mon Valley Water Pollution Control Authority P.O. Box 197 1 Anderson Street Allenport, PA 15412-0197	Allenport Borough Washington County	SWRO
6321404	Sewer Extensions and Pump Stations Individual WQM Permit	Issued	Mid Mon Valley Water Pollution Control Authority P.O. Box 197 1 Anderson Street Allenport, PA 15412-0197	Allenport Borough Washington County	SWRO
PA0252778	Single Residence STP Individual NPDES Permit	Issued	Jenneice L & Thomas W Haddon 5821 Somerset Pike Boswell, PA 15531-1805	Jenner Township Somerset County	SWRO
PA0289612	Single Residence STP Individual NPDES Permit	Issued	Danielson Kim 9330 Dewey Road Waterford, PA 16441-2414	Greene Township Erie County	NWRO

Application Number	Permit Type	Action Taken	Permittee Name & Address	Municipality, County	DEP Office
PA0289787	Single Residence STP Individual NPDES Permit	Issued	Pink Cottage LLC 5019 Morrowick Road Charlotte, NC 28226-7366	Harmony Township Forest County	NWRO
PA0289809	Single Residence STP Individual NPDES Permit	Issued	Deborah & Richard Moran 5975 Buman Road McKean, PA 16426-1049	McKean Township Erie County	NWRO
PA0289876	Single Residence STP Individual NPDES Permit	Issued	Sandra & William Thornton 14110 Route 226 Albion, PA 16401-7804	Conneaut Township Erie County	NWRO
0721405	Single Residence Sewage Treatment Plant Individual WQM Permit	Issued	Beiswenger Trevor 3794 Kettle Road Altoona, PA 16601-8522	Tyrone Township Blair County	SCRO
5604406	Single Residence Sewage Treatment Plant Individual WQM Permit	Issued	Jenneice L & Thomas W Haddon 5821 Somerset Pike Boswell, PA 15531-1805	Jenner Township Somerset County	SWRO
PA0052451	Small Flow Treatment Facility Individual NPDES Permit	Issued	Landenberg Village LLC 104 Landenberg Road Suite 3 Landenberg, PA 19350	New Garden Township Chester County	SERO
WQG02632101	WQG-02 WQM General Permit	Issued	Union Township Washington County 1 N State Street Clairton, PA 15025-2172	Clairton City Allegheny County	SWRO

II. Final Actions on PAG-02 General NPDES Permit NOIs and Individual NPDES Permit Applications for Construction Stormwater.

Permit Number	Permit Type	Action Taken	Applicant Name & Address	Municipality, County	Office
PAC230152 A-1	PAG-02 General Permit	Issued	Brookhaven Storage LLC 209 West Street Suite 201 Annapolis, MD 21401	Brookhaven Borough Delaware County	SERO
PAC510188	PAG-02 General Permit	Issued	Chestnut Hill College 9601 Germantown Avenue Philadelphia, PA 19118	City of Philadelphia Philadelphia County	SERO
PAD510069	Individual NPDES	Issued	300 Columbus LLC One Bryant Park New York, NY 10036-6744	City of Philadelphia Philadelphia County	SERO
PAD150025	Individual NPDES	Issued	Chester County Fund, Inc./ Redgo Development 600 Willowbrook Lane Suite 603 West Chester, PA 19382	East Whiteland Township Chester County	SERO
PAD150239	Individual NPDES	Issued	Thomas Sean & Michelle O'Donnell 3362 Conestoga Road Glenmoore, PA 19343	East Nantmeal Township Chester County	SERO
PAD150121 A-1	Individual NPDES	Issued	Jim Lim Ann Lim 1294 Farm Lane Berwyn, PA 19312	Willistown Township Chester County	SERO

Permit		Action			
Number PAD510044	Permit Type Individual NPDES	Taken Issued	Applicant Name & Address Susquehanna Net Zero Housing, LP 1707 North Charles Street Suite 200A Baltimore, MD 21201	Municipality, County City of Philadelphia Philadelphia County	Office SERO
PAD460056	Individual NPDES	Issued	Magazzi, LLC & Gitonia, LLC P.O. Box 736 Ambler, PA 19034	Whitpain Township Montgomery County	SERO
PAD510060	Individual NPDES	Issued	Richmond Square Associates 1218 Green Street Philadelphia, PA 19123	City of Philadelphia Philadelphia County	SERO
PAD510202	Individual NPDES	Issued	Philadelphia Parks and Recreation 1515 Arch Street 11th Floor Philadelphia, PA 19102	City of Philadelphia Philadelphia County	SERO
PAD150232	Individual NPDES	Issued	Gary Fraze, Landowner 818 North Country Club Drive Newark, DE 19711	Franklin Township and New London Township Chester County	SERO
PAD150013	Individual NPDES	Renewal	Kenneth Graham, Owner 612 Pughtown Road Spring City, PA 19475	East Nantmeal Township Chester County	
PAD45018	Individual NPDES	Issued	Scott H and Scott Alex Slater 1219 Spruce Road Saylorsburg, PA 18353	Ross Township Monroe County	NERO
PAC520007	PAG-02 General Permit	Issued	Valley View Manor at Wantage, Inc. Attn: John Maione, Jr. 7 Boulder Hills Blvd. Wantage, NJ 07461-5467	Westfall Township Pike County	Pike County Conservation District 556 Route 402 Suite 1 Hawley, PA 18428 570-226-8220
PAC480122	PAG-02 General Permit	Issued	Dominic Villani 555 Ashwood Drive Nazareth, PA 18064	Nazareth Borough Northampton County	Northampton County Conservation District 14 Gracedale Avenue Greystone Building Nazareth, PA 18064-9211 610-829-6276
PAD450122	Individual NPDES	Issued	TKL Properties 7355 Interchange Road Lehighton, PA 18235	Ross Township Monroe County	NERO
PAC400193A-1	PAG-02 General Permit	Issued	Susquehanna Data LLC Dustin Wertheimer 600 Hamilton Street Allentown, PA 18101	Salem Township Luzerne County	Luzerne Conservation District 325 Smiths Pond Road Shavertown, PA 18708 570-674-7991
PAC280257	PAG-02 General Permit	Issued	WashCo Keystone Crossing, LLC 1741 Dual Highway Suite B Hagerstown, MD 21740-6626	Antrim Township Franklin County	Franklin County Conservation District 185 Franklin Farm Lane Chambersburg, PA 17202 717.264.5499

Permit		Action			0.00
Number PAC280268	Permit Type PAG-02 General Permit	Taken Issued	Applicant Name & Address Rodney and Lori Bumbaugh 575 Nicklas Drive Fayetteville, PA 17222-9561	Municipality, County Greene Township Franklin County	Office Franklin County Conservation District 185 Franklin Farm Lane Chambersburg, PA 17202 717.264.5499
PAC280246	PAG-02 General Permit	Issued	Hissong Custom Services, LLC 8740 Hissong Road Mercersburg, PA 17236-9521	Montgomery Township Franklin County	Franklin County Conservation District 185 Franklin Farm Lane Chambersburg, PA 17202 717.264.5499
PAC280250	PAG-02 General Permit	Issued	Guarriello LP 373 Craig Road Greencastle, PA 17225-9790	Borough of Chambersburg Franklin County	Franklin County Conservation District 185 Franklin Farm Lane Chambersburg, PA 17202 717.264.5499
PAC280256	PAG-02 General Permit	Issued	K&K Manufacturing 1673 Wind Flower Road Chambersburg, PA 17202-7263	Hamilton Township Franklin County	Franklin County Conservation District 185 Franklin Farm Lane Chambersburg, PA 17202 717.264.5499
PAC280059 A-2	PAG-02 General Permit	Issued	David Thomas Forsgate Drive CN 4000 Cranbury, NJ 08512-3506	Southampton Township Franklin County	Franklin County Conservation District 185 Franklin Farm Lane Chambersburg, PA 17202 717.264.5499
PAC280083	PAG-02 General Permit	Issued	RCI Investment Holdings, Inc 1174 Sollenberger Road Chambersburg, PA 17202-8634	Greene Township Franklin County	Franklin County Conservation District 185 Franklin Farm Lane Chambersburg, PA 17202 717.264.5499
PAC280266	PAG-02 General Permit	Issued	Columbia Gas of PA 1600 Colony Road York, PA 17408-4357	Montgomery Township Franklin County	Franklin County Conservation District 185 Franklin Farm Lane Chambersburg, PA 17202 717.264.5499
PAC280245	PAG-02 General Permit	Issued	Patriot Federal Credit Union P.O. Box 778 Chambersburg, PA 17201-0778	Borough of Shippensburg Franklin County	Franklin County Conservation District 185 Franklin Farm Lane Chambersburg, PA 17202 717.264.5499
PAC360590 A-1	PAG-02 General Permit	Issued	Dr. Michael Delpiore 1730 Hans Herr Drive Willow Street, PA 17584	Mount Joy Borough Mount Joy Borough Lancaster County	Lancaster County Conservation District 1383 Arcadia Road Room 200 Lancaster, PA 17601-3149 717.299.5361, ext. 5

Permit	D '/ //	Action	A 1' (NT O A 1 I	M	O.C.
Number PAC360614 A-1	Permit Type PAG-02 General Permit	Taken Issued	Applicant Name & Address Daniel Stoltzfus 244 Sproul Road Kirkwood, PA 17536	Municipality, County Colerain Township Lancaster County	Office Lancaster County Conservation District 1383 Arcadia Road Room 200 Lancaster, PA 17601-3149 717.299.5361, ext. 5
PAC360296 A-1	PAG-02 General Permit	Issued	Mount Joy Investors, LLC 14 Balligomingo Road Conshohocken, PA 19428	Rapho Township Lancaster County	Lancaster County Conservation District 1383 Arcadia Road Room 200 Lancaster, PA 17601-3149 717.299.5361, ext. 5
PAC360634	PAG-02 General Permit	Issued	Carolyn Hildebrand P.O. Box 156 B West Main Street Reinholds, PA 17569	West Cocalico Township Lancaster County	Lancaster County Conservation District 1383 Arcadia Road Room 200 Lancaster, PA 17601-3149 717.299.5361, ext. 5
PAC360009 A-1	PAG-02 General Permit	Issued	Robert Kettering 3121A Mount Joy Road Mount Joy, PA 17552	Mount Joy Township Lancaster County	Lancaster County Conservation District 1383 Arcadia Road Room 200 Lancaster, PA 17601-3149 717.299.5361, ext. 5
PAC360654	PAG-02 General Permit	Issued	James and Sharon Nardo P.O. Box 442 Hershey, PA 17033	West Donegal Township Lancaster County	Lancaster County Conservation District 1383 Arcadia Road Room 200 Lancaster, PA 17601-3149 717.299.5361, ext. 5
PAC670494	PAG-02 General Permit	Issued	NP Briarwood, LLC 4825 NW 41st Street Suite 500 Riverside, MO 64150	Jackson Township York County	York County Conservation District 2401 Pleasant Valley Road Suite 101 Room 139 York, PA 17402 717.840.7430
PAC170048-1 Major Amend	PAG-02 GP	Issued	City of DuBois 98 Guy Avenue DuBois, PA 15801	Sandy Township City of DuBois Clearfield County	Clearfield County Conservation District 6395 Clearfield- Woodland Highway Suite 2 Clearfield, PA 16830-1923
PAC550055	PAG-02 GP	Issued	National Beef Packing Company 1811 North Old Trail Selinsgrove, PA 17870	Monroe Township Snyder County	Snyder County Conservation District 10541 Route 522 Middleburg, PA 17842-7840
PAC550058	PAG-02 GP	Issued	RMW Rentals, LLC Lisa Weikel 10 Fox Avenue Selinsgrove, PA 17870	Penn Township Snyder County	Snyder County Conservation District 10541 Route 522 Middleburg, PA 17842-7840

Permit Action Number Permit Type Taken

PAC600073 PAG-02 GP Issued

Applicant Name & Address

Emily Purinton 1429 Furnace Road Lewisburg, PA 17837 Municipality, County Office

East Buffalo Union County
Township Conservation District
Union County 155 N 15th Street

Lewisburg, PA 17837-8822

STATE CONSERVATION COMMISSION NUTRIENT MANAGEMENT PLANS RELATED TO APPLICATIONS FOR NPDES PERMITS FOR CAFOs

The State Conservation Commission has taken the following actions on previously received applications for nutrient management plans under 3 Pa.C.S. Chapter 5, for agricultural operations that have or anticipate submitting applications for new, amended or renewed NPDES permits or NOIs for coverage under a general permit for CAFOs under 25 Pa. Code Chapter 92a. This notice is provided in accordance with 25 Pa. Code Chapter 92a and 40 CFR Part 122, implementing The Clean Streams Law and the Federal Clean Water Act.

Persons aggrieved by an action may appeal under 3 Pa.C.S. § 517, section 4 of the Environmental Hearing Board Act and 2 Pa.C.S. §§ 501—508 and 701—704 to the Environmental Hearing Board, Second Floor, Rachel Carson State Office Building, 400 Market Street, P.O. Box 8457, Harrisburg, PA 17105-8457, (717) 787-3483. TDD users should contact the Environmental Hearing Board (Board) through the Pennsylvania Hamilton Relay Service at (800) 654-5984. Appeals must be filed with the Board within 30-days of publication of this notice in the *Pennsylvania Bulletin*. Copies of the appeal form and the Board's rules of practice and procedure may be obtained from the Board. The appeal form and the Board's rules of practice and procedure are also available in Braille or on audiotape from the Secretary of the Board at (717) 787-3483. This paragraph does not, in and of itself, create a right of appeal beyond that permitted by applicable statutes and decision law.

For individuals who wish to challenge actions, appeals must reach the Board within 30-days. A lawyer is not needed to file an appeal with the Board.

Important legal rights are at stake, however, so individuals should show this notice to a lawyer at once. Persons who cannot afford a lawyer may qualify for pro bono representation. Call the Secretary of the Board at (717) 787-3483 for more information.

NUTRIENT MANAGEMENT PLAN CAFO PUBLIC NOTICE SPREADSHEET—ACTIONS

					Special Protection	
Agricultural Operation Name and Address	County	$egin{array}{l} Total \ Acres \end{array}$	AEU's	Animal Type	Waters (HQ or EV or NA)	Approved or Disapproved
Lane Farms 1982 Harrison Fox Hill Road Harrison Valley, PA 16927	Potter	856	1.35	Swine, Beef	None	Approved
Hoffman Family Farms 243 Healy Road Shinglehouse, PA 16748	Potter	1589.2	1.14	Dairy	HQ	Approved
Keith Heimbach Farm 129 Don Packard Road Granville Summit, PA 16926	Bradford	318.9	670.94	Swine	NA (CWF)	Approval
Yippee! Farms 880 Pinkerton Road Mount Joy, PA 17752	Lancaster	693.3	1462.5	Dairy	NA	Approved
Franklin View Farms, LLC 1700 Prospect Road Washington Boro, PA 17582	Lancaster	610	1759.88	Dairy	NA	Approved
DL Rohrer Farms, LLC 1728 Bridge Road Lancaster, PA 17602	Lancaster	783.7	580.9	Layer	NA	Approved
Wanner's Pride- Joy Farm, LLC 5800 Wanner Road Narvon, PA 17555	Lancaster	771.4	1775.5	Dairy	HQ	Approved
Cedar Grove Farm Michael Wilt 1408 Pointer Road Everett, PA 15537	Bedford	676.4	1580.71	Swine Finishing	None	Approved

PUBLIC WATER SUPPLY PERMITS

The Department has taken the following actions on applications received under the Pennsylvania Safe Drinking Water Act (35 P.S. §§ 721.1—721.17) for the construction, substantial modification or operation of a public water system.

Persons aggrieved by an action may appeal that action to the Environmental Hearing Board (Board) under section 4 of the Environmental Hearing Board Act and 2 Pa.C.S. §§ 501—508 and 701—704. The appeal should be sent to the Environmental Hearing Board, Second Floor, Rachel Carson State Office Building, 400 Market Street, P.O. Box 8457, Harrisburg, PA 17105-8457, (717) 787-3483. TDD users may contact the Board through the Pennsylvania Hamilton Relay Service, (800) 654-5984. Appeals must be filed with the Board within 30 days of publication of this notice in the Pennsylvania Bulletin unless the appropriate statute provides a different time period. Copies of the appeal form and the Board's rules of practice and procedure may be obtained from the Board. The appeal form and the Board's rules of practice and procedure are also available in Braille or on audiotape from the Secretary to the Board at (717) 787-3483. This paragraph does not, in and of itself, create a right of appeal beyond that permitted by applicable statutes and decisional law.

For individuals who wish to challenge an action, the appeal must reach the Board within 30-days. A lawyer is not needed to file an appeal with the Board.

Important legal rights are at stake, however, so individuals should show this document to a lawyer at once. Persons who cannot afford a lawyer may qualify for free pro bono representation. Call the Secretary to the Board at (717) 787-3483 for more information.

SAFE DRINKING WATER

Actions taken under the Pennsylvania Safe Drinking Water Act (35 P.S. §§ 721.1—721.17).

Southcentral Region: Safe Drinking Water Program, 909 Elmerton Avenue, Harrisburg, PA 17110.

Permit No. 2221501, Public Water Supply.

Applicant	Susquehanna Regional Airport Authority
Municipality	Lower Swatara Township
County	Dauphin
Responsible Official	Timothy Edwards Director of Aviation One Terminal Drive Suite 300 Middletown, PA 17057-5048
Type of Facility	Installation of a treatment system for the treatment of PFCs utilizing granular activated carbon and the removal of the existing air stripping towers.
Consulting Engineer	Max E. Stoner, P.E. Glace Associates, Inc. 3705 Trindle Rd Camp Hill, PA 17011

October 28, 2021

Permit to Construct

Issued

Permit No. 0621524 MA, Minor Amendment, Public

Water Supply.

Applicant **Perry Township Municipal Authority**

Municipality Perry Township

County **Berks**

Responsible Official Donald Mast

Chairman P.O. Box 308

Shoemakersville, PA 19555

Type of Facility Installation of backflow

prevention device into the existing interconnection meter pit with Shoemakersville.

Daniel S. Hershey, P.E. Consulting Engineer

Hershey Engineering, Inc. 703 Woodcrest Avenue

Lititz, PA 17543 November 2, 2021

Permit to Construct

Issued

Permit No. 0621534 MA, Minor Amendment, Public

Water Supply.

Applicant Pennsylvania American

Water Company

Municipality Exeter Township

Berks County Responsible Official

Bruce Aiton Vice President—Engineering

852 Wesley Park Drive Mechanicsburg, PA 17055

Type of Facility Well No. 8 pump replacement

Consulting Engineer Craig B. Dorash, P.E. Pennsylvania-American

Water Company

800 West Hershey Park Drive

Hershey, PA 17033 November 2, 2021

Permit to Construct

Issued

Permit No. 0621529 MA, Minor Amendment, Public Water Supply.

Pennsylvania American

Applicant

Water Company Municipality Amity Township

County **Berks**

Responsible Official Bruce Aiton

Vice President—Engineering 852 Wesley Park Drive Mechanicsburg, PA 17055

Type of Facility Well No. DG 12 pump

replacement

Consulting Engineer Craig B. Dorash, P.E.

Pennsylvania-American

Water Company

800 West Hershey Park Drive

Hershey, PA 17033

Permit to Construct

Issued

October 28, 2021

PENNSYLVANIA BULLETIN, VOL. 51, NO. 47, NOVEMBER 20, 2021

Permit No. 3061291, Public Water Supply.

Applicant City of Reading

Municipality Reading County Berks

Responsible Official Cindy Castner

815 Washington Street Reading, PA 19601

Type of Facility Noncommunity water supply

approval to construct

Consulting Engineer Jamie Lorah, P.E.

Spotts Stevens & McCoy 1047 North Park Road Reading, PA 19610

Permit to Construct

Issued

November 4, 2021

Permit No. 3061290, Public Water Supply.

Applicant City of Reading

Municipality Reading
County Berks

Responsible Official Cindy Castner

815 Washington Street Reading, PA 19601

Type of Facility Noncommunity water supply

approval to construct

Consulting Engineer Jamie Lorah, P.E.

Spotts Stevens & McCoy 1047 North Park Road Reading, PA 19610

Permit to Construct

Issued

November 4, 2021

Operation Permit No. 0616512 issued to: Reading Area Water Authority (PWS ID No. 3060059), Ontelaunee Township, Berks County on November 3, 2021 for facilities approved under Construction Permit No. 0616512.

Operation Permit No. 2119518 MA issued to: Pennsylvania-American Water Company (PWS ID No. 7210029), Silver Spring Township, Cumberland County on November 3, 2021 for facilities approved under Construction Permit No. 2119518 MA.

Operation Permit No. 3620544 issued to: Conestoga Valley School District (PWS ID No. 7360974), East Lampeter Township, Lancaster County on October 5, 2021 for facilities approved under Construction Permit No. 3620544.

Operation Permit No. 2221516 MA issued to: Borough of Middletown (PWS ID No. 7220038), Middletown Borough, Dauphin County on October 26, 2021 for facilities approved under Construction Permit No. 2221516 MA.

Operation Permit No. 2221517 MA issued to: Borough of Middletown (PWS ID No. 7220038), Middletown Borough, Dauphin County on October 26, 2021 for facilities approved under Construction Permit No. 2221517 MA.

Operation Permit No. 2221518 MA issued to: Borough of Middletown (PWS ID No. 7220038), Middletown Borough, Dauphin County on October 26, 2021 for facilities approved under Construction Permit No. 2221518 MA.

Operation Permit No. 0121509 MA issued to: Aqua Pennsylvania, Inc. (PWS ID No. 7010057), Mt. Joy Township, Adams County on November 2, 2021 for facilities at Link at Gettysburg approved under Construction Permit No. 0121509 MA.

Operation Permit No. 2221519 MA issued to: Pennsylvania American Water Company (PWS ID No. 7220036), Steelton Borough, Dauphin County on November 2, 2021 for facilities at Steelton Borough Water System approved under Construction Permit No. 2221519 MA

Operation Permit No. 0121510 MA issued to: Gettysburg Municipal Authority (PWS ID No. 7010019), Cumberland Township, Adams County on November 3, 2021 for facilities submitted under Application No. 0121510 MA.

Transferred Comprehensive Operation Permit No. 4440010 issued to: Mifflin County Municipal Authority (PWS ID No. 4440010), Lewistown Borough, Mifflin County on September 16, 2021. Action is for a Change in Name for the operation of facilities previously issued to Municipal Authority of the Borough of Lewistown.

Operation Permit No. 2121508 MA issued to: Aqua Pennsylvania, Inc. (PWS ID No. 7210048), Monroe Township, Cumberland County on October 28, 2021 for facilities at White Rock Acres Water System approved under Construction Permit No. 2121508 MA.

Operation Permit No. 3821504 MA issued to: Fredericksburg Sewer & Water Authority (PWS ID No. 7380035), Bethel Township, Lebanon County on October 18, 2021 for facilities approved under Construction Permit No. 3821504 MA.

Operation Permit No. 3121502 MA issued to: Mapleton Municipal Water Authority (PWS ID No. 4310015), Union Township, Huntingdon County on November 4, 2021 for facilities approved under Construction Permit No. 3121502 MA.

Operation Permit No. 5021506 MA issued to: Countryside Mobile Home Park (PWS ID No. 7500034), Carroll Township, Perry County on November 8, 2021 for facilities approved under Construction Permit No. 5021506 MA.

Source Water Protection Program Approval issued to: Mount Union Municipal Authority, 9 West Market Street, Mt. Union, PA 17066, PWSID 4310016, Mount Union Borough, Huntingdon County on October 21, 2021

Northcentral Region: Safe Drinking Water Program, 208 West Third Street, Williamsport, PA 17701.

Operations Permit issued to: Pennsylvania-American Water Company—Boggs Water System, 852 Wesley Drive, Mechanicsburg, PA 17055, PWSID No. 4140101, Boggs Township, Centre County on November 8, 2021 for the operation of facilities approved under construction permit # 1421508MA. This permit authorizes the water system to operate the new Well 2 pump, which is a new 50 gpm submersible pump, Goulds 65L10 with 10 stages and a 10 horsepower motor.

SEWAGE FACILITIES ACT PLAN APPROVAL

Plan Approvals Granted Under the Pennsylvania Sewage Facilities Act, Act of January 24, 1966, P.L. 1535, as amended, 35 P.S. § 750.5.

Southcentral Region: Clean Water Program, 909 Elmerton Avenue, Harrisburg, PA 17110.

Plan Location:

TownshipTownship AddressCountyMount Joy8853 Elizabethtown RoadLancasterTownshipElizabethtown, PA 17022County

Plan Description:

Approval of a revision to the official plan of Mount Joy Township, Lancaster County has been issued. This action is a result of the review of a planning module for the **Raffensperger Subdivision** (DEP Code No. B3-36942-385-3; APS ID No. 1035593). The proposed development—to be located along Sheaffer Road near its intersection with South Market Street in Elizabethtown—consists of 88 residential lots using a low-pressure sewer system that will be dedicated to Elizabethtown Regional Sewer Authority. The Department's review of the plan revision has not identified any significant impacts resulting from this proposal. Any permits must be obtained in the name of Elizabethtown Regional Sewer Authority.

Plan Location:

TownshipTownship AddressCountySpringettsbury1501 Mount Zion RoadYorkTownshipYork, PA 17402County

Plan Description:

Approval of a revision to the official plan of Springettsbury Township, York County. The project is known as the Haralambos & Colleen Kocoronis Small Flow Treatment Facility (SFTF) proposal. The plan provides for a SFTF to replace a malfunctioning on-lot sewage disposal system serving an existing single-family residential dwelling on 4.39 acres with total estimated sewage flows of 400 gpd. There will be a proposed stream discharge to an unnamed tributary of Kreutz Creek. The proposed development is located at 504 Stonewood Road in Springettsbury Township, York County. The Department's review of the plan revision has not identified any significant impacts resulting from this proposal. The DEP Code Number for this planning module is A3-67957-461-3s and the APS Id is 1042352. Any permits must be obtained in the name of the property owner.

SEWAGE FACILITIES ACT PLAN DISAPPROVAL

Plan Disapprovals Granted Under the Pennsylvania Sewage Facilities Act, Act of January 24, 1966, P.L. 1535, as amended, 35 P.S. § 750.5.

Southcentral Region: Clean Water Program, 909 Elmerton Avenue, Harrisburg, PA 17110.

Plan Location:

TownshipTownship AddressCountyBethel60 Klahr RoadBerksTownshipBethel, PA 19507County

Plan Description:

The exemption from the requirement to revise the Official Plan for the **Daub Road Lot B Development**, DEP Code No. A3-06922-299-2E, APS Id 1051078, consisting of one new firehouse using an on-lot sewage disposal system, is disapproved. The proposed development is located on Daub Road. This proposal is disapproved because the submission does not qualify as an exemption from the requirement to revise the Official Plan. It does not qualify because the project proposes the use of on-lot sewage disposal systems in an area within 1/4 mile of water supplies documented to exceed 5 PPM nitrate-nitrogen as per Chapter 71, Section 71.51(b)(1)(ii).

LAND RECYCLING AND ENVIRONMENTAL REMEDIATION

UNDER ACT 2, 1995 PREAMBLE 2

The following plans and reports were submitted under the Land Recycling and Environmental Remediation Standards Act (35 P.S. §§ 6026.101—6026.908).

Provisions of Sections 301-308 of the Land Recycling and Environmental Remediation Standards Act (act) (35 P.S. §§ 6026.301—6026.308) require the Department to publish in the Pennsylvania Bulletin a notice of submission of plans and reports. A final report is submitted to document cleanup of a release of a regulated substance at a site to one of the act's remediation standards. A final report provides a description of the site investigation to characterize the nature and extent of contaminants in environmental media, the basis for selecting the environmental media of concern, documentation supporting the selection of residential or nonresidential exposure factors, a description of the remediation performed and summaries of sampling analytical results which demonstrate that remediation has attained the cleanup standard selected. Submission of plans and reports, other than the final report, will also be published in the Pennsylvania Bulletin. These include the remedial investigation report, risk assessment report and cleanup plan for a site-specific standard remediation. A remedial investigation report includes conclusions from the site investigation; concentration of regulated substances in environmental media; benefits of reuse of the property; and, in some circumstances, a fate and transport analysis. If required, a risk assessment report describes potential adverse effects caused by the presence of regulated substances. If required, a cleanup plan evaluates the abilities of potential remedies to achieve remedy require-

For further information concerning plans or reports, contact the environmental cleanup program manager in the Department Regional Office under which the notice of receipt of plans or reports appears. If information concerning plans or reports is required in an alternative form, contact the community relations coordinator at the appropriate Regional Office. TDD users may telephone the Department through the Pennsylvania Hamilton Relay Service at (800) 654-5984.

The Department has received the following plans and reports:

Northeast Region: Environmental Cleanup & Brownfields Program, 2 Public Square, Wilkes-Barre, PA 18701-1915, 570-826-2511.

Contact: Eric Supey, Environmental Program Manager.

Henry's Service Station, 4024 Mountain View Drive, Danielsville, PA 18038, Lehigh Township, Northampton County. JMT Industrial & Environmental Contracting Services, 710 Uhler Road, Easton, PA 18040, on behalf of Preston Henry, 4024 Mountain View Drive, Danielsville, PA 18038, submitted a second revised Final Report concerning remediation of soil contaminated by gasoline from a tanker truck. The report is intended to document remediation of the site to meet Statewide health standards.

Southcentral Region: Environmental Cleanup & Brownfields Program, 909 Elmerton Avenue, Harrisburg, PA 17110.

Clean Enterprises, 315 West State Street, Quarryville, PA 17566, Quarryville Borough, Lancaster County. Reliance Environmental, Inc., 235 North Duke Street, Lancaster, PA 17602, on behalf of GEN 2 3, LLC, 315 West State Street, Quarryville, PA 17566, and Stoner-Wade Ford, Inc., 415 West Fourth Street, Quarryville, PA 17566, submitted a Final Report concerning remediation of site soil and groundwater contaminated from historical dry cleaning operations (PERC and PCE). The Final Report is intended to document remediation of the site to meet the site-specific standard.

Pennsy Supply, Inc., Hummelstown Quarry, 201 Pennsy Supply Road, Hummelstown, PA 17036, South Hanover Township, Dauphin County. Reliance Environmental, Inc., 235 North Duke Street, Harrisburg, PA 17602, on behalf of Pennsy Supply, Inc., 2400 Thea Drive, Suite 3A, Harrisburg, PA 17110, submitted a Final Report concerning remediation of site soils contaminated with used oils and lubricating oil. The Final Report is intended to document remediation of the site to meet the residential Statewide health standard.

L.B. Fencing, 305 Good Road, East Earl, PA 17516, Brecknock Township, **Lancaster County**. Reliance Environmental, Inc., 235 North Duke Street, Lancaster, PA 17602, on behalf of L.B. Fencing, 305 Good Road, East Earl, PA 17519, submitted a Final Report concerning remediation of site soil contaminated with diesel fuel. The Final Report is intended to document remediation of the site to meet the residential Statewide health standard.

Northcentral Region: Environmental Cleanup & Brownfields Program, 208 West Third Street, Williamsport, PA 17701.

Transcontinental Gas Pipe Line Co., LLC Hydraulic Release Site, Transco Right of Way located in Sproul State Forest, Renovo, PA 17764, Leidy Township, Clinton County. Groundwater & Environmental Services, Inc., 440 Creamery Way, Suite 500, Exton, PA 19341, on behalf of Transcontinental Gas Pipe Line Company, LLC, 2000 Commerce Drive, Pittsburgh, PA 15275, has submitted a Final Report concerning remediation of site soil contaminated with hydraulic oil. The report is intended to document remediation of the site to meet the Statewide health standard.

Former Myers Property, 2447 State Route 44, Allenwood, PA 17810, Gregg Township, Union County. Gary C. Calvert, LLC, P.O. Box 504, Hollidaysburg, PA 16648, on behalf of Myers Property Estate/Trust, 581 Fredrick Drive, Watsontown, PA 17777, has submitted a Final Report concerning remediation of site soil contaminated with heating oil. The report is intended to document remediation of the site to meet the Statewide health standard.

W.L. Myers & Son, LLC Used Motor Oil Release, 197 Bald Top Road, Danville, PA 17821, Mahoning Township, Montour County. EnviroServe, Inc., 254 Reitz Avenue, Winfield, PA 17889, on behalf of W.L. Myers & Son, LLC, 197 Bald Top Road, Danville, PA 17821, has submitted a Final Report concerning remediation of site soil contaminated with used motor oil. The report is intended to document remediation of the site to meet the Statewide health standard.

LAND RECYCLING AND ENVIRONMENTAL REMEDIATION

UNDER ACT 2, 1995 PREAMBLE 3

The Department has taken action on the following plans and reports under the Land Recycling and Environmental Remediation Standards Act (35 P.S. §§ 6026.101—6026.907).

Section 250.8 of 25 Pa. Code and administration of the Land Recycling and Environmental Remediation Standards Act (act) require the Department to publish in the Pennsylvania Bulletin a notice of its final actions on plans and reports. A final report is submitted to document cleanup of a release of a regulated substance at a site to one of the remediation standards of the act. A final report provides a description of the site investigation to characterize the nature and extent of contaminants in environmental media, the basis of selecting the environmental media of concern, documentation supporting the selection of residential or nonresidential exposure factors, a description of the remediation performed and summaries of sampling methodology and analytical results which demonstrate that the remediation has attained the cleanup standard selected. Plans and reports required by the act for compliance with selection of remediation to a sitespecific standard, in addition to a final report, include a remedial investigation report, risk assessment report and cleanup plan. A remedial investigation report includes conclusions from the site investigation; concentration of regulated substances in environmental media; benefits of reuse of the property; and, in some circumstances, a fate and transport analysis. If required, a risk assessment report describes potential adverse effects caused by the presence of regulated substances. If required, a cleanup plan evaluates the abilities of potential remedies to achieve remedy requirements. A work plan for conducting a baseline remedial investigation is required by the act for compliance with selection of a special industrial area remediation. The baseline remedial investigation, based on the work plan, is compiled into the baseline environmental report to establish a reference point to show existing contamination, describe proposed remediation to be done and include a description of existing or potential public benefits of the use or reuse of the property. The Department may approve or disapprove plans and reports submitted. This notice provides the Department's decision and, if relevant, the basis for disapproval.

For further information concerning the plans and reports, contact the environmental cleanup program manager in the Department Regional Office under which the notice of the plan or report appears. If information concerning a final report is required in an alternative form, contact the community relations coordinator at the appropriate Regional Office. TDD users may telephone the Department through the Pennsylvania Hamilton Relay Service at (800) 654-5984.

The Department has received the following plans and reports:

Northeast Region: Environmental Cleanup & Brownfields Program, 2 Public Square, Wilkes-Barre, PA 18701-1915, 570-826-2511.

Contact: Eric Supey, Environmental Program Manager.

Solomon Property, 20 & 24 Bastian Lane, Allentown, PA 18104, Upper Macungie Township, **Lehigh County**. Crawford Environmental Services, 20 Cardinal Drive,

Birdsboro, PA 19508, on behalf Edwin & Marjorie Solomon, 24 Bastian Lane, Allentown, PA 18104, submitted a Final Report concerning remediation of soil contaminated by heating oil from an aboveground storage tank. The Final Report demonstrated attainment of Statewide health standards and was approved by DEP on November 4, 2021.

S. Warriner Pad 1, 823 Fernheim Road, Montrose, PA 18801, Bridgewater Township, Susquehanna County. Folsom Engineering, 117 Roger Hollow Road, Mehoopany, PA 18623, on behalf of Cabot Oil & Gas Corporation, 2000 Park Lane, Suite 300, Pittsburgh, PA 15275, submitted a Final Report concerning remediation of a release of produced fluid (brine) that impacted soil. The Final Report demonstrated attainment of a combination of Background and Statewide health standards and was approved by DEP on November 4, 2021.

Southcentral Region: Environmental Cleanup & Brownfields Program, 909 Elmerton Avenue, Harrisburg, PA 17110.

HR Realty Division, LP, 3101 Beale Avenue, Altoona, PA 16601, City of Altoona, Berks County. Mountain Research, LLC, 825 25th Street, Altoona, PA 16601, on behalf of HR Realty Division, LP, 3101 Beale Avenue, P.O. Box 1754, Altoona, PA 16603, submitted a Cleanup Plan and Final Report concerning remediation of site soil and groundwater contaminated with No. 2 fuel oil. The Final Report demonstrated attainment of the site-specific standard and was approved by the Department on November 4, 2021.

Northcentral Region: Environmental Cleanup & Brownfields Program, 208 West Third Street, Williamsport, PA 17701.

Mountain Energy Service Tanker Accident, 3019 Mountain Road, Monroeton, PA 18832, Franklin Township, Bradford County. Civil & Environmental Consultants, Inc., 333 Baldwin Road, Pittsburgh, PA 15205, on behalf of Chief Oil & Gas, LLC, 1720 Sycamore Road, Montoursville, PA 17754 has submitted a Final Report concerning site soil contaminated with produced water due to an overturned tanker truck. The report demonstrated attainment of the Statewide health standard and was approved by the Department on November 3, 2021.

Ruth Longer Estate Property, Intersection of Montour Boulevard and Grovania Drive, Danville, PA 17821, Cooper Township, Montour County. BL Companies, 2601 Market Pl, Ste 350, Harrisburg, PA 17110, on behalf of IA Construction Corp., P.O. Box 568, Franklin, PA 16323, has submitted a Remedial Investigation Report and Cleanup Plan concerning remediation of site soil and groundwater contaminated with chlorinated solvents. The Remedial Investigation Report/Cleanup Plan did not meet technical requirements and a technical deficiency was issued by the Department on October 28, 2021.

DETERMINATION OF APPLICABILITY FOR RESIDUAL WASTE GENERAL PERMITS

Determination of Applicability for General Permit Issued Under the Solid Waste Management Act (35 P.S. §§ 6018.101—6018.1003); the Municipal Waste Planning, Recycling and Waste Reduction Act (53 P.S. §§ 4000.101—4000.1904); and Residual Waste Regulations for a General Permit to Operate Residual Waste Processing Facilities and/or the Beneficial Use of Residual Waste Other Than Coal Ash.

Southcentral Region: Regional Solid Waste Manager, 909 Elmerton Avenue, Harrisburg, PA 17110.

General Permit No. WMGR019SC004. R.H. Sheppard Company, Inc., 101 Philadelphia Street, Hanover, PA 17331, Hanover Borough, York County. This permit authorizes the beneficial use of foundry wastes from (1) waste foundry sand from ferrous and nonferrous casting foundries, (2) system dust generated by ferrous metal casting foundries, or (3) slag and refractories generated by ferrous metal casting foundries for use as (1) roadway construction material, (2) a component or ingredient in the manufacturing of concrete or asphalt products, (3) a soil additive or soil substitute, and (4) non-roadway construction. The Department issued a determination of applicability on November 1, 2021.

Persons interested in reviewing the general permit may contact John Oren, Permits Chief, Waste Management Program, 909 Elmerton Avenue, Harrisburg, PA 17110, 717-705-4706. TDD users may contact the Department through the Pennsylvania Hamilton Relay service, (800) 654-5984.

AIR QUALITY

General Plan Approval and Operating Permit Usage Authorized under the Air Pollution Control Act (35 P.S. §§ 4001—4015) and 25 Pa. Code Chapter 127 to construct, modify, reactivate or operate air contamination sources and associated air cleaning devices.

Southeast Region: Air Quality Program, 2 East Main Street, Norristown, PA 19401.

Contact: James Beach, New Source Review Chief—Telephone: 484-250-5920.

GP10-09-0065: RR Donnelley (100 American Drive, Quakertown, PA 18951-2433) on November 1, 2021, General Plan Approval and General Operating for installing and operating one unit of Non-Heatset Web Lithographic Printing Press located in Richland Township, **Bucks County**.

Northeast Region: Air Quality Program, 2 Public Square, Wilkes-Barre, PA 18701-1915.

Contact: Raymond Kempa, New Source Review Chief—Telephone: 570-826-2531.

GP9-48-036: Hercules Cement Company, LP, d/b/a Buzzi Unicem USA (501 Hercules Drive, Stockertown, PA 18083) on November 4, 2021 for the operation of a diesel IC engines located at the site in Stockertown Borough, Northampton County.

Southwest Regional Office, Air Quality Program, 400 Waterfront Drive, Pittsburgh, PA 15222-4745.

Contact: Edward Orris, New Source Review Chief, 412.442.4168.

AG14-11-00537A: Moriconi Funeral Home, Inc. d/b/a Cremation Solutions (1212 Kennedy Avenue, P.O. Box 490, Northern Cambria, PA 15714-0490) on November 8, 2021, for renewal of its GP-14 authorization to operate a propane gas-fired human crematory incinerator at its facility in Northern Cambria Borough, Cambria County.

GP1-26-00542B: State Correctional Institute at SCI-Fayette/Dept. of Corrections (50 Overlook Drive, LaBelle, PA 15450-1050) on November 4, 2021, for the authorization to install and operate two (2) 12.6 MMBtu/hr boilers and two (2) 20.9 MMBtu/hr boilers

ers; pursuant to the General Plan Approval and/or General Operating Permit for Small Gas and No. 2 Oil-Fired Combustion Units (BAQGPA/GP-1) at the SCI Fayette Location in Luzerne Township, **Fayette County**.

Plan Approvals Issued under the Air Pollution Control Act (35 P.S. §§ 4001—4015) and regulations in 25 Pa. Code Chapter 127, Subchapter B relating to construction, modification and reactivation of air contamination sources and associated air cleaning devices.

Northeast Region: Air Quality Program, 2 Public Square, Wilkes-Barre, PA 18701-1915.

Contact: Raymond Kempa, New Source Review Chief—Telephone: 570-826-2531.

40-000126C: Hazleton Hiller, LLC (414 Stockton Mountain Road, Hazleton, PA 18201) issued on November 8, 2021 for the construction and operation of coal progressing equipment at the facility located in Hazle Township, Luzerne County.

Plan Approval Revisions Issued including Extensions, Minor Modifications and Transfers of Ownership under the Air Pollution Control Act (35 P.S. §§ 4001—4015) and 25 Pa. Code §§ 127.13, 127.13a and 127.32.

Southeast Region: Air Quality Program, 2 East Main Street, Norristown, PA 19401.

Contact: James Beach, New Source Review Chief— Telephone: 484-250-5920.

09-0196L: AGC Chem Amer Inc. (255 Bailey Road, Downingtown, PA 19335) on November 3, 2021 an extension for the temporary operation period that allows for an increase the emission limit for source ID # 106 from) 0.42 lb/hr and changes a testing condition in Caln Township, **Chester County**.

15-0041E: Eastern Shore Natural Gas Co. (500 Energy Lane, Ste 200, Dover, DE 19901-4999) on November 4, 2021 an extension to allow the testing of the 3,750-hp natural gas-fired compressor (COMP-5) engine equipped with a oxidation catalyst pollution control system in Londonderry Township, **Chester County**.

46-0037AD: Global Advanced Metals USA Inc. (P.O. Box 1608, County Line Road, Boyertown, PA 19512-6608) on November 4, 2021 an extension to modify the source for operational options, in Douglass Township, **Montgomery County**.

09-0196K: Abington Reldan Metals, LLC (550 Old Bordentown Road, Fairless Hills, PA 19030-4510) on November 3, 2021 for the modification of the NO_x Scrubber (Source ID C21) located at their facility in Falls Township, Bucks County. The purpose of this scrubber is to removed NO_x emissions from metal extraction process exhaust. Original design was meant to allow for an increase in throughput the facility expected but did not occur. With lower throughput, the 10,000 acfm inlet volume from the original design is causing a dilution of the exhaust and absorption issues with the scrubber. Modification includes removal of mist pad restrictor plate and decrease of inlet volume from 10,000 acfm to a range of 3,000 to 5,000 acfm. The scrubber will be expected to meet a 4.73 lb/hr and 15 tpy NO_x emission limit. Parameters that ensure proper scrubber operation will be monitored and recorded. Within 180 days of issuance of this plan approval, Abington Reldan Metals is required to perform stack testing to show compliance with limits.

46-0278C: Tierpoint 2, LLC (1000 Adams Rd, Norristown, PA 19403) on November 1, 2021, an extension for temporary operation of ten (10) EPA Certified Tier 2 diesel-fired engines having a rated capacity of 2,922 horsepower each for the purpose of providing back-up emergency electrical power at an existing State-Only facility located in Lower Providence Township, Montgomery County.

Northcentral Region: Air Quality Program, 208 West Third Street, Williamsport, PA 17701.

Contact: Muhammad Q. Zaman, Program Manager, (570) 327-3648.

47-00001G: Montour, LLC (P.O. Box 128, Washington-ville, PA 17884) on November 4, 2021, to extend the authorization to perform the construction/modifications pursuant to the plan approval from December 18, 2022 to June 30, 2023, at their Montour Steam Electric Station located in Derry Township, Montour County. The plan approval has been extended.

60-00027A: Mifflinburg Area School District (178 Maple St., Mifflinburg, PA 17844) on November 4, 2021, to extend the plan approval expiration date to May 7, 2022, to allow continued operation of an 8.5 MMBtu/hr biomass boiler at its campus in Mifflinburg Borough, West Buffalo and Buffalo Townships, **Union County**.

08-00010O: Global Tungsten & Powders Corp. (1 Hawes Street, Towanda, PA 18848) on November 4, 2021, to extend the authorization to operate the sources pursuant to the plan approval an additional 180 days from November 7, 2021 to May 6, 2022, at their facility located in North Towanda Township, **Bradford County**. The plan approval has been extended.

18-00011K: Croda, Inc. (8 Croda Way, Mill Hall, PA 17751) on October 29, 2021, to extend the authorization to operate the sources pursuant to the plan approval from October 31, 2021 to April 29, 2022, at their Mill Hall Facility located in Bald Eagle Township, **Clinton County**. The plan approval has been extended.

Title V Operating Permits Issued under the Air Pollution Control Act (35 P.S. §§ 4001—4015) and 25 Pa. Code Chapter 127, Subchapter G.

Southeast Region: Air Quality Program, 2 East Main Street, Norristown, PA 19401.

Contact: Janine Tulloch-Reid, Facilities Permitting Chief—Telephone: 484-250-5920.

23-00034: Villanova University (800 E. Lancaster Avenue, Villanova, PA 19085) On November 3, 2021, a Title V operating permit renewal for the operation of 4 boilers, 39 miscellaneous heaters, and several emergency generators at the facility located in Radnor Township, **Delaware County**.

Northwest Region: Air Quality Program, 230 Chestnut Street, Meadville, PA 16335-3481.

Contact: Matthew Williams, Facilities Permitting Chief—Telephone: 814-332-6940.

10-00037: Sonneborn, LLC Petrolia Plant (100 Sonneborn Lane, Petrolia, PA 16050) on November 5, 2021, the Department issued the Title V Permit renewal for the wax and oil processing facility located in Petrolia Borough, Butler County. The Petrolia plant consists of several process areas (including hydrotreating and barinate) that process raw material feedstocks (e.g., waxes, oils) to produced refined products. Heat and steam for the processes are provided by multiple heaters and

boilers. Both raw materials and finished products are stored in storage tanks located throughout the facility. This facility is a major source of air emissions for NO_x, SO₂, CO, and VOCs. The sum of all HAP emissions is less than 25 tons per year and less than 10 tpy for any than 25 tons per year and less than 10 tpy for any individual HAP from the facility. Therefore, Sonneborn is considered a minor source of HAPs. Actual reported emissions for 2020 were: CO 57.81 TPY; NO_x 83.22 TPY; PM_{10} 1.8 TPY; SO_x 12.88 TPY; VOC 33.62 TPY; HAPS 1.77 TPY and CO_2 112,766.0 TPY. The stationary engines for the emergency diesel and natural gas generators are subject to 40 CFR 63 Subpart ZZZZ. The facility is subject to the Title V Operating Permit requirements adopted in 25 Pa. Code Chapter 127, Subchapter G. The facility is subject to the National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines (Subpart ZZZZ) and the National Emissions Standards for Hazardous Air Pollutants for Source Category: Gasoline Dispensing Facilities (CCCCCC). The renewal permit includes additional operation requirements, monitoring requirements, and recordkeeping requirements to ensure compliance with the Clean Air Act and the Air Pollution Control Act.

Operating Permits for Non-Title V Facilities Issued under the Air Pollution Control Act (35 P.S. §§ 4001—4015) and 25 Pa. Code Chapter 127, Subchapter F.

Southeast Region: Air Quality Program, 2 East Main Street, Norristown, PA 19401.

Contact: Janine Tulloch-Reid, Facilities Permitting Chief—Telephone: 484-250-5920.

09-00008: TAVO Packaging, Inc. (2 Canal Rd, Fairless Hills, PA 19030), On November 3, 2021, for the renewal of their Natural Minor Operating Permit for their paperboard manufacturing and printing processes located in Falls Township, **Bucks County**.

Northcentral Region: Air Quality Program, 208 West Third Street, Williamsport, PA 17701.

Contact: Muhammad Q. Zaman, Program Manager, 570-327-3648.

53-00017: Herbert Cooper Company, Inc. (121 Main St, P.O. Box 40, Genesee, PA 16923-8901) on November 3, 2021, for their Genesee Township Plant facility located in Genesee Township, **Potter County**. The State Only (Synthetic Minor) operating permit contains requirements including monitoring, recordkeeping, and reporting conditions to ensure compliance with applicable Federal and State regulations.

57-00004: Stagecoach Pipeline & Storage Company, LLC (1001 Louisiana Street, Suite 1000, Houston, TX 77002), issued a revised State Only (Natural Minor) operating permit on November 3, 2021 for a change of ownership of the Sullivan County facility from Crestwood Equity Partners to Kinder Morgan, LLC. This facility is located in Davidson Township, Sullivan County. This revised State Only (Natural Minor) operating permit contains all applicable regulatory requirements including monitoring, recordkeeping, and reporting conditions.

60-00024: GAF Keystone, LLC (2093 Old Route 15, New Columbia, PA 17856) on November 4, 2021 was issued a State Only operating permit for their New Columbia Facility located in White Deer Township, **Union County**. The State Only operating permit contains all applicable regulatory requirements including monitoring, recordkeeping and reporting conditions.

Operating Permit Revisions Issued including Administrative Amendments, Minor Modifications or Transfers of Ownership under the Air Pollution Control Act (35 P.S. §§ 4001—4015) and 25 Pa. Code §§ 127.412, 127.450, 127.462 and 127.464.

Southeast Region: Air Quality Program, 2 East Main Street, Norristown, PA 19401.

Contact: Janine Tulloch-Reid, New Source Review Chief—Telephone: 484-250-5920.

23-00009: The Boeing Company, (Stewart Avenue & Rte. 291, Ridley Township, PA 19078), On November 5, 2021, for a minor modification of their Title V Operating Permit for a revision of their Compliance Assurance Monitoring (CAM) Plan for their facility located in Ridley Township, Delaware County. The Boeing Company performed tests using various open positions of the Flue Gas Recirculation damper for their Nebraska Boiler. Through these tests, the optimal damper positions were found for control of nitrogen oxide emissions from the boiler for natural gas and No. 2 Fuel Oil. The CAM Plan was revised to reflect these optimal damper control openings for the fuels burned in the Nebraska Boiler.

Northeast Region: Air Quality Program, 2 Public Square, Wilkes-Barre, PA 18701-1915.

Contact: Norman Frederick, Facility Permitting Chief—Telephone: 570-826-2409.

48-00109: Silbrico Corporation (4250 E Braden Blvd, Forks Township, PA 18040) on November 2, 2021, in Forks Township, Northampton County for an amendment to incorporate process modification. The operating permit was amended to include omitted process baghouses in error into an Operating Permit. Administrative Amendment of State Only Operating Permit issued under the Air Pollution Control Act (35 P. S. §§ 4001—4015) and 25 Pa. Code § 127.450.

54-00054: Commonwealth Environmental System, LP (99 Commonwealth Road, Hegins, PA 17938) on November 2, 2021, in Foster Township, Schuylkill County for an amendment to incorporate process modification. The conditions from Plan Approval 54-00054A were copied into the Title V Operating Permit. Administrative Amendment of Title V Operating Permit issued under the Air Pollution Control Act (35 P. S. §§ 4001—4015) and 25 Pa. Code § 127.450.

Northcentral Region: Air Quality Program, 208 West Third Street, Williamsport, PA 17701.

Contact: Muhammad Q. Zaman, Program Manager, 570-327-3648.

53-00008: National Fuel Gas Supply Corporation, Inc. (6363 Main Street, Williamsville, NY 14221) issued an amended Title V operating permit on November 4, 2021 to replace emergency generator engine (Source P112) with emergency generator engine (Source P106) for their East Fork Compressor Station located in Wharton Township, Potter County. The amended Title V operating permit contains all applicable regulatory requirements including monitoring, recordkeeping, and reporting conditions.

Operating Permits Denied, Terminated, Suspended or Revoked under the Air Pollution Control Act (35 P.S. §§ 4001—4015) and 25 Pa. Code §§ 127.431 and 127.461.

Southeast Region: Air Quality Program, 2 East Main Street, Norristown, PA 19401.

Contact: Janine Tulloch-Reid, Facilities Permitting Chief—Telephone: 484-250-5920.

15-00071: Gourmet Delights (704 Garden Station Road, Avondale, PA 19311) State-Only, Synthetic Minor Permit in London Grove Township, Chester County. Gourmet Delights is a mushroom growing and manufacturing facility. On November 4, 2021, the operating permit was revoked because Gourmet Delights sources met the exemption from needing a plan approval and operating permit in accordance with 25 Pa. Code Section 127.14.

23-00033: Dee Paper Company dba Dee Packaging Solutions, (100 Broomall Street, Chester, PA 19013) on November 4, 2021 for the facility located in Chester City, Delaware County. The operating permit was revoked because of the permanent shutdown of significant sources at the facility except the press (Source ID 108—Koenig and Bauer AQ Lithographic Printing Press Model No. Rapida 145) which will continue to operate under General Permit No. GP7-23-0002 issued November 14, 2019.

ACTIONS ON COAL AND NONCOAL MINING ACTIVITY APPLICATIONS

Actions on applications under the Surface Mining Conservation and Reclamation Act (52 P.S. §§ 1396.1—1396.31); the Noncoal Surface Mining Conservation and Reclamation Act (52 P.S. §§ 3301—3326); the Clean Streams Law (35 P.S. §§ 691.1—691.1001); the Coal Refuse Disposal Control Act (52 P.S. §§ 30.51-30.66); the Bituminous Mine Subsidence and Land Conservation Act (52 P.S. §§ 1406.1—1406.21). The final action on each application also constitutes action on the NPDES permit application and, if noted, the request for a Section 401 Water Quality Certification. Mining activity permits issued in response to such applications will also address the application permitting requirements of the following statutes; the Air Quality Control Act (35 P.S. §§ 4001—4015); the Dam Safety and Encroachments Act (32 P.S. §§ 693.1—693.27); and the Solid Waste Management Act (35 P.S. §§ 6018.101— 6018.1003).

Coal Permits Issued

California District Office: 25 Technology Drive, Coal Center, PA 15423, 724-769-1100, (Contact: Bonnie Herbert).

Permit No. 03981301 and NPDES Permit No. PA0215198. Rosebud Mining Company, 301 Market Street, Kittanning, PA 16201, to revise the permit and related NPDES permit for Parkwood Mine in Plumcreek Township, Armstrong County and Armstrong Township, Indiana County affecting 1,768.0 underground acres and 1,768.0 subsidence control plan acres. No additional discharges. The application was considered administratively complete on December 3, 2019. Application received: October 30, 2019. Permit issued: October 14, 2021.

Permit No. 30121301 and NPDES Permit No. PA0236195. Consol Pennsylvania Coal Company LLC, 1000 Consol Energy Drive, Suite 100, Canonsburg, PA 15317, to revise the permit and related NPDES permit for installation of a degas borehole for Harvey Mine in Richhill and Morris Townships, Greene County, affecting 2.2 surface acres. No additional discharges. The

application was considered administratively complete on October 9, 2020. Application received: August 20, 2020. Permit issued: October 25, 2021.

Permit No. 30841317 and NPDES Permit No. PA0213527. Consol Pennsylvania Coal Company LLC, 1000 Consol Energy Drive, Suite 100, Canonsburg, PA 15317, to revise the permit and related NPDES permit for installation of an airshaft, six (6) boreholes, and NPDES outfall 040 for Enlow Fork Mine in Richhill and Morris Townships, Greene County, affecting 35.5 surface acres. Receiving stream(s): Unnamed Tributary to Bakes Fork classified for the following use: HQ-WWF. The application was considered administratively complete on August 27, 2020. Application received: July 8, 2020. Permit issued: October 25, 2021.

Permit No. 63091301 and NPDES Permit No. PA0236004. Tunnel Ridge, LLC, 2596 Battle Run Road, Triadelphia, WV 26059, to revise the permit and related NPDES permit for Tunnel Ridge Mine in Donegal and West Finley Townships, Washington County, affecting 5,304.27 underground acres and 5,304.27 subsidence control plan acres. No additional discharges. The application was considered administratively complete on May 27, 2020. Application received: April 30, 2020. Permit issued: October 26, 2021.

Knox District Mining Office: P.O. Box 669, 310 Best Avenue, Knox, PA 16232-0669, 814-797-1191, (Contact: Cayleigh Boniger).

Permit No. 438150106. Grove City Materials, LP, 161 Plain Grove Road, Slippery Rock, PA 16057, Renewal of an existing bituminous surface mine in Pine and Mercer Townships, Mercer and Butler Counties, affecting 103.0 acres. This renewal is issued for reclamation only. Receiving stream(s): Unnamed tributaries to Swamp Run. Application received: July 21, 2021. Permit Issued: October 27, 2021.

Pottsville District Mining Office: 5 West Laurel Boulevard, Pottsville, PA 17901, 570-621-3118, (Contact: Theresa Reilly-Flannery).

Permit No. 54850202. B-D Mining Company, 10 Gilberton Road, Gilberton, PA 17934, revision to approve beneficial use/placement of coal ash on 22.9 acres and construct a Clean Water Bypass System to control upgradient stormwater runoff on the anthracite surface mine, coal refuse reprocess, coal refuse disposal and preparation plant operation in Gilberton and Shenandoah Boroughs, West Mahanoy and Mahanoy Townships, Schuylkill County, affecting 1,590.0 acres.

Permit No. 40840206. Jeddo-Highland Coal Company, 144 Brown Street, Yatesville, PA 18640, renewal of an existing anthracite coal refuse reprocessing operation for reclamation only in Plains Township, Luzerne County, affecting 43.5 acres. Receiving stream: Mill Creek. Application received: September 18, 2020. Renewal issued: November 5, 2021.

Permit No. PAM112082. (Mining Permit No. 40840206) Jeddo-Highland Coal Company, 144 Brown Street, Yatesville, PA 18640, renewal of coverage under the General NPDES Permit for Stormwater Discharges Associated with Mining Activities (BMP GP-104) on a surface mine in Plains Township, Luzerne County, receiving stream: Mill Creek. Application received: September 18, 2020. Renewal issued: November 5, 2021.

Noncoal Permits Issued

Knox District Mining Office: P.O. Box 669, 310 Best Avenue, Knox, PA 16232-0669, 814-797-1191, (Contact: Cayleigh Boniger). Permit No. 25212801. West Ridge Gravel Co., 3251 Fairplain Road, P.O. Box 181, Girard, PA 16417), Commencement, operation, and restoration of a small industrial minerals mine in Girard Borough, Erie County, affecting 5.0 acres. Receiving stream(s): Unnamed tributary to Lake Erie. Application received: March 29, 2021. Permit Issued: October 22, 2021.

Permit No. 16950306. Terra Works, Inc., 49 South Sheridan Road, Clarion, PA 16214), Transfer of an existing large industrial minerals surface mine from Ancient Sun, Inc. in Perry and Toby Townships, Clarion County, affecting 58.0 aces. Receiving stream(s): Black Fox Run. Application received: January 4, 2021. Permit Issued: October 22, 2021.

NPDES Permit No. PAM621001 (Mining Permit No. 16950306). Terra Works, Inc., 49 South Sheridan Road, Clarion, PA 16214. Coverage under General NPDES Permit for stormwater discharges (BMP GP-104) associated with mining activities on a surface mine in Perry and Toby Townships, Clarion County. Receiving streams(s): Black Fox Run. Application received: January 4, 2021. Permit Issued: October 22, 2021.

ACTIONS ON BLASTING ACTIVITY APPLICATIONS

Actions on applications under the Explosives Acts of 1937 and 1957 and 25 Pa. Code § 211.124. Blasting activity performed as part of a coal or noncoal mining activity will be regulated by the mining permit for that coal or noncoal mining activity.

Blasting Permits Issued

Moshannon District Mining Office: 186 Enterprise Drive, Philipsburg, PA 16866, 814-342-8200, (Contact: Ashley Smith).

Permit No. 14214111. Douglas Explosives, Inc., 2052 Philipsburg Bigler Highway, Philipsburg, PA 16866. Blasting for commercial development located in Snow Shoe Township, Centre County, with an expiration date of December 30, 2021. Permit issued: November 4, 2021.

Permit No. GFCC 17-18-02. RES Coal LLC, 224 Grange Hall Road, P.O. Box 228, Armagh, PA 15920. Blasting for contracting and reclamation in Chest Township, Clearfield County, with an expiration date of December 31, 2022. Permit issued: November 4, 2021.

Pottsville District Mining Office: 5 West Laurel Boulevard, Pottsville, PA 17901, 570-621-3118, (Contact: Theresa Reilly-Flannery).

Permit No. 35214109. Explosive Services, Inc., 7 Pine Street, Bethany, PA 18431, construction blasting for Valley View Business Park Lot 14 in Jessup Borough, Lackawanna County, with an expiration date of November 2, 2022. Permit issued: November 4, 2021.

Permit No. 64214108. John H. Brainard, P.O. Box 66, Clifford, PA 18413, construction blasting for Wallingford House foundation in Buckingham Township, **Wayne County**, with an expiration date December 31, 2021. Permit issued: November 4, 2021.

FEDERAL WATER POLLUTION CONTROL ACT SECTION 401

The Department has taken the following actions on previously received permit applications, requests for Environmental Assessment approval, and requests for Water Quality Certification under Section 401 of the Federal Water Pollution Control Act (FWPCA) (33 U.S.C.A. \S 1341).

Except as otherwise noted, the Department has granted 401 Water Quality Certification certifying that the construction and operation described will comply with the applicable provisions of Sections 301—303, 306 and 307 of the FWPCA (33 U.S.C.A. §§ 1311—1313, 1316 and 1317), and that the construction will not violate applicable Federal and State Water Quality Standards.

Any person aggrieved by these actions may appeal, pursuant to Section 4 of the Environmental Hearing Board Act, 35 P.S. § 7514, and the Administrative Agency Law, 2 Pa.C.S. Chapter 5A, to the Environmental Hearing Board, Second Floor, Rachel Carson State Office Building, 400 Market Street, P.O. Box 8457, Harrisburg, PA 17105-8457, (717) 787-3483. TDD users may contact the Board through the Pennsylvania Hamilton Relay Service, (800) 654-5984. Appeals must be filed with the Environmental Hearing Board within 30-days of publication of this notice in the Pennsylvania Bulletin, unless the appropriate statute provides a different time period. Copies of the appeal form and the Board's rules of practice and procedure may be obtained from the Board. The appeal form and the Board's rules of practice and procedure are also available in braille or on audiotape from the Secretary to the Board at (717) 787-3483. This paragraph does not, in and of itself, create any right of appeal beyond that permitted by applicable statutes and decisional law.

If you want to challenge this action, your appeal must reach the Board within 30-days. You do not need a lawyer to file an appeal with the Board.

Important legal rights are at stake, however, so you should show this notice to a lawyer at once. If you cannot afford a lawyer, you may qualify for free pro bono representation. Call the Secretary to the Board (717) 787-3483 for more information.

WATER OBSTRUCTIONS AND ENCROACHMENTS

Actions on applications for the following activities filed under the Dam Safety and Encroachments Act (32 P.S. §§ 693.1—693.27), section 302 of the Flood Plain Management Act (32 P.S. § 679.302) and The Clean Streams Law and Notice of Final Action for Certification under section 401 of the FWPCA.

Southeast Region: Waterways & Wetlands Program, 2 East Main Street, Norristown, PA 19401. Telephone 484.250.5160. E-mail: ra-epww-sero@pa.gov.

Permit No. E4601121-001, Pennsylvania Department of Transportation Engineering District 6-0 (PennDOT District 6-0), 7000 Geerdes Boulevard, King of Prussia, PA 19406, Lower Pottsgrove Township, Montgomery County, ACOE Philadelphia District.

PennDOT District 6-0 is proposing to perform the following water obstruction and encroachment activities associated with the US 422 Section MB1 Reconstruction Project:

1. To remove an existing 89.83-foot-long reinforced twin box concrete culvert carrying Sprogel Run (WWF-MF, Stream 6) and adjacent bridge over Porter Road. In their place, construct and maintain one 96.38 foot-long, 2-span, precast concrete beam bridge resulting in 186 linear feet (23,662 square feet, 0.54 acre) of permanent water-course impact due to the placement of riprap and

- 0.38 acre of permanent floodway impact, and 30,820 square feet (0.71 acre) of permanent floodplain impact due to roadway embankment fill, grading for a swale to facilitate stormwater discharge from a 24-inch outfall, and placement of riprap (USGS PA Phoenixville Quadrangle—Latitude 40.23980 N, Longitude 75.60916 W).
- 2. To place fill and relocate an unnamed tributary to Sprogel Run (WWF-MF, Stream 81) associated with SR 422 bridge construction. This activity will result in 142 linear feet (719 square feet, 0.02 acre) of permanent watercourse impact, 102 square feet (0.01 acre) of permanent floodway impact and 1,320 square feet (0.03 acre) of permanent floodplain impact (USGS PA Phoenixville Quadrangle—Latitude 40.23935 N, Longitude 75.60944 W).
- 3. To abandon-in-place/fill a 48-inch RCP stream enclosure carrying an unnamed tributary to Sprogel Run (WWF-MF, Stream 7/83), relocate, place fill and grade, and adjacent to existing structure, to construct and maintain a new 200-foot-long, 48-inch diameter, RCP stream enclosure resulting in 412 linear feet (4,648 square feet) of permanent watercourse impact. This activity includes grading, relocation and restoration of watercourse, construction, and maintenance of an 18-inch RCP outfall and riprap, and 18-inch RCP outfall. (USGS PA Phoenixville Quadrangle—Latitude 40.24007 N, Longitude 75.32416 W).
- 4. To place fill within an unnamed tributary to Sprogel Run (WWF-MF, Stream 8) and grade to facilitate the construction of a stormwater facility resulting in 253 linear feet (3,204 square feet) of permanent watercourse impact. This activity also includes impacts to watercourse due to permanent placement of riprap rock apron (USGS PA Phoenixville Quadrangle—Latitude 40.24125 N, Longitude 75.60027 W).
- 5. To place fill within an unnamed tributary (WWF-MF, Stream 83) associated with roadway reconstruction resulting in 159 linear feet (677 square feet) of permanent watercourse impact (USGS PA Phoenixville Quadrangle—Latitude 40.240783 N, Longitude 75.615950 W).
- 6. To place fill adjacent to a wetland area (PFO, Wetland 4) associated with roadway reconstruction and redirecting roadway drainage. This activity will result in 801 square feet of permanent wetland impact due to loss of hydrology (USGS PA Phoenixville Quadrangle—Latitude 40.24180 N, Longitude -75.591556 W).
- 7. To remove an existing 329 foot-long, 72.25 foot-wide, 4-span concrete I-Beam bridge and its piers over Sanatoga Creek (WWF-MF, Stream 5), and in its place, construct and maintain a 336.33 foot-long, 95.38 foot-wide, 3-span precast concrete beam bridge resulting in 94 linear feet (31,960 square feet, 0.73 acre) of permanent watercourse impact due to the placement of scour protection, 285 linear feet, 450 linear feet (30,980 square feet, 0.71 acre) of temporary watercourse impact due to two temporary stream crossings, and in-water by-pass to facilitate construction, 13,414 square feet of floodway impact due to riprap scour protection. This activity also includes the construction and maintenance of a 24-inch outfall and placement of riprap rock apron resulting in 171 square feet of permanent floodplain impact. (USGS PA Phoenixville Quadrangle—Latitude 40.24298 N, Longitude 75.58555 W).
- 8. To construct and maintain an 18-inch RCP outfall resulting in 6 linear feet (86 square feet) of permanent watercourse impact. This activity also includes the placement of riprap rock apron (USGS PA Phoenixville Quadrangle—Latitude 40.24247 N, Longitude 75.58166 W).

This project is located on SR 422 between Norfolk Southern Railroad and Park Road in Lower Pottsgrove Township, Montgomery County. Permit issued November 3, 2021.

Northeast Region: Waterways & Wetlands Program, 2 Public Square, Wilkes-Barre, PA 18701-1915.

Contact: Gillian Ostrum, Clerk Typist 2, 570-830-3077.

E5402221-002. Comcast Cable Communications Management, LLC, 1131 South Duke Street, Lancaster, PA 17602. City of Pottsville, Schuylkill County, Army Corps of Engineers Philadelphia District.

To install an overhead guy wire across the West Branch Schuylkill River (CWF, MF) along Gordon Nagle Trail, on the border of the City of Pottsville and Branch Township, PA. The Schuylkill River is classified as a Scenic River and a SLLA water. The proposed cable line crossing will be attached to existing utility poles on either side of the river. No earth disturbance, in-stream work, or wetland impacts will be proposed or affected for this project.

Northcentral Region: Waterways & Wetlands Program, 208 West Third Street, Williamsport, PA 17701, 570-327-3636.

E1404221-002. Vyacheslav Dmitriyev, 110 Lingle Road, Centre Hall, PA 16928. Private driveway crossing on Taylor Hill Road in Potter Township, Centre County, ACOE Baltimore District (Centre Hall, PA Quadrangle, Latitude: 40° 47′ 4.7″ N; Longitude: 77° 40′ 52.6″ W).

The project consists of installation of a new driveway crossing an unnamed tributary to Sinking Creek (CWF, MF) and a floodplain wetland to access a residential building lot. Permanent impacts will be 225 square feet of exceptional value wetland, 130 square feet of stream, and 1,300 square feet of floodway. No temporary impacts to regulated waters are proposed. No threatened or endangered species are known to exist within the project boundary.

E6004221-003 Douglas W. Reed, 6906 Buffalo Road, Mifflinburg, PA 17844. Septic System Replacement, Buffalo Township, **Union County**, Baltimore ACOE (Mifflinburg, PA Quadrangle N: 40°57′ 39.48″; W: -77°01′ 12.17″).

The Department of Environmental Protection has granted the landowner approval to replace a residential septic system which requires a utility crossing over a tributary to Rapid Run. The house was built in 1962 and the septic system needs replaced. The Sewage Enforcement Officer (SEO) approved the design which requires a new tank to be installed near the house for solids and a sand mound for effluent which is sited at the edge of the property near Buffalo Road. The connecting pipeline must cross Tributary 19005 to connect the tank and sand mound. The tributary and Rapid Run are listed in the Pa. Code Chapter 93 designation as Exceptional Value (EV) and supporting Migratory Fish (MF). The project is planned for the Autumn of 2021.

Southwest District Oil & Gas Manager. 400 Waterfront Drive, Pittsburgh, PA 15222-4745.

E3007220-019, Rice Drilling B, LLC, 400 Woodcliff Drive, Canonsburg, PA 15317. To repair a large slip located at the existing Don Flamenco and reconstruct a portion of an unnamed tributary to North Fork Dunkard Fork, a Trout Stocked Fisheries, to approximate original conditions prior to the discharge of slip material. The project is located within Richhill Township, Greene County, Pittsburgh USACE District (Latitude:

39.869009, Longitude: -80.431091, Sub-Basin 20E (Wheeling Buffalo Creeks Watershed), Quad Name: New Freeport). The project will result in permanent impacts to 0.02 acre of PEM wetland, 0.55 acre of floodway, and 445 linear feet of stream. The project will temporarily impact 0.34 acre of floodway.

	v		
	Coordinates	Permanent Impact	Temporary Impact
UNT to North Fork Dunkard Fork	39.869009, -80.431091	445 LF	
Floodway of UNT to North Fork Dunkard Fork	39.869009, -80.431091	23,961 sq. ft. (0.55 acre)	14,776 sq. ft. (0.34 acre)
Wetland C (PEM)	39.868926, -80.431006	256 sq. ft. (0.006 acre)	
Wetland 22 (PEM)	39.867958, -80.430527	562 sq. ft. (0.0129 acre)	

ENVIRONMENTAL ASSESSMENTS

Southcentral Region: Waterways & Wetlands Program, 909 Elmerton Avenue, Harrisburg, PA 17110.

EA3603221-002. Mr. Henry Lapp, 223 Refton Road, New Providence, PA 17560-9724, in Providence and Strasburg Townships, **Lancaster County**, U.S. Army Corps of Engineers, Baltimore District.

To conduct a stream restoration project along 2,700 feet of Big Beaver Creek (TSF, MF) including 1.) the construction and maintenance of 17 rock vanes; 2.) the construction and maintenance of 17 mud sills totaling 865 feet in length; 3.) the installation and maintenance of eight random boulder clusters; 4.) the construction and maintenance of five zig zag rock wall totaling 395 feet in length; 5.) the grading and maintenance of 1,875 feet of streambank; and 6.) the placement and maintenance of two channel blocks. The project is located approximately 0.48 miles east of the intersection of Krantz Mill Road and Refton Road (Latitude: 39.9375° N, Longitude 76.2175° W) in Providence and Strasburg Townships, Lancaster County. No wetlands will be impacted by this project.

EROSION AND SEDIMENT CONTROL

The following Erosion and Sediment Control permits have been issued.

Persons aggrieved by an action may appeal that action to the Environmental Hearing Board (Board) under section 4 of the Environmental Hearing Board Act and 2 Pa.C.S. §§ 501—508 and 701—704. The appeal should be sent to the Environmental Hearing Board, Second Floor, Rachel Carson State Office Building, 400 Market Street, P.O. Box 8457, Harrisburg, PA 17105-8457, (717) 787-3483. TDD users may contact the Board through the Pennsylvania Hamilton Relay Service, (800) 654-5984. Appeals must be filed with the Board within 30-days of publication of this notice in the Pennsylvania Bulletin unless the appropriate statute provides a different time period. Copies of the appeal form and the Board's rules of practice and procedure may be obtained from the Board. The appeal form and the Board's rules of practice and procedure are also available in Braille or on audiotape from the Secretary to the Board at (717) 787-3483. This paragraph does not, in and of itself, create a right of appeal beyond that permitted by applicable statutes and decisional law.

For individuals who wish to challenge an action, the appeal must reach the Board within 30-days. A lawyer is not needed to file an appeal with the Board.

Important legal rights are at stake, however, so individuals should show this notice to a lawyer at once. Persons who cannot afford a lawyer may qualify for free pro bono representation. Call the Secretary to the Board at (717) 787-3483 for more information.

Eastern Region: Oil & Gas Management Program, 208 West Third Street, Suite 101, Williamsport, PA 17701-6448.

ESCGP-3 # ESG290821058-00

Applicant Name Chesapeake Appalachia, LLC

Contact Person Eric Haskins Address 14 Chesapeake Lane

City, State, Zip Sayre, PA 18840

County Bradford

Township(s) Wilmot

Receiving Stream(s) and Classification(s) UNT to Susque-

hanna River (CWF, MF)

Secondary: Susquehanna River (WWF, MF)

ESCGP-3 # ESG290821051-00

Applicant Name Chesapeake Appalachia, LLC

Contact Person Eric Haskins Address 14 Chesapeake Lane City, State, Zip Sayre, PA 18840

County Bradford Township(s) Wysox

Receiving Stream(s) and Classification(s) Fall Run (CWF,

MF), UNT to Johnson Creek (CWF, MF) Secondary: Wysox Creek (CWF, MF)

CORRECTIVE ACTION UNDER ACT 32, 1989

PREAMBLE 2

The Following Plans and Reports Were Submitted Under the Storage Tank and Spill Prevention Act (35 P.S. §§ 6021.101—6021.2104).

Provisions of 25 Pa. Code Chapter 245 Subchapter D, Administration of the Storage Tank and Spill Prevention Program, require the Department of Environmental Protection (DEP) to publish in the *Pennsylvania Bulletin* a notice of submission of plans and reports. A remedial action plan is submitted to summarize the site characterization, document the design and construction details for the remedial action, and describe how the remedial action will attain the selected remediation standard. The remedial action plan also provides results of studies performed and data collected to support the remedial action and a description of postremediation care requirements. A remedial action completion report is submitted to document cleanup of a release of a regulated substance at a site to the selected remediation standard. A remedial action completion report provides a description of the site investigation to characterize the nature and extent of contaminants in environmental media, the basis of selecting the environmental media of concern, documentation supporting the selection of residential or nonresidential exposure factors, a description of the remediation performed and summaries of sampling methodology and analytical results which demonstrate that the remediation has attained the cleanup standard selected.

For further information concerning plans or reports, please contact the Environmental Cleanup Program Manager in the DEP Regional Office under which the notice of receipt of plans or reports appears. If information con-

cerning plans or reports is required in an alternative form, contact the Community Relations Coordinator at the appropriate Regional Office listed. TDD users may telephone DEP through the Pennsylvania Hamilton Relay Service at (800) 654-5984.

DEP has received the following plans and reports:

Northeast Region: Environmental Cleanup & Brownfields Program, 2 Public Square, Wilkes-Barre, PA 18701-1915, 570-826-2511.

Contact: Eric Supey, Environmental Program Manager.

Fuel Depot Bulk Plant, Storage Tank ID # 45-29829, 157 North Second Street, Stroudsburg, PA 18360, Stroudsburg Borough, Monroe County, MEA, 1365 Ackermanville Road, Bangor, PA 18013, on behalf of Fuel Depot LLC, P.O. Box 427, Stroudsburg, PA 18360, submitted a combined Remedial Action Plan and Remedial Action Completion Report concerning remediation of soil and groundwater contaminated with petroleum. The report is intended to document remediation of the site to meet a combination of site-specific and Statewide health standards.

Southcentral Regional Office: Environmental Cleanup & Brownfields Program, 909 Elmerton Avenue, Harrisburg, PA 17110, 717-705-4705.

Contact: Gregory Bowman, Environmental Group Manager.

Lancaster Direct Manheim PA Bulk Plant, Storage Tank Facility ID # 36-60728, 85 White Oak Road, Manheim, PA 17545-8550, Penn Township, Lancaster County. Storb Environmental, Inc., 410 North Easton Road, Willow Grove, PA 19090-2511, on behalf of Lancaster Direct, LLC, 85 White Oak Road, Manheim, PA 17545 submitted a Remedial Action Plan concerning remediation of groundwater contaminated with petroleum constituents. The plan is intended to document the remedial actions for meeting the site-specific standard.

Northcentral Regional Office: Environmental Cleanup & Brownfields Program, 208 West Third Street, Suite 101, Williamsport, PA 17701, 570-327-3636.

Contact: Randy Farmerie, Environmental Program Manager.

Whitmer Fuels, Inc. Facility, Storage Tank Facility ID # 49-00691, Intersection of Sixth and Church Streets, Sunbury, PA 17801, Sunbury City, Northumberland County. Geosyntec Consultants, Inc., 5313 Campbells Run Road, Pittsburgh, PA 15205, on behalf of Norfolk Southern Railway Company, 650 West Peachtree Street NW, Atlanta, GA 30308, submitted a Remedial Action Completion Report concerning remediation of groundwater and soil contaminated with unleaded gasoline. The report is intended to document remediation of the site to meet the Statewide health standard.

CORRECTIVE ACTION UNDER ACT 32, 1989

PREAMBLE 3

The Department of Environmental Protection (DEP) Has Taken Action on the Following Plans and Reports Under the Storage Tank and Spill Prevention Act (35 P.S. §§ 6021.101—6021.2104).

Provisions of 25 Pa. Code Chapter 245 Subchapter D, Administration of the Storage Tank and Spill Prevention Program, require DEP to publish in the *Pennsylvania Bulletin* a notice of its final actions on plans and reports.

A remedial action plan is submitted to summarize the site characterization, document the design and construction details for the remedial action, and describe how the remedial action will attain the selected remediation standard. The remedial action plan also provides results of studies performed and data collected to support the remedial action and a description of postremediation care requirements. A remedial action completion report is submitted to document cleanup of a release of a regulated substance at a site to the selected remediation standard. A remedial action completion report provides a description of the site investigation to characterize the nature and extent of contaminants in environmental media, the basis of selecting the environmental media of concern, documentation supporting the selection of residential or nonresidential exposure factors, a description of the remediation performed and summaries of sampling methodology and analytical results which demonstrate that the remediation has attained the cleanup standard selected.

DEP may approve or disapprove plans and reports submitted. This notice provides DEP's decision and, if relevant, the basis for disapproval.

For further information concerning the plans and reports, please contact the Environmental Cleanup Program Manager in the DEP Regional Office under which the notice of the plan or report appears. If information concerning a report is required in an alternative form, contact the Community Relations Coordinator at the appropriate Regional Office listed. TDD users may telephone DEP through the Pennsylvania Hamilton Relay Service at (800) 654-5984.

DEP has received the following plans and reports:

Northeast Region: Environmental Cleanup & Brownfields Program, 2 Public Square, Wilkes- Barre, PA 18701-1915, 570-826-2511.

Contact: Eric Supey, Environmental Program Manager.

Convenient Food Mart, Storage Tank ID # 40-08918, 340 Wilkes-Barre Township Boulevard, Wilkes-Barre, PA 18702, Wilkes-Barre Township, Luzerne County. Reliance Environmental, 235 N. Duke Street, Lancaster, PA 17602, on behalf of CDG 320 Inc., 304 North Wilkes-Barre Township Boulevard, Wilkes-Barre, PA 18702, submitted a combined Site Characterization Report and Remedial Action Plan concerning remediation of soil contaminated with gasoline. The report was not acceptable to meet combination of site-specific and Statewide health standards and was disapproved by DEP on November 4, 2021.

7 Eleven 23322, Storage Tank ID # 39-24557, 11 East Susquehanna Street, Allentown, PA 18103, Allentown City, **Lehigh County**. AECOM, 625 West Ridge Pike, Suite E-100, Conshohocken, PA 19428, on behalf of 7-Eleven, Inc., 3200 Hackberry Road, P.O. Box 711 (0148), Dallas, TX 75221-0711, submitted a combined Site Characterization and Remedial Action Plan concerning remediation of soil and groundwater contaminated with petroleum. The report was not acceptable to meet a combination of site specific and Statewide health standards and was disapproved by DEP on November 4, 2021.

 $[Pa.B.\ Doc.\ No.\ 21\text{-}1927.\ Filed\ for\ public\ inspection\ November\ 19,\ 2021,\ 9:00\ a.m.]$

DEPARTMENT OF ENVIRONMENTAL PROTECTION

Air Quality Technical Advisory Committee Meeting

The Air Quality Technical Advisory Committee (Committee) will meet on Thursday, December 9, 2021, at 9:15 a.m. in Room 105, Rachel Carson State Office Building, 400 Market Street, Harrisburg, PA. Individuals may attend the meeting in person or remotely. Individuals interested in providing public comments during the meeting are encouraged to sign up in advance by contacting RA-EPAQTAC@pa.gov or Kirit Dalal at (717) 772-3436.

Information on how to join the meeting, as well as agenda and meeting materials, will be available on the Committee's webpage, found through the Public Participation tab on the Department of Environmental Protection's (Department) web site at www.dep.pa.gov (select "Public Participation," then "Advisory Committees," then "Air," then "Air Quality Technical Advisory Committee").

Individuals are encouraged to visit the Committee's webpage to confirm meeting date, time and location prior to each meeting. Questions concerning the December 9, 2021, meeting can be directed to RA-EPAQTAC@pa.gov or Kirit Dalal at (717) 772-3436.

Persons in need of accommodations as provided for in the Americans with Disabilities Act of 1990 should contact Kirit Dalal at (717) 772-3436 or through the Pennsylvania Hamilton Relay Service at (800) 654-5984 (TDD users) or (800) 654-5988 (voice users) to discuss how the Department may accommodate their needs.

PATRICK McDONNELL, Secretary

 $[Pa.B.\ Doc.\ No.\ 21\text{-}1928.\ Filed\ for\ public\ inspection\ November\ 19,\ 2021,\ 9:00\ a.m.]$

DEPARTMENT OF ENVIRONMENTAL PROTECTION

Recycling Fund and Solid Waste Advisory Committee Joint Meeting

The Recycling Fund Advisory Committee will hold a joint meeting with the Solid Waste Advisory Committee (Committee) on Thursday, December 16, 2021, at 10 a.m. in Room 105, Rachel Carson State Office Building, 400 Market Street, Harrisburg, PA. Individuals may attend the meeting in person or remotely. Individuals interested in providing public comments during the meeting are encouraged to sign up in advance by contacting Laura Henry at lahenry@pa.gov or (717) 772-5713.

Information on how to join the meeting, as well as agenda and meeting materials, will be available on the Committee's webpage, found through the Public Participation tab on the Department of Environmental Protection's (Department) web site at www.dep.pa.gov (select "Public Participation," then "Advisory Committees," then "Waste," then "Solid Waste Advisory Committee").

Individuals are encouraged to visit the Committee's webpage to confirm meeting date, time and location prior to each meeting. Questions concerning the December 16, 2021, meeting can be directed to Laura Henry at lahenry@pa.gov or (717) 772-5713.

Persons in need of accommodations as provided for in the Americans with Disabilities Act of 1990 should contact the Department at (717) 787-9870 or through the Pennsylvania Hamilton Relay Service at (800) 654-5984 (TDD users) or (800) 654-5988 (voice users) to discuss how the Department may accommodate their needs.

PATRICK McDONNELL, Secretary

 $[Pa.B.\ Doc.\ No.\ 21\text{-}1929.\ Filed\ for\ public\ inspection\ November\ 19,\ 2021,\ 9:00\ a.m.]$

DEPARTMENT OF HEALTH

Decisions on Requests for Exceptions to Health Care Facility Regulations

Under 28 Pa. Code § 51.33 (relating to requests for exceptions), effective June 6, 1998, the Department of Health (Department) has published in the *Pennsylvania Bulletin* all requests by entities licensed under the Health Care Facilities Act (35 P.S. §§ 448.101—448.904b), for exceptions to regulations contained in 28 Pa. Code, Part IV Subparts B—G.

Section 51.33(d) of 28 Pa. Code provides that the Department will publish notice of all approved exceptions on a periodic basis. The Department has determined that it will publish notice of all exceptions, both approved and denied. The following list contains the decisions made on exception requests published in the *Pennsylvania Bulletin* from October 1, 2021, through October 31, 2021. Future publications of decisions on exception requests will appear on a quarterly basis.

Requests for additional information on the exception request and the Department's decision should be made to the relevant division of the Department. Inquiries regarding hospitals, abortion facilities and ambulatory surgical facilities shall be addressed to Garrison E. Gladfelter, Jr., Director, Division of Acute and Ambulatory Care, Room 532, Health and Welfare Building, Harrisburg, PA 17120, (717) 783-8980. Inquiries regarding long-term care facilities shall be addressed to Susan Williamson, Director, Division of Nursing Care Facilities, Room 528, Health and Welfare Building, Harrisburg, PA 17120, (717) 787-1816. Inquiries regarding Home Health agencies should be director to Linda Chamberlain, Director, Division of Home Health, Forum Place, Suite 701, 555 Walnut Street, Harrisburg, PA 17101, (717) 783-1379.

Ambulatory Surgical Facilities

Facility Name	28 Pa. Code Regulation	Dec. Date	Decision
Western PA Surgery Center—Beaver County Branch	§ 569.35(7) (relating to general safety precautions)		Granted w/Conditions

Hospitals

Facility Name	28 Pa. Code Regulation	Dec. Date	Decision
AHN Wexford Hospital	§ 107.2 (relating to medical staff membership)	10/08/2021	Granted w/Conditions
	§ 107.62(a) and (b) (relating to oral orders)	10/08/2021	Granted w/Conditions
	§ 123.25(2) (relating to regulations for control of anesthetia explosion hazards)	10/08/2021	Granted w/Conditions
	§ 127.32 (relating to written orders)	10/08/2021	Granted w/Conditions
Allied Services Institute of Rehabilitation Medicine	§ 101.31(5) (relating to hospital requirements)	10/08/2021	Granted w/Conditions
The Chester County Hospital	§ 153.1(a) (relating to minimum standards) 2.2-2.9.1.1(1) location	10/19/2021	Granted
The Children's Hospital of Philadelphia	§ 101.31(7)	10/08/2021	Granted w/Conditions
Geisinger—Bloomsburg Hospital	§ 153.1(a) 2.1-4.1.3.2(1)(c) facility requirements	10/08/2021	Granted
Geisinger Medical Center Muncy	§ 107.61 (relating to written orders)	10/08/2021	Granted w/Conditions
Geisinger Wyoming Valley Medical Center	§ 153.1(a) 2.1-3.2.2.2(1)(a) space requirements	10/08/2021	Granted
The Good Shepherd Rehabilitation Hospital	§ 101.31(5)	10/12/2021	Granted w/Conditions
The Hospital of the University of Pennsylvania	§ 153.1(a) 2.2-3.3.4.2(b) and (c) preoperative patient care area	10/28/2021	Granted
	§ 153.1(a) 2.2-3.3.4.4(1)(b)(iii) phase II recovery room(s) or area	10/28/2021	Granted
John Heinz Institute of Rehabilitation Medicine	§ 101.31(5)	10/08/2021	Granted w/Conditions
Penn Highlands Brookville	§ 107.26(b)(1) (relating to additional committees)	10/12/2021	Granted w/Conditions
Penn Highlands Dubois	§ 107.26(b)(1)	10/12/2021	Granted w/Conditions
Penn Highlands Elk	§ 107.26(b)(1)	10/12/2021	Granted w/Conditions
Penn Highlands Huntingdon	§ 107.26(b)(1)	10/12/2021	Granted w/Conditions
	§ 153.1(a) 2.1-1.4 facility layout	10/12/2021	Granted
	§ 153.1(a) 2.1-3.8.11.3 clean supply room	10/12/2021	Granted
	§ 153.1(a) 2.1-3.10.2.1 patient toilet room(s)	10/12/2021	Granted
	§ 153.1(a) 2.1-8.3.6 electrical receptacles	10/12/2021	Granted
	§ 153.1(a) 2.12-3.3.2.3 acoustic requirements	10/12/2021	Granted
Penn Highlands Tyrone	§ 107.26(b)(1)	10/12/2021	Granted w/Conditions
Penn State Health Hampden Medical Center	§ 123.25(2)	10/12/2021	Granted w/Conditions
Phoenixville Hospital	§ 103.31 (relating to the chief executive officer)	10/12/2021	Granted w/Conditions
Pottstown Hospital	§ 103.31	10/12/2021	Granted w/Conditions
Saint Mary Rehabilitation Hospital, LLP	§ 101.31(5)	10/12/2021	Granted w/Conditions

Facility Name	28 Pa. Code Regulation	Dec. Date	Decision
Wellspan Ephrata Community Hospital	§ 143.4 (relating to medical appraisal of a podiatric patient)		Granted w/Conditions
	§ 143.5 (relating to medical supervision of podiatric patients)		Granted w/Conditions

Nursing Care Facilities

	Nursing Care Facilities		
Facility Name	28 Pa. Code Regulation	Dec. Date	Decision
Allied Services Center City Skilled Nursing	§ 201.22(e) and (j) (relating to prevention, control and surveillance of tuberculosis (TB))	10/18/2021	Granted
Allied Services Meade Street Skilled Nursing	§ 201.22(e) and (j)	10/18/2021	Granted
Allied Services Skilled Nursing Center	§ 201.22(e) and (j)	10/18/2021	Granted
Calvary Fellowship Homes, Inc.	§ 201.22(j)	10/25/2021	Granted
Carbondale Nursing and Rehabilitation Center	§ 201.22(j)	09/27/2021	Not Req'd
Chambers Pointe Health Care Center	§ 205.20(a) (relating to resident bedrooms)	09/20/2021	Granted
Colonial Manor Nursing Home	§ 201.22(j)	09/20/2021	Not Req'd
Forestview	§ 201.22(e)	10/18/2021	Granted
Garden Spring Nursing and Rehabilitation Center	§ 205.6(a) (relating to function of building)	09/13/2021	Granted
The Glen at Willow Valley	§ 205.36(h) (relating to bathing facilities)	10/13/2021	Granted
Greensburg Care Center	§ 201.22(j)	10/13/2021	Granted
Guardian Healthcare and Rehabilitation Center	§ 201.22(j)	10/04/2021	Granted
Guardian Healthcare at Taylor	§ 201.22(j)	10/04/2021	Granted
Haida Healthcare and Rehabilitation Center	§ 201.22(j)	10/04/2021	Granted
Hanover Hall	§ 201.22(j)	09/20/2021	Not Req'd
Harmon House Care Center	§ 201.22(j)	10/13/2021	Granted
Kinzua Healthcare and Rehabilitation Center	§ 201.22(j)	10/25/2021	Granted
Maple Farm	§ 205.20(a)	10/25/2021	
Meadow View Healthcare and Rehabilitation Center	§ 201.22(j)	10/04/2021	Granted
Milford Healthcare and Rehabilitation Center	§ 201.22(e) and (j)	10/25/2021	Granted
Misericordia Nursing and Rehabilitation Center	§ 201.22(j)	09/20/2021	Not Req'd
Pleasant Ridge Manor—West	§ 201.22(e), (h) and (j)	09/13/2021	Granted
Richland Healthcare and Rehabilitation Center	§ 201.22(j)	10/13/2021	Granted
Saint Anne's Retirement Community	§ 201.22(e)	10/13/2021	Granted
Scenery Hill Healthcare and Rehabilitation Center	§ 201.22(j)	09/27/2021	Granted
Schuylkill Center	§ 201.22(j)	09/27/2021	Not Req'd
Sunset Ridge Healthcare and Rehabilitation Center	§ 201.22(j)	10/04/2021	Granted
Walnut Creek Healthcare and Rehabilitation Center	§ 201.22(j)	10/13/2021	Granted
	§ 211.9(g) (relating to pharmacy services)	10/18/2021	Granted
Western Reserve Healthcare and Rehabilitation Center	§ 201.22(j)	10/04/2021	Granted
William Penn Healthcare and Rehabilitation Center	§ 201.22(e)	10/04/2021	Granted

Home Health

Facility Name	28 Pa. Code Regulation	Dec. Date	Decision
Amedisys Home Health—Butler	§ 601.31 (relating to acceptance of patients, plan of treatment and medical supervision)	09/15/2021	Granted
Amedisys Home Health—Uniontown	§ 601.31	09/15/2021	Granted
Aveanna Healthcare	§ 601.6 (relating to definitions), specifically the definition of home health aide	09/15/2021	Granted
	§ 601.31	10/20/2021	Granted
Bayada Home Health Care—Erie	§ 601.6	09/15/2021	Granted
	§ 601.22(a)—(c) (relating to agency evaluation and review)	09/15/2021	Granted
	§ 601.35(c) (relating to home health aide services)	09/15/2021	Granted
Bayada Home Health Care—Lancaster	§ 601.6	09/15/2021	Granted
	§ 601.22(a)—(c)	09/15/2021	Granted
	§ 601.35(c)	09/15/2021	Granted
Bayada Home Health Care—Lititz	§ 601.6	09/15/2021	Granted
	§ 601.22(a)—(c)	09/15/2021	Granted
	§ 601.35(c)	09/15/2021	Granted
Bayada Home Health Care—Williamsport	§ 601.6	09/15/2021	Granted
	§ 601.22(a)—(c)	09/15/2021	Granted
	§ 601.35(c)	09/15/2021	Granted
Caregivers America Home Health Services—Allentown	§ 601.31	10/20/2021	Granted
Caregivers America Home Health Services—Clarks Summit	§ 601.31	10/20/2021	Granted
Centre Homecare, Inc.	§ 601.31	09/15/2021	Granted
Clarion Forest VNA	§ 601.31	09/15/2021	Granted
Community Nursing Services of Clinton County	§ 601.31	09/15/2021	Granted
Faithful Nursing LP	§ 601.31	09/15/2021	Granted
Jefferson Health Home Care and Hospice	§ 601.31	10/20/2021	Granted
Resta Home Health	§ 601.31	09/15/2021	Granted
Saint Luke's Home Health	§ 601.31	09/15/2021	Granted
Visiting Nurse Association of Western Pennsylvania	§ 601.31	10/20/2021	Granted
VNA of Central PA	§ 601.31	09/28/2021	Granted
VNA Health System—Lewisburg	§ 601.31	09/15/2021	Granted
Wellspan VNA Home Care—Ephrata	§ 601.31	10/20/2021	Granted
Wellspan VNA Home Care—Lebanon	§ 601.31	10/20/2021	Granted
Wellspan VNA Home Care—York	§ 601.31	10/20/2021	Granted

Persons with a disability who require an alternative format of this notice (for example, large print, audiotape, Braille) should contact the Division of Acute and Ambulatory Care or the Division of Nursing Care Facilities at the previously referenced address or telephone number, or for speech and/or hearing-impaired persons, call the Pennsylvania Hamilton Relay Service at (800) 654-5984 (TDD users) or (800) 654-5988 (voice users).

ALISON BEAM, Acting Secretary

[Pa.B. Doc. No. 21-1930. Filed for public inspection November 19, 2021, 9:00 a.m.]

DEPARTMENT OF HEALTH

Long-Term Care Nursing Facilities; Requests for Exception

The following long-term care nursing facility is seeking an exception to 28 Pa. Code § 201.22(j) (relating to prevention, control and surveillance of tuberculosis (TB)):

Landis Homes 1001 East Oregon Road Lititz, PA 17543-9206 FAC ID # 120602

The following long-term care nursing facility is seeking an exception to 28 Pa. Code § 205.38(b) (relating to toilet

Allied Services Meade Street Skilled Nursing 200 South Meade Street Wilkes-Barre, PA 18702 FAC ID # 384202

The following long-term care nursing facility is seeking an exception to 28 Pa. Code § 205.6(a) (relating to function of building):

Moravian Manor 300 West Lemon Street Lititz, PA 19543 FAC ID # 135202

These requests are on file with the Department of Health (Department). Persons may receive a copy of a request for exception by requesting a copy from the Department of Health, Division of Nursing Care Facilities, Room 526, Health and Welfare Building, Harrisburg, PA 17120, (717) 787-1816, fax (717) 772-2163, ra-paexcept@pa.gov.

Persons who wish to comment on an exception request may do so by sending a letter by mail, e-mail or facsimile to the Division at the previously listed address.

Comments received by the Department within 10 days after the date of publication of this notice will be reviewed by the Department before it decides whether to approve or disapprove the request for exception.

Persons with a disability who wish to obtain a copy of the request and/or provide comments to the Department and require an auxiliary aid, service or other accommodation to do so should contact the Division at the previously listed address or phone number, or for speech and/or hearing-impaired persons, call the Pennsylvania Hamilton Relay Service at (800) 654-5984 (TDD users) or (800) 654-5988 (voice users).

> ALISON BEAM, Acting Secretary

 $[Pa.B.\ Doc.\ No.\ 21\text{-}1931.\ Filed\ for\ public\ inspection\ November\ 19,\ 2021,\ 9:00\ a.m.]$

DEPARTMENT OF HUMAN SERVICES

Supplemental Payments to Qualifying Hospitals

The Department of Human Services (Department) is providing final public notice to establish a new class of supplemental payments beginning Fiscal Year (FY) 2020-2021 to qualifying acute care general hospitals that treat

a high percentage of Medical Assistance (MA) patients under 18 years of age. These payments will enable the continuation of quality medical services for children enrolled in the MA program.

The Department published notice of its intent to allocate funding for these payments at 51 Pa.B. 3398 (June 19, 2021). The Department received no comments during the 30-day comment period. The Department will implement the total payment set forth in the notice of intent.

Fiscal Impact

For FY 2020-2021, the Department will allocate \$40.163 million in total (State and Federal) funds for these supplemental payments.

> MEG SNEAD. Acting Secretary

Fiscal Note: 14-NOT-1469. (1) General Fund; (2) Implementing Year 2020-21 is \$0; (3) 1st Succeeding Year 2021-22 is \$9,061,000; 2nd Succeeding Year 2022-23 through 5th Succeeding Year 2025-26 are \$0; (4) 2019-20 Program—\$344,107,000; 2018-19 Program—\$342,544,000; 2017-18 Program—\$477,690,000; (7) MA—Fee-for-Service; (8) recommends adoption. Funds have been included in the budget to cover this increase.

[Pa.B. Doc. No. 21-1932. Filed for public inspection November 19, 2021, 9:00 a.m.]

DEPARTMENT OF REVENUE

Pennsylvania \$500,000 Crossword Mania Instant **Lottery Game 1556**

Under the State Lottery Law (72 P.S. §§ 3761-101— 3761-314) and 61 Pa. Code § 819.203 (relating to notice of instant game rules), the Secretary of Revenue hereby provides public notice of the rules for the following instant lottery game:

- 1. Name: The name of the game is Pennsylvania \$500,000 Crossword Mania (hereinafter "\$500,000 Crossword Mania"). The game number is PA-1556.
- 2. Price: The price of a \$500,000 Crossword Mania instant lottery game ticket is \$10.
- 3. Play symbols: Each \$500,000 Crossword Mania instant lottery game ticket will feature a "YOUR LETTERS" area, three crossword puzzle play grids, known as "GRID 1," "GRID 2" and "GRID 3," respectively, and a "BONUS" area. Each crossword "GRID" is played separately. The "BONUS" area is played separately. The play symbols, located in the "YOUR LETTERS" area, are: the letters A through and including Z. The play symbols, located in "GRID 1" and "GRID 2," are: the letters A through and including Z and a +50 symbol. The play symbols, located in "GRID 3," are: the letters A through and including Z. The play/prize symbols, located in the "BONUS" area, are: NO BONUS (TRYAGAIN) symbol, TRY AGAIN (NOBONUS) symbol, NO BONUS (TRYAGAIN) symbol, TRY AGAIN (NOBONUS) symbol, NO BONUS (TRYAGAIN) symbol, \$10^{.00} (TEN DOL), \$20^{.00} (TWENTY), \$30^{.00} (THIRTY), \$50^{.00} (FIFTY) and \$100 (ONE HUN).
- 4. *Prizes*: The prizes that can be won in this game, are: \$10, \$20, \$30, \$50, \$100, \$200, \$400, \$500, \$1,000, \$5,000, \$10,000, \$50,000 and \$500,000. The prizes that can be won in the "BONUS" area, are: \$10, \$20, \$30, \$50

- and \$100. A player can win up to four times on a ticket. \$500,000 Crossword Mania contains a feature that can increase certain prizes. For a complete list of prizes, and how those prizes can be won, see section 7 (relating to Number and description of prizes and approximate odds).
- 5. Approximate number of tickets printed for the game: Approximately 10,800,000 tickets will be printed for the \$500,000 Crossword Mania instant lottery game.
 - 6. Determination of prize winners:
- (a) Holders of tickets where the player completely matches ten entire words in "GRID 2," using only the letters found in the "YOUR LETTERS" area, on a single ticket, shall be entitled to a prize of \$500,000.
- (b) Holders of tickets where the player completely matches nine entire words in "GRID 2," using only the letters found in the "YOUR LETTERS" area, on a single ticket, shall be entitled to a prize of \$50,000.
- (c) Holders of tickets where the player completely matches ten entire words in "GRID 1," using only the letters found in the "YOUR LETTERS" area, on a single ticket, shall be entitled to a prize of \$10,000.
- (d) Holders of tickets where the player completely matches nine entire words in "GRID 1," using only the letters found in the "YOUR LETTERS" area, on a single ticket, shall be entitled to a prize of \$5,000.
- (e) Holders of tickets where the player completely matches eight entire words in "GRID 2," using only the letters found in the "YOUR LETTERS" area, on a single ticket, shall be entitled to a prize of \$5,000.
- (f) Holders of tickets where the player completely matches eight entire words in "GRID 1," using only the letters found in the "YOUR LETTERS" area, on a single ticket, shall be entitled to a prize of \$1,000.
- (g) Holders of tickets where the player completely matches seven entire words in "GRID 2," using only the letters found in the "YOUR LETTERS" area, on a single ticket, shall be entitled to a prize of \$1,000.
- (h) Holders of tickets where the player completely matches five entire words in "GRID 3," using only the letters found in the "YOUR LETTERS" area, on a single ticket, shall be entitled to a prize of \$500.
- (i) Holders of tickets where the player completely matches seven entire words in "GRID 1," using only the letters found in the "YOUR LETTERS" area, and upon which a +50 symbol appears in any one of the matching words, on a single ticket, shall be entitled to a prize of \$450.
- (j) Holders of tickets where the player completely matches six entire words in "GRID 2," using only the letters found in the "YOUR LETTERS" area, and upon which a +50 symbol appears in any one of the matching words, on a single ticket, shall be entitled to a prize of \$450.
- (k) Holders of tickets where the player completely matches seven entire words in "GRID 1," using only the letters found in the "YOUR LETTERS" area, on a single ticket, shall be entitled to a prize of \$400.
- (l) Holders of tickets where the player completely matches six entire words in "GRID 2," using only the letters found in the "YOUR LETTERS" area, on a single ticket, shall be entitled to a prize of \$400.
- (m) Holders of tickets where the player completely matches six entire words in "GRID 1," using only the letters found in the "YOUR LETTERS" area, and upon

which a +50 symbol appears in any one of the matching words, on a single ticket, shall be entitled to a prize of \$250.

- (n) Holders of tickets where the player completely matches five entire words in "GRID 2," using only the letters found in the "YOUR LETTERS" area, and upon which a +50 symbol appears in any one of the matching words, on a single ticket, shall be entitled to a prize of \$250.
- (o) Holders of tickets where the player completely matches six entire words in "GRID 1," using only the letters found in the "YOUR LETTERS" area, on a single ticket, shall be entitled to a prize of \$200.
- (p) Holders of tickets where the player completely matches five entire words in "GRID 2," using only the letters found in the "YOUR LETTERS" area, on a single ticket, shall be entitled to a prize of \$200.
- (q) Holders of tickets where the player completely matches five entire words in "GRID 1," using only the letters found in the "YOUR LETTERS" area, and upon which a +50 symbol appears in any one of the matching words, on a single ticket, shall be entitled to a prize of \$150.
- (r) Holders of tickets where the player completely matches five entire words in "GRID 1," using only the letters found in the "YOUR LETTERS" area, on a single ticket, shall be entitled to a prize of \$100.
- (s) Holders of tickets upon which a play/prize symbol of \$100 (ONE HUN) appears in the "BONUS" area, on a single ticket, shall be entitled to a prize of \$100.
- (t) Holders of tickets where the player completely matches four entire words in "GRID 3," using only the letters found in the "YOUR LETTERS" area, on a single ticket, shall be entitled to a prize of \$100.
- (u) Holders of tickets where the player completely matches four entire words in "GRID 2," using only the letters found in the "YOUR LETTERS" area, and upon which a +50 symbol appears in any one of the matching words, on a single ticket, shall be entitled to a prize of \$100.
- (v) Holders of tickets where the player completely matches four entire words in "GRID 1," using only the letters found in the "YOUR LETTERS" area, and upon which a +50 symbol appears in any one of the matching words, on a single ticket, shall be entitled to a prize of \$80.
- (w) Holders of tickets where the player completely matches three entire words in "GRID 1," using only the letters found in the "YOUR LETTERS" area, and upon which a +50 symbol appears in any one of the matching words, on a single ticket, shall be entitled to a prize of \$70.
- (x) Holders of tickets where the player completely matches three entire words in "GRID 2," using only the letters found in the "YOUR LETTERS" area, and upon which a +50 symbol appears in any one of the matching words, on a single ticket, shall be entitled to a prize of \$70.
- (y) Holders of tickets where the player completely matches four entire words in "GRID 2," using only the letters found in the "YOUR LETTERS" area, on a single ticket, shall be entitled to a prize of \$50.
- (z) Holders of tickets upon which a play/prize symbol of $50^{.00}$ (FIFTY) appears in the "BONUS" area, on a single ticket, shall be entitled to a prize of 50.

- (aa) Holders of tickets where the player completely matches four entire words in "GRID 1," using only the letters found in the "YOUR LETTERS" area, on a single ticket, shall be entitled to a prize of \$30.
- (bb) Holders of tickets upon which a play/prize symbol of $\$30^{.00}$ (THIRTY) appears in the "BONUS" area, on a single ticket, shall be entitled to a prize of \$30.
- (cc) Holders of tickets where the player completely matches three entire words in "GRID 1," using only the letters found in the "YOUR LETTERS" area, on a single ticket, shall be entitled to a prize of \$20.
- (dd) Holders of tickets where the player completely matches three entire words in "GRID 2," using only the letters found in the "YOUR LETTERS" area, on a single ticket, shall be entitled to a prize of \$20.
- (ee) Holders of tickets where the player completely matches three entire words in "GRID 3," using only the letters found in the "YOUR LETTERS" area, on a single ticket, shall be entitled to a prize of \$20.
- (ff) Holders of tickets upon which a play/prize symbol of $\$20^{.00}$ (TWENTY) appears in the "BONUS" area, on a single ticket, shall be entitled to a prize of \$20.

- (gg) Holders of tickets where the player completely matches two entire words in "GRID 1," using only the letters found in the "YOUR LETTERS" area, on a single ticket, shall be entitled to a prize of \$10.
- (hh) Holders of tickets where the player completely matches two entire words in "GRID 2," using only the letters found in the "YOUR LETTERS" area, on a single ticket, shall be entitled to a prize of \$10.
- (ii) Holders of tickets where the player completely matches two entire words in "GRID 3," using only the letters found in the "YOUR LETTERS" area, on a single ticket, shall be entitled to a prize of \$10.
- (jj) Holders of tickets upon which a play/prize symbol of \$10^{.00} (TEN DOL) appears in the "BONUS" area, on a single ticket, shall be entitled to a prize of \$10.
- 7. Number and description of prizes and approximate odds: The following table sets forth the approximate number of winners, amounts of prizes and approximate odds of winning:

GRID 1 Win With:	GRID 2 Win With:	GRID 3 Win With:	BONUS Win With:	Win:	Approximate Odds Are 1 In:	Approximate No. Of Winners Per 10,800,000 Tickets:
			\$10	\$10	60	180,000
		2 WORDS		\$10	42.86	252,000
	2 WORDS			\$10	20	540,000
2 WORDS				\$10	27.27	396,000
2 WORDS			\$10	\$20	60	180,000
	2 WORDS	2 WORDS		\$20	60	180,000
2 WORDS	2 WORDS			\$20	60	180,000
			\$20	\$20	60	180,000
		3 WORDS		\$20	200	54,000
	3 WORDS			\$20	120	90,000
3 WORDS				\$20	120	90,000
2 WORDS	2 WORDS	2 WORDS		\$30	300	36,000
		3 WORDS	\$10	\$30	300	36,000
	3 WORDS		\$10	\$30	300	36,000
			\$30	\$30	200	54,000
4 WORDS				\$30	300	36,000
2 WORDS	2 WORDS	2 WORDS	\$20	\$50	300	36,000
3 WORDS	3 WORDS		\$10	\$50	300	36,000
4 WORDS	2 WORDS		\$10	\$50	300	36,000
4 WORDS	2 WORDS	2 WORDS		\$50	200	54,000
4 WORDS	3 WORDS			\$50	300	36,000
			\$50	\$50	200	54,000
	4 WORDS			\$50	600	18,000
	3 WORDS w/ +50 SYMBOL		\$30	\$100	600	18,000
3 WORDS w/ +50 SYMBOL	2 WORDS		\$20	\$100	600	18,000
3 WORDS w/ +50 SYMBOL	3 WORDS	2 WORDS		\$100	300	36,000

GRID 1 Win With:	GRID 2 Win With:	GRID 3 Win With:	BONUS Win With:	Win:	Approximate Odds Are 1 In:	Approximate No. Of Winners Per 10,800,000 Tickets:
		4 WORDS		\$100	600	18,000
			\$100	\$100	600	18,000
5 WORDS				\$100	600	18,000
3 WORDS w/ +50 SYMBOL	4 WORDS w/ +50 SYMBOL		\$30	\$200	2,400	4,500
4 WORDS w/ +50 SYMBOL	3 WORDS w/ +50 SYMBOL		\$50	\$200	2,400	4,500
5 WORDS		4 WORDS		\$200	6,000	1,800
5 WORDS	4 WORDS w/ +50 SYMBOL			\$200	6,000	1,800
5 WORDS w/ +50 SYMBOL	4 WORDS			\$200	4,000	2,700
	5 WORDS			\$200	6,000	1,800
6 WORDS				\$200	6,000	1,800
5 WORDS w/ +50 SYMBOL	5 WORDS w/ +50 SYMBOL			\$400	6,000	1,800
6 WORDS	4 WORDS	4 WORDS	\$50	\$400	12,000	900
6 WORDS w/ +50 SYMBOL	4 WORDS w/ +50 SYMBOL	3 WORDS	\$30	\$400	12,000	900
	6 WORDS			\$400	6,000	1,800
7 WORDS				\$400	12,000	900
6 WORDS	5 WORDS	4 WORDS		\$500	24,000	450
6 WORDS w/ +50 SYMBOL	5 WORDS w/ +50 SYMBOL			\$500	8,000	1,350
7 WORDS	4 WORDS	3 WORDS	\$30	\$500	12,000	900
7 WORDS w/ +50 SYMBOL			\$50	\$500	6,000	1,800
		5 WORDS		\$500	24,000	450
5 WORDS w/ +50 SYMBOL	5 WORDS w/ +50 SYMBOL	5 WORDS	\$100	\$1,000	24,000	450
6 WORDS w/ +50 SYMBOL	5 WORDS w/ +50 SYMBOL	5 WORDS		\$1,000	24,000	450
7 WORDS	6 WORDS	4 WORDS	\$100	\$1,000	24,000	450
7 WORDS w/ +50 SYMBOL	6 WORDS w/ +50 SYMBOL		\$100	\$1,000	24,000	450
7 WORDS w/ +50 SYMBOL	6 WORDS w/ +50 SYMBOL	4 WORDS		\$1,000	24,000	450
	7 WORDS			\$1,000	120,000	90
8 WORDS				\$1,000	120,000	90
	8 WORDS			\$5,000	1,080,000	10
9 WORDS				\$5,000	1,080,000	10
9 WORDS	8 WORDS			\$10,000	1,080,000	10
10 WORDS				\$10,000	1,080,000	10
	9 WORDS			\$50,000	2,160,000	5
	10 WORDS			\$500,000	2,160,000	5

Scratch the YOUR LETTERS to reveal 18 letters. Scratch each matching letter every time it is found in any Crossword GRID. Each letter's square, when scratched gently, will turn to white.

When you have matched the letters of two (2) or more entire words in any Crossword GRID, win the corresponding PRIZE shown in the PRIZE KEY for that Crossword GRID. Only the highest PRIZE won in each Crossword GRID will be paid.

Each Crossword GRID is played separately.

Scratch each "+50" symbol that appears in Crossword GRID 1 and Crossword GRID 2. Each "+50" symbol is a FREE spot. When a "+50" symbol appears in any winning combination of words, add \$50 to the corresponding PRIZE shown in the PRIZE KEY for that Crossword GRID and win that amount!

BONUS: Reveal a cash prize amount, win that amount automatically! BONUS is played separately.

Prizes, including top prizes, are subject to availability at the time of purchase.

- 8. Retailer incentive awards: The Lottery may conduct a separate Retailer Incentive Program for retailers who sell \$500,000 Crossword Mania instant lottery game tickets.
- 9. Retailer bonus: The Lottery may offer a retailer bonus in connection with the sale of Pennsylvania instant lottery game tickets. If a retailer bonus is offered, a Lottery retailer shall be eligible for a bonus as described in this section. Lottery retailers who sell a winning ticket that entitles the ticket holder to a prize, either payable in a single installment or having a guaranteed minimum payout, of at least \$100,000 and not exceeding \$500,000 shall be paid a bonus of \$500. Lottery retailers who sell a winning ticket that entitles the ticket holder to a prize, either payable in a single installment or having a guaranteed minimum payout, of at least \$500,001 and not exceeding \$1,000,000 shall be paid a bonus of \$5,000. Lottery retailers who sell a winning ticket that entitles the ticket holder to a prize, either payable in a single installment or having a guaranteed minimum payout, of at least \$1,000,001 and not exceeding \$10,000,000 shall be paid a bonus of \$10,000. A Lottery retailer is entitled only to the largest bonus for which they qualify on a winning ticket. A bonus will be initiated for payment after the instant ticket is claimed and validated. A bonus will not be awarded to a Lottery retailer that sells a non-winning Pennsylvania Lottery instant ticket used to enter a Pennsylvania Lottery second-chance drawing or promotion that is subsequently selected to win a prize.
- 10. Unclaimed prize money: For a period of 1 year from the announced close of \$500,000 Crossword Mania, prize money from winning \$500,000 Crossword Mania instant lottery game tickets will be retained by the Secretary for payment to the persons entitled thereto. If no claim is made within 1 year of the announced close of the \$500,000 Crossword Mania instant lottery game, the right of a ticket holder to claim the prize represented by the ticket, if any, will expire and the prize money will be paid into the State Lottery Fund and used for purposes provided for by statute.
- 11. Governing law: In purchasing a ticket, the customer agrees to comply with and abide by the State Lottery Law (72 P.S. §§ 3761-101—3761-314), 61 Pa. Code Part V (relating to State Lotteries) and the provisions contained in this notice.
- 12. Termination of the game: The Secretary may announce a termination date, after which no further tickets from this game may be sold. The announcement will be disseminated through media used to advertise or promote \$500,000 Crossword Mania or through normal communications methods.

C. DANIEL HASSELL,

Secretary

 $[Pa.B.\ Doc.\ No.\ 21\text{-}1933.\ Filed\ for\ public\ inspection\ November\ 19,\ 2021,\ 9:00\ a.m.]$

DEPARTMENT OF REVENUE

Pennsylvania \$3 Million Xtreme Tripler Instant Lottery Game 1555

Under the State Lottery Law (72 P.S. §§ 3761-101—3761-314) and 61 Pa. Code § 819.203 (relating to notice of instant game rules), the Secretary of Revenue hereby provides public notice of the rules for the following instant lottery game:

- 1. *Name*: The name of the game is Pennsylvania \$3 Million Xtreme Tripler (hereinafter "\$3 Million Xtreme Tripler"). The game number is PA-1555.
- 2. Price: The price of a \$3 Million Xtreme Tripler instant lottery game ticket is \$30.
- 3. Play symbols: Each \$3 Million Xtreme Tripler instant lottery game ticket will contain one play area featuring a "WINNING NUMBERS" area, a "YOUR NUMBERS" area, an "XTREME" tripler spot and a "BONUS" area. The "BONUS" is played separately. The play symbols and their captions, located in the "WIN-NING NUMBERS" area, are: 1 (ONE), 2 (TWO), 4 (FOUR), 5 (FIVE), 6 (SIX), 7 (SEVEN), 8 (EIGHT), 9 (NINE), 10 (TEN), 11 (ELEVN), 12 (TWLV), 13 (THRTN), 14 (FORTN), 15 (FIFTN), 16 (SIXTN), 17 (SVNTN), 18 (EGHTN), 19 (NINTN), 20 (TWENT), 21 (TWYONE), 22 (TWYTWO), 23 (TWYTHR), 24 (TWYFOR), 25 (TWYFIV), 26 (TWYSIX), 27 (TWYSVN), 28 (TWYEGT), 29 (TWYNIN), 30 (THIRT), 31 (THYONE), 32 (THYTWO), 33 (THYTHR), 34 (THYFOR), 35 (THYFIV), 36 (THYSIX), 37 (THYSVN), 38 (THYEGT), 39 (THYNIN) and 40 (FORT). The play symbols and their captions, located in the "YOUR NUMBERS" area, are: 1 (ONE), 2 (TWO), 4 (FOUR), 5 (FIVE), 6 (SIX), 7 (SEVEN), 8 (EIGHT), 9 (NINE), 10 (TEN), 11 (ELEVN), 12 (TWLV), 13 (THRTN), 14 (FORTN), 15 (FIFTN), 16 (SIXTN), 17 (SVNTN), 18 (EGHTN), 19 (NINTN), 20 (TWENT), 21 (TWYONE), 22 (TWYTWO), 23 (TWYTHR), 24 (TWYFOR), 25 (TWYFIV), 26 (TWYSIX), 27 (TWYSVN), 28 (TWYEGT), 29 (TWYNIN), 30 (THIRT), 31 (THYONE), 32 (THYTWO), 33 (THYTHR), 34 (THYFOR), 35 (THYFIV), 36 (THYSIX), 37 (THYSVN), 38 (THYEGT), 39 (THYNIN), 40 (FORT), 3X (3TIMES) symbol and an XTREME (WINALL) symbol. The play symbols and their captions, located in the "XTREME" tripler spot, are: Star (NOMULT) symbol, Money Bag (NOMULT) symbol, Piggy Bank (NOMULT) symbol, Stack of Coins (NOMULT) symbol, Treasure Chest (NOMULT) symbol and a \$\$\$ (3XMULT) symbol. The play symbols and their captions, located in the "BONUS" area, are: NO BONUS (TRYAGAIN) symbol, TRYAGAIN (NOBONUS) symbol, NO BONUS (TRYAGAIN) symbol, TRY AGAIN (NOBONUS) symbol, NO BONUS (TRYAGAIN) symbol, TRY AGAIN (NOBONUS) symbol, NO BONUS (TRYAGAIN) symbol, TRY AGAIN (NOBONUS) symbol, WIN (WIN) symbol and a TRIPLE (TRIPLE) symbol.
- 4. Prize symbols: The prize symbols and their captions, located in the "YOUR NUMBERS" area, are: $\$30^{.00}$ (THIRTY), $\$40^{.00}$ (FORTY), $\$50^{.00}$ (FIFTY), \$100 (ONE HUN), \$150 (ONEHUNFTY), \$300 (THR HUN), \$500 (FIV HUN), \$1,000 (ONE THO), \$3,000 (THR THO),

- \$30,000 (THRTYTHO), \$300,000 (THRHUNTHO) and \$3MILL (THR MIL). The prize symbols and their captions, located in the "BONUS" area, are: $\$30^{.00}$ (THIRTY), $\$40^{.00}$ (FORTY), $\$50^{.00}$ (FIFTY), \$100 (ONE HUN), \$150 (ONEHUNFTY), \$300 (THR HUN), \$500 (FIV HUN) and \$1,000 (ONE THO).
- 5. *Prizes*: The prizes that can be won in this game, are: \$30, \$40, \$50, \$100, \$150, \$300, \$500, \$1,000, \$3,000, \$30,000, \$30,000 and \$3,000,000. The prizes that can be won in the "BONUS" area, are: \$30, \$40, \$50, \$100, \$150, \$300, \$500 and \$1,000. \$3 Million Xtreme Tripler contains a feature that can multiply certain prizes. For a complete list of prizes, and how those prizes can be won, see section 8 (relating to Number and description of prizes and approximate odds). A player can win up to 30 times on a ticket.
- 6. Approximate number of tickets printed for the game: Approximately 8,400,000 tickets will be printed for the \$3 Million Xtreme Tripler instant lottery game.
 - 7. Determination of prize winners:
- (a) Holders of tickets upon which any one of the "YOUR NUMBERS" play symbols matches any of the "WINNING NUMBERS" play symbols, and a prize symbol of \$3MILL (THR MIL) appears in the "Prize" area under the matching "YOUR NUMBERS" play symbol, on a single ticket, shall be entitled to a prize of \$3,000,000. This prize shall be paid as a one-time, lump sum cash payment.
- (b) Holders of tickets upon which any one of the "YOUR NUMBERS" play symbols matches any of the "WINNING NUMBERS" play symbols, and a prize symbol of \$300,000 (THRHUNTHO) appears in the "Prize" area under the matching "YOUR NUMBERS" play symbol, on a single ticket, shall be entitled to a prize of \$300,000.
- (c) Holders of tickets upon which any one of the "YOUR NUMBERS" play symbols matches any of the "WINNING NUMBERS" play symbols, and a prize symbol of \$30,000 (THRTYTHO) appears in the "Prize" area under the matching "YOUR NUMBERS" play symbol, on a single ticket, shall be entitled to a prize of \$30,000.
- (d) Holders of tickets upon which an XTREME (WINALL) symbol appears in the "YOUR NUMBERS" area, and a prize symbol of \$3,000 (THR THO) appears in three of the "Prize" areas, a prize symbol of \$1,000 (ONE THO) appears in 20 of the "Prize" areas and a prize symbol of \$500 (FIV HUN) appears in two of the "Prize" areas, on a single ticket, shall be entitled to a prize of \$30,000.
- (e) Holders of tickets upon which an XTREME (WINALL) symbol appears in the "YOUR NUMBERS" area, and a prize symbol of \$3,000 (THR THO) appears in two of the "Prize" areas, a prize symbol of \$1,000 (ONE THO) appears in 16 of the "Prize" areas and a prize symbol of \$500 (FIV HUN) appears in seven of the "Prize" areas, on a single ticket, shall be entitled to a prize of \$25,500.
- (f) Holders of tickets upon which any one of the "YOUR NUMBERS" play symbols matches any of the "WINNING NUMBERS" play symbols, and a prize symbol of \$3,000 (THR THO) appears in the "Prize" area under the matching "YOUR NUMBERS" play symbol, on a single ticket, shall be entitled to a prize of \$3,000.
- (g) Holders of tickets upon which any one of the "YOUR NUMBERS" play symbols matches any of the "WINNING NUMBERS" play symbols, and a prize symbol of \$1,000 (ONE THO) appears in the "Prize" area under

the matching "YOUR NUMBERS" play symbol, and upon which a \$\$\$ (3XMULT) symbol appears in the "XTREME" tripler spot, on a single ticket, shall be entitled to a prize of \$3,000.

- (h) Holders of tickets upon which a 3X (3TIMES) symbol appears in the "YOUR NUMBERS" area, and a prize symbol of \$1,000 (ONE THO) appears in the "Prize" area under that 3X (3TIMES) symbol, on a single ticket, shall be entitled to a prize of \$3,000.
- (i) Holders of tickets upon which an XTREME (WINALL) symbol appears in the "YOUR NUMBERS" area, and a prize symbol of \$300 (THR HUN) appears in five of the "Prize" areas, a prize symbol of \$100 (ONE HUN) appears in ten of the "Prize" areas and a prize symbol of \$50.00 (FIFTY) appears in ten of the "Prize" areas, on a single ticket, shall be entitled to a prize of \$3.000.
- (j) Holders of tickets upon which an XTREME (WINALL) symbol appears in the "YOUR NUMBERS" area, and a prize symbol of \$500 (FIV HUN) appears in four of the "Prize" areas, a prize symbol of $$40^{.00}$ (FORTY) appears in ten of the "Prize" areas, a prize symbol of $$30^{.00}$ (THIRTY) appears in ten of the "Prize" areas and a prize symbol of \$150 (ONEHUNFTY) appears in one of the "Prize" areas, on a single ticket, shall be entitled to a prize of \$2,850.
- (k) Holders of tickets upon which any one of the "YOUR NUMBERS" play symbols matches any of the "WINNING NUMBERS" play symbols, and a prize symbol of \$1,000 (ONE THO) appears in the "Prize" area under the matching "YOUR NUMBERS" play symbol, on a single ticket, shall be entitled to a prize of \$1,000.
- (l) Holders of tickets upon which a WIN (WIN) symbol appears in the "BONUS" area, and a prize symbol of \$1,000 (ONE THO) appears in the "Prize" area under that WIN (WIN) symbol, on a single ticket, shall be entitled to a prize of \$1,000.
- (m) Holders of tickets upon which an XTREME (WINALL) symbol appears in the "YOUR NUMBERS" area, and a prize symbol of $$40^{.00}$ (FORTY) appears in all 25 of the "Prize" areas, on a single ticket, shall be entitled to a prize of \$1,000.
- (n) Holders of tickets upon which an XTREME (WINALL) symbol appears in the "YOUR NUMBERS" area, and a prize symbol of \$40 $^{.00}$ (FORTY) appears in 20 of the "Prize" areas and a prize symbol of \$30 $^{.00}$ (THIRTY) appears in five of the "Prize" areas, on a single ticket, shall be entitled to a prize of \$950.
- (o) Holders of tickets upon which any one of the "YOUR NUMBERS" play symbols matches any of the "WINNING NUMBERS" play symbols, and a prize symbol of \$300 (THR HUN) appears in the "Prize" area under the matching "YOUR NUMBERS" play symbol, and upon which a \$\$\$ (3XMULT) symbol appears in the "XTREME" tripler spot, on a single ticket, shall be entitled to a prize of \$900.
- (p) Holders of tickets upon which an XTREME (WINALL) symbol appears in the "YOUR NUMBERS" area, and a prize symbol of \$50^{.00} (FIFTY) appears in five of the "Prize" areas and a prize symbol of \$30^{.00} (THIRTY) appears in 20 of the "Prize" areas, on a single ticket, shall be entitled to a prize of \$850.
- (q) Holders of tickets upon which any one of the "YOUR NUMBERS" play symbols matches any of the "WINNING NUMBERS" play symbols, and a prize symbol of \$500 (FIV HUN) appears in the "Prize" area under the

matching "YOUR NUMBERS" play symbol, on a single ticket, shall be entitled to a prize of \$500.

- (r) Holders of tickets upon which a WIN (WIN) symbol appears in the "BONUS" area, and a prize symbol of \$500 (FIV HUN) appears in the "Prize" area under that WIN (WIN) symbol, on a single ticket, shall be entitled to a prize of \$500.
- (s) Holders of tickets upon which any one of the "YOUR NUMBERS" play symbols matches any of the "WINNING NUMBERS" play symbols, and a prize symbol of \$150 (ONEHUNFTY) appears in the "Prize" area under the matching "YOUR NUMBERS" play symbol, and upon which a \$\$\$ (3XMULT) symbol appears in the "XTREME" tripler spot, on a single ticket, shall be entitled to a prize of \$450.
- (t) Holders of tickets upon which a 3X (3TIMES) symbol appears in the "YOUR NUMBERS" area, and a prize symbol of \$150 (ONEHUNFTY) appears in the "Prize" area under that 3X (3TIMES) symbol, on a single ticket, shall be entitled to a prize of \$450.
- (u) Holders of tickets upon which any one of the "YOUR NUMBERS" play symbols matches any of the "WINNING NUMBERS" play symbols, and a prize symbol of \$300 (THR HUN) appears in the "Prize" area under the matching "YOUR NUMBERS" play symbol, on a single ticket, shall be entitled to a prize of \$300.
- (v) Holders of tickets upon which any one of the "YOUR NUMBERS" play symbols matches any of the "WINNING NUMBERS" play symbols, and a prize symbol of \$100 (ONE HUN) appears in the "Prize" area under the matching "YOUR NUMBERS" play symbol, and upon which a \$\$\$ (3XMULT) symbol appears in the "XTREME" tripler spot, on a single ticket, shall be entitled to a prize of \$300.
- (w) Holders of tickets upon which a 3X (3TIMES) symbol appears in the "YOUR NUMBERS" area, and a prize symbol of \$100 (ONE HUN) appears in the "Prize" area under that 3X (3TIMES) symbol, on a single ticket, shall be entitled to a prize of \$300.
- (x) Holders of tickets upon which a WIN (WIN) symbol appears in the "BONUS" area, and a prize symbol of \$300 (THR HUN) appears in the "Prize" area under that WIN (WIN) symbol, on a single ticket, shall be entitled to a prize of \$300.
- (y) Holders of tickets upon which a TRIPLE (TRIPLE) symbol appears in the "BONUS" area, and a prize symbol of \$100 (ONE HUN) appears in the "Prize" area under that TRIPLE (TRIPLE) symbol, on a single ticket, shall be entitled to a prize of \$300.
- (z) Holders of tickets upon which any one of the "YOUR NUMBERS" play symbols matches any of the "WINNING NUMBERS" play symbols, and a prize symbol of \$150 (ONEHUNFTY) appears in the "Prize" area under the matching "YOUR NUMBERS" play symbol, on a single ticket, shall be entitled to a prize of \$150.
- (aa) Holders of tickets upon which any one of the "YOUR NUMBERS" play symbols matches any of the "WINNING NUMBERS" play symbols, and a prize symbol of \$50^{.00} (FIFTY) appears in the "Prize" area under the matching "YOUR NUMBERS" play symbol, and upon which a \$\$\$ (3XMULT) symbol appears in the "XTREME" tripler spot, on a single ticket, shall be entitled to a prize of \$150.
- (bb) Holders of tickets upon which a 3X (3TIMES) symbol appears in the "YOUR NUMBERS" area, and a

- prize symbol of $50^{.00}$ (FIFTY) appears in the "Prize" area under that 3X (3TIMES) symbol, on a single ticket, shall be entitled to a prize of 150.
- (cc) Holders of tickets upon which a WIN (WIN) symbol appears in the "BONUS" area, and a prize symbol of \$150 (ONEHUNFTY) appears in the "Prize" area under that WIN (WIN) symbol, on a single ticket, shall be entitled to a prize of \$150.
- (dd) Holders of tickets upon which a TRIPLE (TRIPLE) symbol appears in the "BONUS" area, and a prize symbol of \$50^{.00} (FIFTY) appears in the "Prize" area under that TRIPLE (TRIPLE) symbol, on a single ticket, shall be entitled to a prize of \$150.
- (ee) Holders of tickets upon which any one of the "YOUR NUMBERS" play symbols matches any of the "WINNING NUMBERS" play symbols, and a prize symbol of \$100 (ONE HUN) appears in the "Prize" area under the matching "YOUR NUMBERS" play symbol, on a single ticket, shall be entitled to a prize of \$100.
- (ff) Holders of tickets upon which a WIN (WIN) symbol appears in the "BONUS" area, and a prize symbol of \$100 (ONE HUN) appears in the "Prize" area under that WIN (WIN) symbol, on a single ticket, shall be entitled to a prize of \$100.
- (gg) Holders of tickets upon which any one of the "YOUR NUMBERS" play symbols matches any of the "WINNING NUMBERS" play symbols, and a prize symbol of \$30-00 (THIRTY) appears in the "Prize" area under the matching "YOUR NUMBERS" play symbol, and upon which a \$\$\$ (3XMULT) symbol appears in the "XTREME" tripler spot, on a single ticket, shall be entitled to a prize of \$90.
- (hh) Holders of tickets upon which a TRIPLE (TRIPLE) symbol appears in the "BONUS" area, and a prize symbol of \$30.00 (THIRTY) appears in the "Prize" area under that TRIPLE (TRIPLE) symbol, on a single ticket, shall be entitled to a prize of \$90.
- (ii) Holders of tickets upon which any one of the "YOUR NUMBERS" play symbols matches any of the "WINNING NUMBERS" play symbols, and a prize symbol of 50^{00} (FIFTY) appears in the "Prize" area under the matching "YOUR NUMBERS" play symbol, on a single ticket, shall be entitled to a prize of 50.
- (jj) Holders of tickets upon which a WIN (WIN) symbol appears in the "BONUS" area, and a prize symbol of $50^{.00}$ (FIFTY) appears in the "Prize" area under that WIN (WIN) symbol, on a single ticket, shall be entitled to a prize of \$50.
- (kk) Holders of tickets upon which any one of the "YOUR NUMBERS" play symbols matches any of the "WINNING NUMBERS" play symbols, and a prize symbol of \$40.00 (FORTY) appears in the "Prize" area under the matching "YOUR NUMBERS" play symbol, on a single ticket, shall be entitled to a prize of \$40.
- (ll) Holders of tickets upon which a WIN (WIN) symbol appears in the "BONUS" area, and a prize symbol of $\$40^{.00}$ (FORTY) appears in the "Prize" area under that WIN (WIN) symbol, on a single ticket, shall be entitled to a prize of \$40.
- (mm) Holders of tickets upon which any one of the "YOUR NUMBERS" play symbols matches any of the "WINNING NUMBERS" play symbols, and a prize symbol of \$30.00 (THIRTY) appears in the "Prize" area under the matching "YOUR NUMBERS" play symbol, on a single ticket, shall be entitled to a prize of \$30.

(nn) Holders of tickets upon which a WIN (WIN) symbol appears in the "BONUS" area, and a prize symbol of $\$30^{.00}$ (THIRTY) appears in the "Prize" area under that WIN (WIN) symbol, on a single ticket, shall be entitled to a prize of \$30.

8. Number and description of prizes and approximate odds: The following table sets forth the approximate number of winners, amounts of prizes and approximate odds of winning:

When Any Of YOUR NUMBERS Match Any WINNING NUMBER, Win PRIZE Shown Under The Matching Number.	DOMAG		Approximate Odds	Approximate No. Of Winners Per
Win With:	BONUS:	Win:	Are 1 In:	8,400,000 Tickets:
	\$30 w/ WIN SYMBOL	\$30	15	560,000
\$30		\$30	20	420,000
	\$40 w/ WIN SYMBOL	\$40	30	280,000
\$40		\$40	20	420,000
	\$50 w/ WIN SYMBOL	\$50	20	420,000
\$50		\$50	30	280,000
\$50 × 2		\$100	150	56,000
\$30 × 2	\$40 w/ WIN SYMBOL	\$100	100	84,000
\$30	(\$40 w/ WIN SYMBOL) + (\$30 w/ WIN SYMBOL)	\$100	100	84,000
\$50	\$50 w/ WIN SYMBOL	\$100	100	84,000
	\$100 w/ WIN SYMBOL	\$100	100	84,000
\$100		\$100	300	28,000
\$30 × 5		\$150	2,400	3,500
\$30 × 2	\$30 w/ TRIPLE	\$150	1,200	7,000
\$30 × 4	\$30 w/ WIN SYMBOL	\$150	1,200	7,000
\$30 w/ \$\$\$ IN XTREME	(\$30 w/ WIN SYMBOL) × 2	\$150	1,200	7,000
\$50	(\$50 w/ WIN SYMBOL) × 2	\$150	1,200	7,000
\$50 × 2	\$50 w/ WIN SYMBOL	\$150	1,200	7,000
	(\$30 w/ WIN SYMBOL) × 5	\$150	2,400	3,500
	\$50 w/ TRIPLE	\$150	800	10,500
	\$150 w/ WIN SYMBOL	\$150	1,200	7,000
\$50 w/ 3X		\$150	960	8,750
\$50 w/ \$\$\$ IN XTREME		\$150	960	8,750
\$150		\$150	6,000	1,400
\$30 × 10		\$300	12,000	700
\$50 × 2	(\$100 w/ WIN SYMBOL) × 2	\$300	4,000	2,100
$(\$50 \times 2) + (\$30 \times 5)$	\$50 w/ WIN SYMBOL	\$300	4,000	2,100
\$50 w/ 3X	\$50 w/ TRIPLE	\$300	4,000	2,100

When Any Of YOUR NUMBERS Match Any WINNING NUMBER, Win PRIZE Shown Under The Matching Number. Win With:	BONUS:	Win :	Approximate Odds Are 1 In:	Approximate No. Of Winners Per 8,400,000 Tickets:
\$50 w/ \$\$\$ IN XTREME	(\$30 w/ WIN SYMBOL) × 5	\$300	1,714	4,900
\$150	\$150 w/ WIN SYMBOL	\$300	3,000	2,800
	(\$100 w/ WIN SYMBOL) × 3	\$300	4,000	2,100
	\$100 w/ TRIPLE	\$300	1,200	7,000
	\$300 w/ WIN SYMBOL	\$300	4,000	2,100
\$100 w/ 3X		\$300	1,200	7,000
\$100 w/ \$\$\$ IN XTREME		\$300	1,200	7,000
\$300		\$300	12,000	700
\$50 × 10		\$500	24,000	350
\$100 × 5		\$500	24,000	350
\$30 × 10	(\$100 w/ WIN SYMBOL) × 2	\$500	12,000	700
$$50 \times 4$	\$100 w/ TRIPLE	\$500	12,000	700
$(\$50 \times 4) + (\$30 \times 5)$	\$50 w/ TRIPLE	\$500	12,000	700
$(\$50 \text{ w/ } 3\text{X}) + (\$50 \times 5)$	\$100 w/ WIN SYMBOL	\$500	12,000	700
(\$50 w/ 3X) × 2	(\$50 w/ WIN SYMBOL) × 4	\$500	8,000	1,050
(\$50 × 2) w/ \$\$\$ IN XTREME	(\$50 w/ WIN SYMBOL) + (\$50 w/ TRIPLE)	\$500	8,000	1,050
\$100 w/ \$\$\$ IN XTREME	(\$50 w/ WIN SYMBOL) × 4	\$500	6,000	1,400
\$150 w/ 3X	\$50 w/ WIN SYMBOL	\$500	6,000	1,400
\$150 w/ \$\$\$ IN XTREME	\$50 w/ WIN SYMBOL	\$500	6,000	1,400
	\$500 w/ WIN SYMBOL	\$500	6,000	1,400
\$500		\$500	24,000	350
XTREME SYMBOL w/ ($$40 \times 25$)		\$1,000	4,000	2,100
XTREME SYMBOL w/ ((\$40 × 20) + (\$30 × 5))	\$50 w/ WIN SYMBOL	\$1,000	4,000	2,100
XTREME SYMBOL w/ (($$50 \times 5) + ($30 \times 20)$)	(\$30 w/ WIN SYMBOL) × 5	\$1,000	4,000	2,100
\$100 × 10		\$1,000	60,000	140
\$50 × 2	(\$100 w/ TRIPLE) × 3	\$1,000	24,000	350
\$50 × 8	(\$150 w/ TRIPLE) + (\$50 w/ TRIPLE)	\$1,000	24,000	350
(\$100 w/ 3X) × 3	\$100 w/ WIN SYMBOL	\$1,000	24,000	350
($$100 \times 3$) w/ \$\$\$ IN XTREME	((\$30 w/ WIN SYMBOL) × 2) + (\$40 w/ WIN SYMBOL)	\$1,000	24,000	350

When Any Of YOUR NUMBERS Match Any WINNING NUMBER, Win PRIZE Shown Under The Matching Number: Win With:	BONUS:	Win:	Approximate Odds Are 1 In:	Approximate No. Of Winners Per 8,400,000 Tickets:
\$300 w/ \$\$\$ IN XTREME	(\$50 w/ WIN SYMBOL) × 2	\$1,000	24,000	350
\$500	\$500 w/ WIN SYMBOL	\$1,000	60,000	140
	\$1,000 w/ WIN SYMBOL	\$1,000	60,000	140
\$1,000		\$1,000	60,000	140
XTREME SYMBOL w/ ((\$300 × 5) + (\$100 × 10) + (\$50 × 10))		\$3,000	12,000	700
XTREME SYMBOL w/ ((\$500 × 4) + (\$40 × 10) + (\$30 × 10) + \$150)	\$50 w/ TRIPLE	\$3,000	12,000	700
\$1,000 w/ 3X		\$3,000	120,000	70
\$1,000 w/ \$\$\$ IN XTREME		\$3,000	120,000	70
\$3,000		\$3,000	120,000	70
XTREME SYMBOL w/ ((\$3,000 × 3) + (\$1,000 × 20) + (\$500 × 2))		\$30,000	1,680,000	5
XTREME SYMBOL w/ ((\$3,000 × 2) + (\$1,000 × 16) + (\$500 × 7))	((\$1,000 w/ WIN SYMBOL) × 4) + (\$500 w/ WIN SYMBOL)	\$30,000	1,680,000	5
(\$1,000 × 10) w/ \$\$\$ IN XTREME		\$30,000	1,680,000	5
\$30,000		\$30,000	1,680,000	5
\$300,000		\$300,000	1,680,000	5
\$3,000,000		\$3,000,000	1,680,000	5

Reveal a "3X" (3TIMES) symbol, TRIPLE the PRIZE shown under that symbol.

Reveal an "XTREME" (WINALL) symbol, win ALL 25 PRIZES shown!

Scratch the X in XTREME. Reveal a "\$\$\$" (3XMULT) symbol, TRIPLE any PRIZE won in the play area.

BONUS: Reveal a "WIN" (WIN) symbol, win PRIZE shown under that symbol. Reveal a "TRIPLE" (TRIPLE) symbol, TRIPLE the PRIZE shown under that symbol. BONUS is played separately.

Prizes, including top prizes, are subject to availability at the time of purchase.

- 9. Retailer incentive awards: The Lottery may conduct a separate Retailer Incentive Program for retailers who sell \$3 Million Xtreme Tripler instant lottery game tickets.
- 10. Retailer bonus: The Lottery may offer a retailer bonus in connection with the sale of Pennsylvania instant lottery game tickets. If a retailer bonus is offered, a Lottery retailer shall be eligible for a bonus as described in this section. Lottery retailers who sell a winning ticket that entitles the ticket holder to a prize, either payable in a single installment or having a guaranteed minimum payout, of at least \$100,000 and not exceeding \$500,000 shall be paid a bonus of \$500. Lottery retailers who sell a winning ticket that entitles the ticket holder to a prize, either payable in a single installment or having a guaranteed minimum payout, of at least \$500,001 and not exceeding \$1,000,000 shall be paid a bonus of \$5,000. Lottery retailers who sell a winning ticket that entitles the ticket holder to a prize, either payable in a single installment or having a guaranteed minimum payout, of at least \$1,000,001 and not exceeding \$10,000,000 shall be paid a bonus of \$10,000. A Lottery retailer is entitled

only to the largest bonus for which they qualify on a winning ticket. A bonus will be initiated for payment after the instant ticket is claimed and validated. A bonus will not be awarded to a Lottery retailer that sells a non-winning Pennsylvania Lottery instant ticket used to enter a Pennsylvania Lottery second-chance drawing or promotion that is subsequently selected to win a prize.

- 11. Unclaimed prize money: For a period of 1 year from the announced close of \$3 Million Xtreme Tripler, prize money from winning \$3 Million Xtreme Tripler instant lottery game tickets will be retained by the Secretary for payment to the persons entitled thereto. If no claim is made within 1 year of the announced close of the \$3 Million Xtreme Tripler instant lottery game, the right of a ticket holder to claim the prize represented by the ticket, if any, will expire and the prize money will be paid into the State Lottery Fund and used for purposes provided for by statute.
- 12. Governing law: In purchasing a ticket, the customer agrees to comply with and abide by the State Lottery Law (72 P.S. §§ 3761-101—3761-314), 61 Pa. Code Part V (relating to State Lotteries) and the provisions contained in this notice.

13. Termination of the game: The Secretary may announce a termination date, after which no further tickets from this game may be sold. The announcement will be disseminated through media used to advertise or promote \$3 Million Xtreme Tripler or through normal communications methods.

C. DANIEL HASSELL,

Secretary

[Pa.B. Doc. No. 21-1934. Filed for public inspection November 19, 2021, 9:00 a.m.]

DEPARTMENT OF REVENUE

Pennsylvania All About the Benjamins Instant Lottery Game 1557

Under the State Lottery Law (72 P.S. §§ 3761-101—3761-314) and 61 Pa. Code § 819.203 (relating to notice of instant game rules) the Secretary of Revenue hereby provides public notice of the rules for the following instant lottery game:

- 1. *Name*: The name of the game is Pennsylvania All About the Benjamins (hereafter "All About the Benjamins"). The game number is PA-1557.
- 2. Price: The price of an All About the Benjamins instant lottery game ticket is \$5.
- 3. Play symbols: Each All About the Benjamins instant lottery game ticket will contain one play area featuring a "WINNING NUMBERS" area and a "YOUR NUMBERS" area. The play symbols and their captions, located in the "WINNING NUMBERS" area, are: 1 (ONE), 2 (TWO), 3 (THREE), 4 (FOUR), 5 (FIVE), 6 (SIX), 7 (SEVEN), 8 (EIGHT), 9 (NINE), 10 (TEN), 11 (ELEVN), 12 (TWLV), 13 (THRTN), 14 (FORTN), 15 (FIFTN), 16 (SIXTN), 17 (SVNTN), 18 (EGHTN), 19 (NINTN), 20 (TWENT), 21 (TWYONE), 22 (TWYTWO), 23 (TWYTHR), 24 (TWYFOR), 25 (TWYFIV), 26 (TWYSIX), 27 (TWYSVN), 28 (TWYEGT), 29 (TWYNIN) and 30 (THIRT). The play symbols and their captions, located in the "YOUR NUM-BERS" area, are: 1 (ONE), 2 (TWO), 3 (THREE), 4 (FOUR), 5 (FIVE), 6 (SIX), 7 (SEVEN), 8 (EIGHT), 9 (NINE), 10 (TEN), 11 (ELEVN), 12 (TWLV), 13 (THRTN), 14 (FORTN), 15 (FIFTN), 16 (SIXTN), 17 (SVNTN), 18 (EGHTN), 19 (NINTN), 20 (TWENT), 21 (TWYONE), 22 (TWYTWO), 23 (TWYTHR), 24 (TWYFOR), 25 (TWYFIV), 26 (TWYSIX), 27 (TWYSVN), 28 (TWYEGT), 29 (TWYNIN), 30 (THIRT), \$100 Bill (WIN100) symbol and a Ben Franklin (WINALL) symbol.
- 4. Prize Symbols: The prize symbols and their captions, located in the "YOUR NUMBERS" area, are: $\$5^{.00}$ (FIV DOL), $\$10^{.00}$ (TEN DOL), $\$20^{.00}$ (TWENTY), $\$50^{.00}$ (FIFTY), \$100 (ONE HUN), \$200 (TWO HUN), \$500 (FIV HUN), \$1,000 (ONE THO), \$5,000 (FIV THO) and \$250,000 (TWHNFYTH).
- 5. *Prizes*: The prizes that can be won in this game, are: \$5, \$10, \$20, \$50, \$100, \$200, \$500, \$1,000, \$5,000 and \$250,000. A player can win up to 12 times on a ticket.
- 6. Approximate number of tickets printed for the game: Approximately 13,200,000 tickets will be printed for the All About the Benjamins instant lottery game.
 - 7. Determination of prize winners:
- (a) Holders of tickets upon which any one of the "YOUR NUMBERS" play symbols matches any of the

- "WINNING NUMBERS" play symbols, and a prize symbol of \$250,000 (TWHNFYTH) appears in the "prize" area under the matching "YOUR NUMBERS" play symbol, on a single ticket, shall be entitled to a prize of \$250,000.
- (b) Holders of tickets upon which any one of the "YOUR NUMBERS" play symbols matches any of the "WINNING NUMBERS" play symbols, and a prize symbol of \$5,000 (FIV THO) appears in the "prize" area under the matching "YOUR NUMBERS" play symbol, on a single ticket, shall be entitled to a prize of \$5,000.
- (c) Holders of tickets upon which any one of the "YOUR NUMBERS" play symbols matches any of the "WINNING NUMBERS" play symbols, and a prize symbol of \$1,000 (ONE THO) appears in the "prize" area under the matching "YOUR NUMBERS" play symbol, on a single ticket, shall be entitled to a prize of \$1,000.
- (d) Holders of tickets upon which a Ben Franklin (WINALL) symbol appears in the "YOUR NUMBERS" area, and a prize symbol of \$100 (ONE HUN) appears in eight of the "prize" areas and a prize symbol of $$50^{.00}$ (FIFTY) appears in four of the "prize" areas, on a single ticket, shall be entitled to a prize of \$1,000.
- (e) Holders of tickets upon which any one of the "YOUR NUMBERS" play symbols matches any of the "WINNING NUMBERS" play symbols, and a prize symbol of \$500 (FIV HUN) appears in the "prize" area under the matching "YOUR NUMBERS" play symbol, on a single ticket, shall be entitled to a prize of \$500.
- (f) Holders of tickets upon which a Ben Franklin (WINALL) symbol appears in the "YOUR NUMBERS" area, and a prize symbol of \$100 (ONE HUN) appears in four of the "prize" areas, a prize symbol of \$20 00 (TWENTY) appears in two of the "prize" areas and a prize symbol of \$10 00 (TEN DOL) appears in six of the "prize" areas, on a single ticket, shall be entitled to a prize of \$500.
- (g) Holders of tickets upon which a Ben Franklin (WINALL) symbol appears in the "YOUR NUMBERS" area, and a prize symbol of \$100 (ONE HUN) appears in two of the "prize" areas, a prize symbol of \$50^{.00} (FIFTY) appears in four of the "prize" areas, a prize symbol of \$20^{.00} (TWENTY) appears in four of the "prize" areas and a prize symbol of \$10^{.00} (TEN DOL) appears in two of the "prize" areas, on a single ticket, shall be entitled to a prize of \$500.
- (h) Holders of tickets upon which any one of the "YOUR NUMBERS" play symbols matches any of the "WINNING NUMBERS" play symbols, and a prize symbol of \$200 (TWO HUN) appears in the "prize" area under the matching "YOUR NUMBERS" play symbol, on a single ticket, shall be entitled to a prize of \$200.
- (i) Holders of tickets upon which a Ben Franklin (WINALL) symbol appears in the "YOUR NUMBERS" area, and a prize symbol of $50^{.00}$ (FIFTY) appears in two of the "prize" areas and a prize symbol of $10^{.00}$ (TEN DOL) appears in ten of the "prize" areas, on a single ticket, shall be entitled to a prize of 200.
- (j) Holders of tickets upon which a Ben Franklin (WINALL) symbol appears in the "YOUR NUMBERS" area, and a prize symbol of $\$20^{.00}$ (TWENTY) appears in eight of the "prize" areas and a prize symbol of $\$10^{.00}$ (TEN DOL) appears in four of the "prize" areas, on a single ticket, shall be entitled to a prize of \$200.
- (k) Holders of tickets upon which any one of the "YOUR NUMBERS" play symbols matches any of the "WINNING NUMBERS" play symbols, and a prize symbol

of \$100 (ONE HUN) appears in the "prize" area under the matching "YOUR NUMBERS" play symbol, on a single ticket, shall be entitled to a prize of \$100.

- (l) Holders of tickets upon which a \$100 Bill (WIN100) symbol appears in the "YOUR NUMBERS" area, and a prize symbol of \$100 (ONE HUN) appears in the "prize" area under that \$100 Bill (WIN100) symbol, on a single ticket, shall be entitled to a prize of \$100.
- (m) Holders of tickets upon which a Ben Franklin (WINALL) symbol appears in the "YOUR NUMBERS" area, and a prize symbol of \$20.00 (TWENTY) appears in two of the "prize" areas, a prize symbol of \$10.00 (TEN DOL) appears in two of the "prize" areas and a prize symbol of \$5.00 (FIV DOL) appears in eight of the "prize" areas, on a single ticket, shall be entitled to a prize of \$100.
- (n) Holders of tickets upon which a Ben Franklin (WINALL) symbol appears in the "YOUR NUMBERS" area, and a prize symbol of $$10^{.00}$ (TEN DOL) appears in eight of the "prize" areas and a prize symbol of $$5^{.00}$ (FIV DOL) appears in four of the "prize" areas, on a single ticket, shall be entitled to a prize of \$100.
- (o) Holders of tickets upon which any one of the "YOUR NUMBERS" play symbols matches any of the "WINNING NUMBERS" play symbols, and a prize symbol

- of $50^{.00}$ (FIFTY) appears in the "prize" area under the matching "YOUR NUMBERS" play symbol, on a single ticket, shall be entitled to a prize of 50.
- (p) Holders of tickets upon which any one of the "YOUR NUMBERS" play symbols matches any of the "WINNING NUMBERS" play symbols, and a prize symbol of \$20.00 (TWENTY) appears in the "prize" area under the matching "YOUR NUMBERS" play symbol, on a single ticket, shall be entitled to a prize of \$20.
- (q) Holders of tickets upon which any one of the "YOUR NUMBERS" play symbols matches any of the "WINNING NUMBERS" play symbols, and a prize symbol of \$10.00 (TEN DOL) appears in the "prize" area under the matching "YOUR NUMBERS" play symbol, on a single ticket, shall be entitled to a prize of \$10.
- (r) Holders of tickets upon which any one of the "YOUR NUMBERS" play symbols matches any of the "WINNING NUMBERS" play symbols, and a prize symbol of \$5.00 (FIV DOL) appears in the "prize" area under the matching "YOUR NUMBERS" play symbol, on a single ticket, shall be entitled to a prize of \$5.
- 8. Number and description of prizes and approximate odds: The following table sets forth the approximate number of winners, amounts of prizes and approximate odds of winning:

When Any Of YOUR NUMBERS Match Any WINNING NUMBER, Win Prize Shown Under The Matching Number. Win With:	Win:	Approximate Odds Are 1 In:	Approximate No. Of Winners Per 13,200,000 Tickets:
\$5	\$5	8.57	1,540,000
\$5 × 2	\$10	30	440,000
\$10	\$10	30	440,000
\$5 × 4	\$20	120	110,000
\$10 × 2	\$20	120	110,000
$(\$5 \times 2) + \10	\$20	120	110,000
\$20	\$20	60	220,000
\$5 × 10	\$50	600	22,000
\$10 × 5	\$50	600	22,000
$(\$5 \times 6) + \20	\$50	600	22,000
\$50	\$50	600	22,000
BEN FRANKLIN w/ ((\$10 × 8) + (\$5 × 4))	\$100	857.14	15,400
BEN FRANKLIN w/ ((\$20 × 2) + (\$10 × 2) + (\$5 × 8))	\$100	857.14	15,400
\$20 × 5	\$100	24,000	550
\$50 × 2	\$100	24,000	550
\$100 w/ \$100 BILL	\$100	171.43	77,000
\$100	\$100	24,000	550
BEN FRANKLIN w/ ((\$20 × 8) + (\$10 × 4))	\$200	12,000	1,100
BEN FRANKLIN w/ ((\$50 × 2) + (\$10 × 10))	\$200	12,000	1,100
\$50 × 4	\$200	120,000	110
(\$100 w/ \$100 BILL) + \$100	\$200	24,000	550
(\$100 w/ \$100 BILL) × 2	\$200	12,000	1,100

When Any Of YOUR NUMBERS Match Any WINNING NUMBER, Win Prize Shown Under The Matching Number. Win With:	Win:	Approximate Odds Are 1 In:	Approximate No. Of Winners Per 13,200,000 Tickets:
\$200	\$200	120,000	110
BEN FRANKLIN w/ ((\$100 × 2) + (\$50 × 4) + (\$20 × 4) + (\$10 × 2))	\$500	24,000	550
BEN FRANKLIN w/ ((\$100 × 4) + (\$20 × 2) + (\$10 × 6))	\$500	24,000	550
\$100 × 5	\$500	120,000	110
(\$100 w/ \$100 BILL) × 5	\$500	120,000	110
\$500	\$500	120,000	110
BEN FRANKLIN w/ ((\$100 × 8) + (\$50 × 4))	\$1,000	1,320,000	10
\$100 × 10	\$1,000	1,320,000	10
(\$100 w/ \$100 BILL) × 10	\$1,000	1,320,000	10
\$1,000	\$1,000	1,320,000	10
\$500 × 10	\$5,000	1,320,000	10
\$5,000	\$5,000	1,320,000	10
\$250,000	\$250,000	1,320,000	10

Reveal a "\$100 Bill" (WIN100) symbol, win \$100 instantly.

Reveal a "Ben Franklin" (WINALL) symbol, win all 12 prizes shown!

Prizes, including top prizes, are subject to availability at the time of purchase.

- 9. Retailer incentive awards: The Lottery may conduct a separate Retailer Incentive Program for retailers who sell All About the Benjamins instant lottery game tickets.
- 10. Retailer bonus: The Lottery may offer a retailer bonus in connection with the sale of Pennsylvania instant lottery game tickets. If a retailer bonus is offered, a Lottery retailer shall be eligible for a bonus as described in this section. Lottery retailers who sell a winning ticket that entitles the ticket holder to a prize, either payable in a single installment or having a guaranteed minimum payout, of at least \$100,000 and not exceeding \$500,000 shall be paid a bonus of \$500. Lottery retailers who sell a winning ticket that entitles the ticket holder to a prize, either payable in a single installment or having a guaranteed minimum payout, of at least \$500,001 and not exceeding \$1,000,000 shall be paid a bonus of \$5,000. Lottery retailers who sell a winning ticket that entitles the ticket holder to a prize, either payable in a single installment or having a guaranteed minimum payout, of at least \$1,000,001 and not exceeding \$10,000,000 shall be paid a bonus of \$10,000. A Lottery retailer is entitled only to the largest bonus for which they qualify on a winning ticket. A bonus will be initiated for payment after the instant ticket is claimed and validated. A bonus will not be awarded to a Lottery retailer that sells a nonwinning Pennsylvania Lottery instant ticket used to enter a Pennsylvania Lottery second-chance drawing or promotion that is subsequently selected to win a prize.
- 11. Unclaimed prize money: For a period of 1 year from the announced close of All About the Benjamins, prize money from winning All About the Benjamins instant lottery game tickets will be retained by the Secretary for payment to the persons entitled thereto. If no claim is made within 1 year of the announced close of the All About the Benjamins instant lottery game, the right of a

ticket holder to claim the prize represented by the ticket, if any, will expire and the prize money will be paid into the State Lottery Fund and used for purposes provided for by statute.

- 12. Governing law: In purchasing a ticket, the customer agrees to comply with and abide by the State Lottery Law (72 P.S. §§ 3761-101—3761-314), 61 Pa. Code Part V (relating to State Lotteries) and the provisions contained in this notice.
- 13. Termination of the game: The Secretary may announce a termination date, after which no further tickets from this game may be sold. The announcement will be disseminated through media used to advertise or promote All About the Benjamins or through normal communications methods.

C. DANIEL HASSELL, Secretary

[Pa.B. Doc. No. 21-1935. Filed for public inspection November 19, 2021, 9:00 a.m.]

DEPARTMENT OF REVENUE

Pennsylvania Fast Ca\$h Instant Lottery Game 1558

Under the State Lottery Law (72 P.S. §§ 3761-101—3761-314) and 61 Pa. Code § 819.203 (relating to notice of instant game rules) the Secretary of Revenue hereby provides public notice of the rules for the following instant lottery game:

- 1. Name: The name of the game is Pennsylvania Fast Ca\$h (hereafter "Fast Ca\$h"). The game number is PA-1558.
- 2. *Price*: The price of a Fast Ca\$h instant lottery game cicket is \$1.

- 3. Play symbols: Each Fast Ca\$h instant lottery game ticket will contain one play area featuring a "WINNING NUMBER" area, a "YOUR NUMBERS" area and a "FAST CA\$H" area. The "FAST CA\$H" area is played separately. The play symbols and their captions, located in the "WINNING NUMBER" area and the "YOUR NUMBERS" area, are: 1 (ONE), 2 (TWO), 3 (THREE), 4 (FOUR), 5 (FIVE), 6 (SIX), 7 (SEVEN), 8 (EIGHT), 9 (NINE), 10 (TEN), 11 (ELEVN), 12 (TWLV), 13 (THRTN), 14 (FORTN), 15 (FIFTN), 16 (SIXTN), 17 (SVNTN), 18 (EGHTN), 19 (NINTN) and 20 (TWENT). The play/prize symbols and their captions, located in the "FAST CA\$H" area, are: Chest (TRYAGAIN) symbol, Check (TRYAGAIN) symbol, Gold Bar (TRYAGAIN) symbol, Swirl (TRYAGAIN) symbol, Burst (TRYAGAIN) symbol, Emerald (TRYAGAIN) symbol, Crown (TRYAGAIN) symbol, Key (TRYAGAIN) symbol, Lightning Bolt (TRYAGAIN) symbol, Vault (TRYAGAIN) symbol, \$1.00 (ONE DOL), \$2.00 (TWO DOL), \$5.00 (FIV DOL), \$10.00 (TEN DOL), \$20.00 (TWENTY), \$40.00 (FORTY) and \$100 (ONE HUN).
- 4. *Prize Symbols*: The prize symbols and their captions, located in the "YOUR NUMBERS" area, are: FREE (TICKET), $\$1^{.00}$ (ONE DOL), $\$2^{.00}$ (TWO DOL), $\$5^{.00}$ (FIV DOL), $\$10^{.00}$ (TEN DOL), $\$20^{.00}$ (TWENTY), $\$40^{.00}$ (FORTY), \$100 (ONE HUN), \$500 (FIV HUN) and \$5,000 (FIV THO).
- 5. *Prizes*: The prizes that can be won in this game, are: Free \$1 Ticket, \$1, \$2, \$5, \$10, \$20, \$40, \$100, \$500 and \$5,000. The prizes that can be won in the "FAST CA\$H" area, are: \$1, \$2, \$5, \$10, \$20, \$40 and \$100. A player can win up to five times on a ticket.
- 6. Approximate number of tickets printed for the game: Approximately 8,400,000 tickets will be printed for the Fast Ca\$h instant lottery game.
 - 7. Determination of prize winners:
- (a) Holders of tickets upon which any one of the "YOUR NUMBERS" play symbols matches the "WINNING NUMBER" play symbol, and a prize symbol of \$5,000 (FIV THO) appears in the "prize" area under the matching "YOUR NUMBERS" play symbol, on a single ticket, shall be entitled to a prize of \$5,000.
- (b) Holders of tickets upon which any one of the "YOUR NUMBERS" play symbols matches the "WINNING NUMBER" play symbol, and a prize symbol of \$500 (FIV HUN) appears in the "prize" area under the matching "YOUR NUMBERS" play symbol, on a single ticket, shall be entitled to a prize of \$500.
- (c) Holders of tickets upon which any one of the "YOUR NUMBERS" play symbols matches the "WINNING NUMBER" play symbol, and a prize symbol of \$100 (ONE HUN) appears in the "prize" area under the matching "YOUR NUMBERS" play symbol, on a single ticket, shall be entitled to a prize of \$100.
- (d) Holders of tickets upon which a play/prize symbol of \$100 (ONE HUN) appears in the "FAST CA\$H" area, on a single ticket, shall be entitled to a prize of \$100.
- (e) Holders of tickets upon which any one of the "YOUR NUMBERS" play symbols matches the "WINNING NUMBER" play symbol, and a prize symbol of \$40.00 (FORTY) appears in the "prize" area under the matching "YOUR NUMBERS" play symbol, on a single ticket, shall be entitled to a prize of \$40.

(f) Holders of tickets upon which a play/prize symbol of \$40^{.00} (FORTY) appears in the "FAST CA\$H" area, on a single ticket, shall be entitled to a prize of \$40.

- (g) Holders of tickets upon which any one of the "YOUR NUMBERS" play symbols matches the "WINNING NUMBER" play symbol, and a prize symbol of \$20.00 (TWENTY) appears in the "prize" area under the matching "YOUR NUMBERS" play symbol, on a single ticket, shall be entitled to a prize of \$20.
- (h) Holders of tickets upon which a play/prize symbol of \$20.00 (TWENTY) appears in the "FAST CA\$H" area, on a single ticket, shall be entitled to a prize of \$20.
- (i) Holders of tickets upon which any one of the "YOUR NUMBERS" play symbols matches the "WINNING NUMBER" play symbol, and a prize symbol of \$10.00 (TEN DOL) appears in the "prize" area under the matching "YOUR NUMBERS" play symbol, on a single ticket, shall be entitled to a prize of \$10.
- (j) Holders of tickets upon which a play/prize symbol of \$10^{.00} (TEN DOL) appears in the "FAST CA\$H" area, on a single ticket, shall be entitled to a prize of \$10.
- (k) Holders of tickets upon which any one of the "YOUR NUMBERS" play symbols matches the "WINNING NUMBER" play symbol, and a prize symbol of \$5.00 (FIV DOL) appears in the "prize" area under the matching "YOUR NUMBERS" play symbol, on a single ticket, shall be entitled to a prize of \$5.
- (l) Holders of tickets upon which a play/prize symbol of \$5.00 (FIV DOL) appears in the "FAST CA\$H" area, on a single ticket, shall be entitled to a prize of \$5.
- (m) Holders of tickets upon which any one of the "YOUR NUMBERS" play symbols matches the "WINNING NUMBER" play symbol, and a prize symbol of \$2.00 (TWO DOL) appears in the "prize" area under the matching "YOUR NUMBERS" play symbol, on a single ticket, shall be entitled to a prize of \$2.
- (n) Holders of tickets upon which a play/prize symbol of $\$2^{.00}$ (TWO DOL) appears in the "FAST CA\$H" area, on a single ticket, shall be entitled to a prize of \$2.
- (o) Holders of tickets upon which any one of the "YOUR NUMBERS" play symbols matches the "WINNING NUMBER" play symbol, and a prize symbol of \$1.00 (ONE DOL) appears in the "prize" area under the matching "YOUR NUMBERS" play symbol, on a single ticket, shall be entitled to a prize of \$1.
- (p) Holders of tickets upon which a play/prize symbol of \$1.00 (ONE DOL) appears in the "FAST CA\$H" area, on a single ticket, shall be entitled to a prize of \$1.
- (q) Holders of tickets upon which any one of the "YOUR NUMBERS" play symbols matches the "WINNING NUMBER" play symbol, and a prize symbol of FREE (TICKET) appears in the "prize" area under the matching "YOUR NUMBERS" play symbol, on a single ticket, shall be entitled to a prize of one Fast Ca\$h instant game ticket or one Pennsylvania Lottery instant game ticket of equivalent sale price which is currently on sale.
- 8. Number and description of prizes and approximate odds: The following table sets forth the approximate number of winners, amounts of prizes and approximate odds of winning:

When Any Of YOUR NUMBERS Match The WINNING NUMBER, Win Prize Shown Under The Matching Number. Win With:	FAST CA\$H Win:	Win:	Approximate Odds Are 1 In:	Approximate No. Of Winners Per 8,400,000 Tickets:
FREE		FREE \$1 TICKET	9.52	882,000
\$1 × 2		\$2	200	42,000
\$1	\$1	\$2	33.33	252,000
	\$2	\$2	38.46	218,400
\$2		\$2	250	33,600
$(\$1 \times 3) + \2		\$5	1,000	8,400
\$1 × 3	\$2	\$5	200	42,000
\$1 × 4	\$1	\$5	200	42,000
\$2 + \$1	\$2	\$5	200	42,000
\$2 × 2	\$1	\$5	250	33,600
	\$5	\$5	100	84,000
\$5		\$5	1,000	8,400
\$5 × 2		\$10	1,000	8,400
$(\$1 \times 2) + \$5 + \$2$	\$1	\$10	500	16,800
$(\$1 \times 3) + \2	\$5	\$10	500	16,800
\$2 × 4	\$2	\$10	500	16,800
\$5	\$5	\$10	333.33	25,200
	\$10	\$10	250	33,600
\$10		\$10	1,000	8,400
\$5 × 4		\$20	12,000	700
$(\$2 \times 2) + \$5 + \$1$	\$10	\$20	2,400	3,500
\$5 × 3	\$5	\$20	2,400	3,500
\$10 + \$5 + \$2 + \$1	\$2	\$20	2,400	3,500
\$10	\$10	\$20	2,400	3,500
	\$20	\$20	1,412	5,950
\$20		\$20	12,000	700
\$10 × 4		\$40	12,000	700
\$5 × 4	\$20	\$40	8,000	1,050
$(\$10 \times 2) + (\$5 \times 2)$	\$10	\$40	8,000	1,050
	\$40	\$40	12,000	700
\$40		\$40	12,000	700
$(\$40 \times 2) + (\$10 \times 2)$		\$100	12,000	700
\$20 × 4	\$20	\$100	12,000	700
	\$100	\$100	12,000	700
\$100		\$100	12,000	700
\$100 × 4	\$100	\$500	840,000	10
\$500		\$500	840,000	10
\$5,000		\$5,000	840,000	10

FAST CA\$H: Reveal a cash prize amount, win that amount instantly! FAST CA\$H area played separately.

Prizes, including top prizes, are subject to availability at the time of purchase.

- 9. Retailer incentive awards: The Lottery may conduct a separate Retailer Incentive Program for retailers who sell Fast Ca\$h instant lottery game tickets.
- 10. Retailer bonus: The Lottery may offer a retailer bonus in connection with the sale of Pennsylvania instant lottery game tickets. If a retailer bonus is offered, a Lottery retailer shall be eligible for a bonus as described in this section. Lottery retailers who sell a winning ticket that entitles the ticket holder to a prize, either payable in a single installment or having a guaranteed minimum payout, of at least \$100,000 and not exceeding \$500,000 shall be paid a bonus of \$500. Lottery retailers who sell a winning ticket that entitles the ticket holder to a prize, either payable in a single installment or having a guaranteed minimum payout, of at least \$500,001 and not exceeding \$1,000,000 shall be paid a bonus of \$5,000. Lottery retailers who sell a winning ticket that entitles the ticket holder to a prize, either payable in a single installment or having a guaranteed minimum payout, of at least \$1,000,001 and not exceeding \$10,000,000 shall be paid a bonus of \$10,000. A Lottery retailer is entitled only to the largest bonus for which they qualify on a winning ticket. A bonus will be initiated for payment after the instant ticket is claimed and validated. A bonus will not be awarded to a Lottery retailer that sells a nonwinning Pennsylvania Lottery instant ticket used to enter a Pennsylvania Lottery second-chance drawing or promotion that is subsequently selected to win a prize.
- 11. Unclaimed prize money: For a period of 1 year from the announced close of Fast Ca\$h, prize money from winning Fast Ca\$h instant lottery game tickets will be retained by the Secretary for payment to the persons entitled thereto. If no claim is made within 1 year of the announced close of the Fast Ca\$h instant lottery game, the right of a ticket holder to claim the prize represented by the ticket, if any, will expire and the prize money will be paid into the State Lottery Fund and used for purposes provided for by statute.

- 12. Governing law: In purchasing a ticket, the customer agrees to comply with and abide by the State Lottery Law (72 P.S. §§ 3761-101—3761-314), 61 Pa. Code Part V (relating to State Lotteries) and the provisions contained in this notice.
- 13. Termination of the game: The Secretary may announce a termination date, after which no further tickets from this game may be sold. The announcement will be disseminated through media used to advertise or promote Fast Ca\$h or through normal communications methods.

C. DANIEL HASSELL, Secretary

[Pa.B. Doc. No. 21-1936. Filed for public inspection November 19, 2021, 9:00 a.m.]

DEPARTMENT OF TRANSPORTATION

State Transportation Advisory Committee Virtual Meeting

The State Transportation Advisory Committee will hold a virtual meeting on Thursday, December 2, 2021, from 1 p.m. to 3 p.m. This meeting will be held by means of Microsoft Teams. The virtual meeting information, including log-in, participation information (for computer, mobile app and telephone participation) and the agenda, is available at https://bit.ly/3CyKrq9.

For more information, contact the Office of the State Transportation Commission, (717) 787-2913, RA-Penn DOTSTC@pa.gov.

YASSMIN GRAMIAN, Secretary

[Pa.B. Doc. No. 21-1937. Filed for public inspection November 19, 2021, 9:00 a.m.]

FISH AND BOAT COMMISSION

Classification of Wild Trout Streams; Proposed Additions and Revisions; January 2022

Under 58 Pa. Code § 57.11 (relating to listing of wild trout streams), it is the policy of the Fish and Boat Commission (Commission) to accurately identify and classify stream sections supporting naturally reproducing populations of trout as wild trout streams. The Commission's Fisheries Management Division maintains the list of wild trout streams. The Executive Director, with the approval of the Commission, will from time-to-time publish the list of wild trout streams in the *Pennsylvania Bulletin*. The listing of a stream section as a wild trout stream is a biological designation that does not determine how it is managed. The Commission relies upon many factors in determining the appropriate management of streams.

At the next Commission meeting on January 24 and 25, 2022, the Commission will consider changes to its list of wild trout streams. Specifically, the Commission will consider the addition of the following streams or portions of streams to the list:

County of Mouth	Stream Name	Section Limits	Tributary to	$Mouth \ Lat/Lon$
Bedford	Hickory Bottom Creek	Headwaters to Mouth	Yellow Creek	40.192591 78.376904
Elk	UNT to Powers Run (RM 1.51)	Headwaters to Mouth	Powers Run	41.484032 78.648764
Elk	UNT to Wilson Run (RM 2.91)	Headwaters to Mouth	Wilson Run	41.598608 78.725817
Luzerne	Black Creek	Headwaters to Mouth	Nescopeck Creek	41.007222 76.166667

County of Mouth	Stream Name	Section Limits	Tributary to	Mouth Lat/Lon
Schuylkill	Hans Yost Creek	Headwaters to Mouth	Deep Creek	40.685643 76.437456
Venango	UNT to Cherrytree Run (RM 4.14)	Headwaters to Mouth	Cherrytree Run	41.530220 79.712970
Venango	UNT to Cherrytree Run (RM 4.52)	Headwaters to Mouth	Cherrytree Run	41.534150 79.716220
Venango	UNT to Prather Creek (RM 3.17)	Headwaters to Mouth	Prather Creek	41.566740 79.760360
Venango	UNT to Two Mile Run Reservoir (RM 6.35)	Headwaters to Mouth	Two Mile Run Reservoir	41.482396 79.773441

The Commission also will consider the following revisions to the section limits of streams on the list:

County of Mouth	Stream Name	Current Limits	Revised Limits	Tributary to	$Mouth \ Lat/Lon$
Columbia	Glen Brook	Headwaters to junction of Water Dam and Foundryville Roads	Headwaters to Mouth	East Branch Briar Creek	41.066667 76.255000

Persons with comments, objections or suggestions concerning the classification of the streams listed may submit them in writing to the Executive Director, Fish and Boat Commission, P.O. Box 67000, Harrisburg, PA 17106-7000, within 30 days after publication of this notice in the *Pennsylvania Bulletin*. Comments submitted by facsimile will not be accepted.

Comments also may be submitted electronically by completing the form at www.fishandboat.com/regcomments. If an acknowledgment of electronic comments is not received by the sender within 2 working days, the comments should be retransmitted to ensure receipt. Electronic comments submitted in any other manner will not be accepted.

TIMOTHY D. SCHAEFFER, Executive Director

[Pa.B. Doc. No. 21-1938. Filed for public inspection November 19, 2021, 9:00 a.m.]

FISH AND BOAT COMMISSION

Proposed Changes to List of Class A Wild Trout Waters; January 2022

The Fish and Boat Commission (Commission) is considering changes to its list of Class A Wild Trout Streams. Under 58 Pa. Code § 57.8a (relating to Class A wild trout streams), it is the Commission's policy to manage self-sustaining Class A wild trout populations as a renewable natural resource to conserve that resource and the angling it provides. Class A wild trout populations represent the best of this Commonwealth's naturally reproducing trout fisheries. With rare exceptions, the Commission manages these stream sections solely for the perpetuation of the wild trout fishery with no stocking.

Criteria developed for Class A Wild Trout fisheries are species specific. Wild Trout Biomass Class Criteria include provisions for:

- (i) Wild Brook Trout Fisheries
- (A) Total brook trout biomass of at least 30 kg/ha (26.7 lbs/acre).
- (B) Total biomass of brook trout less than 15 cm (5.9 inches) in total length of at least 0.1 kg/ha (0.089 lbs/acre).
- (C) Brook trout biomass must comprise at least 75% of the total trout biomass.

- (ii) Wild Brown Trout Fisheries
- (A) Total brown trout biomass of at least 40 kg/ha (35.6 lbs/acre).
- (B) Total biomass of brown trout less than 15 cm (5.9 inches) in total length of at least 0.1 kg/ha (0.089 lbs/acre).
- $\left(C\right)$ Brown trout biomass must comprise at least 75% of the total trout biomass.
 - (iii) Mixed Wild Brook and Brown Trout Fisheries
- (A) Combined brook and brown trout biomass of at least 40 kg/ha (35.6 lbs/acre).
- (B) Total biomass of brook trout less than 15 cm (5.9 inches) in total length of at least 0.1 kg/ha (0.089 lbs/acre).
- (C) Total biomass of brown trout less than 15 cm (5.9 inches) in total length of at least 0.1 kg/ha (0.089 lbs/acre).
- $\left(D\right)$ Brook trout biomass must comprise less than 75% of the total trout biomass.
- (E) Brown trout biomass must comprise less than 75% of the total trout biomass.
 - (iv) Wild Rainbow Trout Fisheries

Total biomass of rainbow trout less than 15 cm (5.9 inches) in total length of at least 2.0 kg/ha (1.78 lbs/acre).

(v) Mixed Wild Brook and Rainbow Trout Fisheries

- (A) Combined brook and rainbow trout biomass of at least 40 kg/ha (35.6 lbs/acre).
- (B) Total biomass of brook trout less than 15 cm (5.9 inches) in total length of at least 0.1~kg/ha (0.089 lbs/acre).
- (C) Total biomass of rainbow trout less than 15 cm (5.9 inches) in total length of at least 0.1 kg/ha (0.089 lbs/acre).
- (D) Brook trout biomass shall comprise less than 75% of the total trout biomass.
- (E) Rainbow trout biomass shall comprise less than 75% of the total trout biomass.
 - (vi) Mixed Wild Brown and Rainbow Trout Fisheries
- (A) Combined brown and rainbow trout biomass of at least 40 kg/ha (35.6 lbs/acre).

- (B) Total biomass of brown trout less than 15 cm (5.9 inches) in total length of at least 0.1 kg/ha (0.089 lbs/acre).
- (C) Total biomass of rainbow trout less than 15 cm (5.9) inches in total length of at least 0.1 kg/ha (0.089) lbs/acre).
- $\left(D\right)$ Brown trout biomass shall comprise less than 75% of the total trout biomass.
- (E) Rainbow trout biomass shall comprise less than 75% of the total trout biomass.

During recent surveys, Commission staff documented the following stream sections to have Class A wild trout populations. The Commission intends to consider adding these waters to its list of Class A Wild Trout Streams at its meeting on January 24 and 25, 2022.

County	Stream	Section	Limits	Tributary to	$Mouth \ Lat/Lon$	Brook Trout (kg/ha)	$egin{aligned} Brown \ Trout \ (kg/ha) \end{aligned}$	Rainbow Trout (kg/ha)	Length (miles)	Survey
Berks	Drumheller School Creek	2	Old State Road to Mouth	Oysterville Creek	40.396246 75.708021		49.40		1.30	2020
Centre	UNT to Cedar Run (Mackey Run)	1	Headwaters to Mouth	Cedar Run	40.795833	İ	99.69		1.34	2021
Columbia	Fester Hollow	1	Headwaters to Mouth	West Branch Briar Creek	41.054097 76.332297		65.73		3.01	2021
Columbia	Long Hollow	П	Headwaters to Mouth	Catawissa Creek	40.941111 76.307778	31.27	İ		2.48	2021
Lackawanna/ Luzerne	Trout Creek	1	Headwaters to Mouth	Spring Brook	41.328056 75.690278	50.16	0.85	-	3.79	2021
Lycoming	Right Fork Otter Run	1	Headwaters to Mouth	Otter Run	41.447770 77.364013	33.95	İ		1.42	2021
Schuylkill	Locust Creek	1	Headwaters to Locust Lake	Little Schuylkill River	40.809167 75.996111	32.07	4.83	-	1.20	2021
Westmoreland	Westmoreland Baldwin Creek	2	State Game Lands 42 boundary to Mouth	Conemaugh River	40.378613 79.065002	2.38	56.34	İ	1.49	2021

Persons with comments, objections or suggestions concerning the additions are invited to submit comments in writing to the Executive Director, Fish and Boat Commission, P.O. Box 67000, Harrisburg, PA 17106-7000, within 30 days after publication of this notice in the *Pennsylvania Bulletin*. Comments also may be submitted electronically by completing the form at www.fishandboat.com/regcomments. If an acknowledgment of electronic comments is not received by the sender within 2 working days, the comments should be retransmitted to ensure receipt. Electronic comments submitted in any other manner will not be accepted.

TIMOTHY D. SCHAEFFER, Executive Director

[Pa.B. Doc. No. 21-1939. Filed for public inspection November 19, 2021, 9:00 a.m.]

INSURANCE DEPARTMENT

Alleged Violation of Insurance Laws; George W. Gordon; Doc. No. SC21-11-003

Notice is hereby given of the Order to Show Cause issued on November 4, 2021, by the Deputy Insurance Commissioner in the previously-referenced matter. Violations of the following are alleged: section 611A(1), (2), (3), (13) and (20) of The Insurance Department Act of 1921 (40 P.S. §§ 310.11(1), (2), (3), (13) and (20)).

The respondent shall file a written answer to the Order to Show Cause within 30 days of the date of issue. If respondent files a timely answer, a formal administrative hearing shall be held in accordance with 2 Pa.C.S. §§ 501—588 (relating to Administrative Agency Law), 1 Pa. Code Part II (relating to General Rules of Administrative Practice and Procedure), 31 Pa. Code §§ 56.1—56.3 (relating to Special Rules of Administrative Practice and Procedure) and other relevant procedural provisions of law.

Answers, motions preliminary to those at hearing, protests, petitions to intervene or notices of intervention, if any, must be filed in writing with the Hearings Administrator, Insurance Department, Administrative Hearings Office, 901 North 7th Street, Harrisburg, PA 17102, ra-hearings@pa.gov.

Persons with a disability who wish to attend the previously-referenced administrative hearing and require an auxiliary aid, service or other accommodation to participate in the hearing, contact Domenica Dean, Agency ADA Coordinator, at (717) 705-4194.

JESSICA K. ALTMAN, Insurance Commissioner

[Pa.B. Doc. No. 21-1940. Filed for public inspection November 19, 2021, 9:00 a.m.]

LEGISLATIVE REFERENCE BUREAU

Documents Filed But Not Published

The Legislative Reference Bureau (Bureau) accepted the following documents during the preceding calendar month for filing without publication under 1 Pa. Code § 3.13(b) (relating to contents of *Bulletin*). The Bureau will continue to publish on a monthly basis either a summary table identifying the documents accepted during the preceding calendar month under this subsection or a statement that no documents have been received. For questions concerning or copies of documents filed, but not published, call (717) 783-1530.

Governor's Office

Management Directive No. 325.12—Standards for Enterprise Risk Management in Commonwealth Agencies, Amended October 1, 2021.

Administrative Circular No. 21-12—Holidays—2022, Dated October 15, 2021.

AMY J. MENDELSOHN,

Director

Pennsylvania Code and Bulletin

[Pa.B. Doc. No. 21-1941. Filed for public inspection November 19, 2021, 9:00 a.m.]

PATIENT SAFETY AUTHORITY

Virtual Public Meeting

The Patient Safety Authority (Authority), established by section 303 of the Medical Care Availability and Reduction of Error (MCARE) Act (40 P.S. § 1303.303), announces a virtual public meeting of the Authority's Board to be held by means of the Authority's webinar platform Zoom on Thursday, December 9, 2021, at 1 p.m. and is open to the general public.

There will be Zoom capabilities to attend the virtual public board meeting remotely, so registration is required.

Individuals can register by going to https://zoom.us/meeting/register/tJUpce6ppjwqGtTq_XI7iQiQvTJQVq9YpLEn.

After registering, individuals will receive a confirmation e-mail containing information about joining the virtual public meeting.

Individuals who are unable to sign in by the previously listed link may dial-in by using the following information:

Meeting ID: 914 6718 7000

Passcode: 6aW49t

One tap mobile:

- +16465588656, 91467187000# US (New York)
- +13017158592, 91467187000# US (Washington DC)

Dial by individual's location:

- +1 646 558 8656 US (New York)
- +1 301 715 8592 US (Washington DC)
- +1 312 626 6799 US (Chicago)
- +1 669 900 9128 US (San Jose)
- +1 253 215 8782 US (Tacoma)
- +1 346 248 7799 US (Houston)

Meeting ID: 914 6718 7000

Find individual's local number: https://zoom.us/u/acwEM5zjkk

Individuals with questions regarding this virtual public meeting, which is open to the public, should contact the Authority at (717) 346-0469.

A closed executive session of the Authority's Board of Directors will be held on December 9, 2021, at 12:30 p.m. by means of Zoom. The purpose of the executive session is for consideration of personnel matters and to engage in

nondeliberative informational discussions regarding various actions and matters which have been approved at previous public meetings.

REGINA M. HOFFMAN, MBA, BSN, RN, CPPS, Executive Director

[Pa.B. Doc. No. 21-1942. Filed for public inspection November 19, 2021, 9:00 a.m.]

PENNSYLVANIA PUBLIC UTILITY COMMISSION

Damage Prevention Committee Nominations

The Pennsylvania Public Utility Commission (Commission) is authorized by the act of October 30, 2017 (P.L. 206, No. 50) (Act 50) to enforce provisions of the act of December 10, 1974 (P.L. 852, No. 287), also known as the Underground Utility Line Protection Law or the One Call Law. Included in Act 50 is the creation of a Damage Prevention Committee (Committee), which will meet regularly to review alleged violations of Act 50 and make determinations as to the appropriate response including, but not limited to, the issuance of warning letters or administrative penalties.

The Commission is currently accepting Committee nominations for representatives from each of the following industries:

- 1. Nonmunicipally owned or affiliated facility owner industries—including telephone and cable television—nominated by facility owners or affiliated organizations (2 positions).
- 2. Excavators—nominated by excavators or affiliated organizations (1 position).

Forms and instructions for submitting nominations are available on the Commission's web site at www.puc.pa. gov.

Completed nomination forms should be submitted to the Secretary, Rosemary Chiavetta, at rchiavetta@pa.gov. Committee nominations will be accepted until November 30, 2021.

Appointments to the Committee will begin in 2022 and persons appointed to the Committee must have the appropriate level of expertise within the operation of Act 50

Each member shall serve a term of 3 years. After the term is completed, members are required to reapply for Committee membership.

Questions regarding nominations for the Commission's Committee should be directed to Sara Locke, Supervisor, salocke@pa.gov, (717) 772-8584.

ROSEMARY CHIAVETTA,

Secretary

 $[Pa.B.\ Doc.\ No.\ 21\text{-}1943.\ Filed\ for\ public\ inspection\ November\ 19,\ 2021,\ 9:00\ a.m.]$

PENNSYLVANIA PUBLIC UTILITY COMMISSION

Service of Notice of Motor Carrier Applications

The following temporary authority and/or permanent authority applications for the right to render service as a common carrier or contract carrier in this Commonwealth

have been filed with the Pennsylvania Public Utility Commission (Commission). Formal protests, petitions to intervene and answers must be filed in accordance with 52 Pa. Code (relating to public utilities) on or before December 6, 2021. Filings must be made electronically through eFiling to the Secretary of the Pennsylvania Public Utility Commission, 400 North Street, Harrisburg, PA 17120, with a copy served on the applicant by December 6, 2021. Individuals can sign up for a free eFiling account with the Secretary of the Commission through the Commission's eFiling system at https://www.puc.pa.gov/efiling/Default.aspx. A protest shall indicate whether it applies to the temporary authority application, the permanent authority application, or both. Protests may only be filed if there is evidence that the applicant lacks fitness. Protests based on endangering or impairing operations of an existing carrier will not be honored. The documents filed in support of the application are only available for inspection through the Commission's web site at www.puc.pa.gov by searching under the previously listed docket number or by searching the applicant's web site.

Applications of the following for approval to begin operating as common carriers for transportation of persons as described under each application.

A-2021-3028765. Nassah Group, LLC (4811 Germantown Avenue, Suite 304, Philadelphia, Philadelphia County, PA 19144) persons in paratransit service, by motor vehicle, from points in the Counties of Allegheny, Beaver, Berks, Lancaster, Philadelphia, Washington, Westmoreland and York, to points in Pennsylvania, and return.

A-2021-3028915. Hearts on Wheels Senior Transportation Co. (271 Murray Drive D, King of Prussia, Montgomery County, PA 19406) for the right to begin to transport, as a common carrier, by motor vehicle, persons in paratransit service, limited to adults 55 years of age or older with functional limitation in mobility, from points in the Counties of Bucks, Delaware, Montgomery and Philadelphia, to points in Pennsylvania, and return; provided that no service shall originate in Bucks or Montgomery Counties.

A-2021-3029409. Adams PA Transportation, LLC (592 Peace Street, Hazleton, Luzerne County, PA 18201) persons in paratransit service, by motor vehicle, from points in Luzerne County, to points in Pennsylvania, and return.

ROSEMARY CHIAVETTA, Secretary

[Pa.B. Doc. No. 21-1944. Filed for public inspection November 19, 2021, 9:00 a.m.]

PHILADELPHIA PARKING AUTHORITY

Service of Notice of Motor Carrier Applications in the City of Philadelphia

The following permanent authority applications to render service as common carriers in the City of Philadelphia have been filed with the Philadelphia Parking Authority's (PPA) Taxicab and Limousine Division (TLD). Formal protests must be filed in accordance with 52 Pa. Code Part II (relating to Philadelphia Parking Authority) with

the TLD's Office of the Clerk, 2415 South Swanson Street, Philadelphia, PA 19148, no later than December 6, 2021. The nonrefundable protest filing fee is \$5,000 payable to the PPA by certified check or money order. The applications are available for inspection at the TLD between 9 a.m. and 4 p.m., Monday through Friday (contact TLD Director Christine Kirlin, Esq. at (215) 683-9653 to make an appointment) or may be inspected at the business addresses of the respective applicants or attorneys, or both.

Doc. No. A-21-11-01. Ansarullah Taxi, LLC (4422 Samson Street, Apartment 2, Philadelphia, PA 19104): An application for a medallion taxicab certificate of public convenience (CPC) to transport, as a common carrier, persons in taxicab service between points within the City of Philadelphia and from points in the City of Philadelphia to points in Pennsylvania, and return. Attorney for Applicant: David R. Alperstein, Esq., 314 Cherry Avenue, Voorhees, NJ 08043.

Doc. No. A-21-11-02. LLA Taxi, LLC (710 Edgemore Road, Philadelphia, PA 19151): An application for a medallion taxicab CPC to transport, as a common carrier, persons in taxicab service between points within the City of Philadelphia and from points in the City of Philadelphia to points in Pennsylvania, and return. *Attorney for Applicant*: David R. Alperstein, Esq., 314 Cherry Avenue, Voorhees, NJ 08043.

Doc. Nos. A-21-11-03 and A-21-11-04. Affra & Faisal Taxi, LLC (148 Powell Lane, Upper Darby, PA 19082): An application for a medallion taxicab CPC to transport, as a common carrier, persons in taxicab service between points within the City of Philadelphia and from points in the City of Philadelphia to points in Pennsylvania, and return. Attorney for Applicant: David R. Alperstein, Esq., 314 Cherry Avenue, Voorhees, NJ 08043.

Doc. No. A-21-11-05. Murshida Taxi, LLC (133 Powell Lane, Upper Darby, PA 19082): An application for a medallion taxicab CPC to transport, as a common carrier, persons in taxicab service between points within the City of Philadelphia and from points in the City of Philadelphia to points in Pennsylvania, and return. *Attorney for Applicant*: David R. Alperstein, Esq., 314 Cherry Avenue, Voorhees, NJ 08043.

Doc. No. A-21-11-06. Haque Taxi, LLC (163 Chatham Road, Upper Darby, PA 19082): An application for a medallion taxicab CPC to transport, as a common carrier, persons in taxicab service between points within the City of Philadelphia and from points in the City of Philadelphia to points in Pennsylvania, and return. *Attorney for Applicant*: David R. Alperstein, Esq., 314 Cherry Avenue, Voorhees, NJ 08043.

Doc. No. A-21-11-07. Raiyan Taxi, LLC (138 Wellington Road, Upper Darby, PA 19082): An application for a medallion taxicab CPC to transport, as a common carrier, persons in taxicab service between points within the City of Philadelphia and from points in the City of Philadelphia to points in Pennsylvania, and return. *Attorney for Applicant*: David R. Alperstein, Esq., 314 Cherry Avenue, Voorhees, NJ 08043.

Doc. No. A-21-11-09. Islamms Taxi, LLC (157 Overhill Road, Upper Darby, PA 19082): An application for a medallion taxicab CPC to transport, as a common

carrier, persons in taxicab service between points within the City of Philadelphia and from points in the City of Philadelphia to points in Pennsylvania, and return. *Attorney for Applicant*: David R. Alperstein, Esq., 314 Cherry Avenue, Voorhees, NJ 08043.

Doc. No. A-21-11-10. Panna Taxi, LLC (5845 Walnut Street, Philadelphia, PA 19139): An application for a medallion taxicab CPC to transport, as a common carrier, persons in taxicab service between points within the City of Philadelphia and from points in the City of Philadelphia to points in Pennsylvania, and return. *Attorney for Applicant*: David R. Alperstein, Esq., 314 Cherry Avenue, Voorhees, NJ 08043.

SCOTT PETRI, Executive Director

[Pa.B. Doc. No. 21-1945. Filed for public inspection November 19, 2021, 9:00 a.m.]

STATE EMPLOYEES' RETIREMENT BOARD

Hearings Scheduled

The following hearings have been scheduled, as authorized by 71 Pa.C.S. Part XXV (relating to State Employees' Retirement Code), in connection with the State Employees' Retirement System's denial of claimant's request concerning the indicated accounts.

The hearings will be held before a hearing examiner at the State Employees' Retirement System, 30 North Third Street, Fifth Floor, Harrisburg, PA 17101:

January 14, 2022	Michael L. Miholics (Deceased) Contested Death Benefit Issue	1 p.m.
February 9, 2022	James Keilman Service Credit Issue	1 p.m.
February 16, 2022	Joshua E. McVay Membership Class Issue	1 p.m.
March 9, 2022	James H. Short Pension Forfeiture Issue	1 p.m.
April 1, 2022	Robert Mulgrew Pension Forfeiture Issue	1 p.m.

Parties in each respective case may appear with or without counsel and offer relevant testimony or evidence to support their respective positions. The hearings will be held in accordance with the requirements of 2 Pa.C.S. §§ 501—508 and 701—704 (relating to Administrative Agency Law). Under 4 Pa. Code § 250.1 (relating to applicability of general rules), procedural matters will be in conformance with 1 Pa. Code Part II (relating to General Rules of Administrative Practice and Procedure) unless specific exemption is granted.

TERRILL J. SANCHEZ, Secretary

[Pa.B. Doc. No. 21-1946. Filed for public inspection November 19, 2021, 9:00 a.m.]

SUSQUEHANNA RIVER BASIN COMMISSION

Commission Meeting

The Susquehanna River Basin Commission (Commission) will conduct its regular business meeting on December 17, 2021, at 9 a.m. in person and digitally at the Susquehanna River Basin Commission, 4423 North Front Street, Harrisburg, PA 17110. Details concerning the matters to be addressed at the business meeting are contained in the Supplementary Information section of this notice. The Commission published a document in the Federal Register at 86 FR 62593 (November 10, 2021), concerning its public hearing on December 2, 2021, in Harrisburg, PA.

For further information contact Jason E. Oyler, General Counsel and Secretary, (717) 238-0423, fax: (717) 238-2436.

Supplementary Information

The business meeting will include actions or presentations on the following items: (1) adoption of a policy, Fee Incentives for the Withdrawal and Consumptive Use of AMD Impacted Waters & Treated Wastewater (formerly the draft of Use of Lesser Quality Waters Policy); (2) adoption of the 2022 Regulatory Program Fee Schedule; (3) ratification of the Letter of Understanding regarding program coordination between the Commission and the Department of Environmental Protection; (4) ratification of contracts/grants; and (5) Regulatory Program projects including one Commission-initiated project approval modification and one out-of-basin diversion.

This agenda is complete at the time of issuance, but other items may be added, and some stricken without further notice. The listing of an item on the agenda does not necessarily mean that the Commission will take final action on it at this meeting. When the Commission does take final action, notice of these actions will be published in the *Federal Register* after the meeting. Actions specific to projects will also be provided in writing directly to project sponsors.

The meeting will be conducted both in person at the Commission's headquarters and digitally. The public is invited to attend the Commission's business meeting. Individuals can access the business meeting through a computer (audio and video) at https://srbc.webex.com/srbc/j.php?MTID=mf5dfaebf7a543cc6f92dcafdd1007d8a then enter meeting number 177 499 9312 and password Dec17CommMtg. Individuals may participate telephonically by dialing (877) 668-4493 and entering the meeting number 177 499 9312 followed by the # sign.

Written comments pertaining to items on the agenda at the business meeting may be mailed to the Susquehanna River Basin Commission, 4423 North Front Street, Harrisburg, PA 17110-1788, or submitted electronically through www.srbc.net/about/meetings-events/business-meeting.html. The comments are due to the Commission on or before December 13, 2021. Comments will not be accepted at the business meeting noticed herein.

Authority: Pub.L. No. 91-575, 84 Stat. 1509 et seq., 18 CFR Parts 806-808

Dated: November 8, 2021

ANDREW D. DEHOFF, Executive Director

[Pa.B. Doc. No. 21-1947. Filed for public inspection November 19, 2021, 9:00 a.m.]

SUSQUEHANNA RIVER BASIN COMMISSION

Grandfathering Registration Notice

The Susquehanna River Basin Commission lists the following Grandfathering (GF) Registration for projects under 18 CFR 806, Subpart E (relating to registration of grandfathered projects) from October 1, 2021, through October 31, 2021.

For further information contact Jason E. Oyler, General Counsel and Secretary, (717) 238-0423, Ext. 1312, fax (717) 238-2436, joyler@srbc.net. Regular mail inquiries may be sent to the Susquehanna River Basin Commission, 4423 North Front Street, Harrisburg, PA 17110-1788.

Supplementary Information

This notice lists GF Registration for projects, described as follows, under 18 CFR 806, Subpart E for the time period previously specified:

GF Registration Under 18 CFR Part 806, Subpart E:

- 1. Alexandria Borough Water Authority—Public Water Supply System, GF Certificate No. GF-202110188, Alexandria Borough, Huntingdon County, PA; Robinson Run and Well 2; Issue Date: October 22, 2021.
- 2. Aqua Pennsylvania, Inc.—Roaring Creek Division, GF Certificate No. GF-202110189, Conyngham Township, Columbia County, PA; Brush Valley Well 1 and Brush Valley Well 2; Issue Date: October 22, 2021.
- 3. City of Lebanon Authority—Public Water Supply System, GF Certificate No. GF-202110190, Union Township, Lebanon County and Pine Grove Township, Schuylkill County, PA; Siegrist Dam and Swatara Creek; Issue Date: October 26, 2021.
- 4. Borough of Oxford—Public Water Supply System, GF Certificate No. GF-202110191, Oxford Borough, Chester County, PA; Consumptive Use; Issue Date: October 26, 2021.

Dated: November 8, 2021

ANDREW D. DEHOFF, Executive Director

[Pa.B. Doc. No. 21-1948. Filed for public inspection November 19, 2021, 9:00 a.m.]

SUSQUEHANNA RIVER BASIN COMMISSION

Projects Approved for Consumptive Uses of Water

The Susquehanna River Basin Commission (Commission) has approved by rule the following list of projects from October 1, 2021, through October 31, 2021.

For further information contact Jason E. Oyler, General Counsel and Secretary, (717) 238-0423, Ext. 1312, fax (717) 238-2436, joyler@srbc.net. Regular mail inquiries may be sent to the Susquehanna River Basin Commission, 4423 North Front Street, Harrisburg, PA 17110-1788.

Supplementary Information

This notice lists the projects, described as follows, receiving approval for the consumptive use of water under the Commission's approval by rule process in 18 CFR 806.22(e) and (f) (relating to standards for consumptive uses of water) for the time period previously specified:

Water Source Approval—Issued Under 18 CFR 806.22(e):

- 1. Department of Corrections—State Correctional Institution at Smithfield; ABR-202110002, Smithfield Township, Huntingdon County, PA; Consumptive Use of Up to 0.150 mgd; Approval Date: October 14, 2021.
- $Water\ Source\ Approval Issued\ Under\ 18\ CFR\ 806.22 (f):$
- 1. Cabot Oil & Gas Corporation; Pad ID: Westholme Energy, LLC P1; ABR-202110001; Springville Township, Susquehanna County, PA; Consumptive Use of Up to 5.0000 mgd; Approval Date: October 4, 2021.
- 2. Repsol Oil & Gas (USA), LLC; Pad ID: DCNR 587 (02 011); ABR-201106029.R2; Ward Township, Tioga County, PA; Consumptive Use of Up to 6.0000 mgd; Approval Date: October 17, 2021.
- 3. Chief Oil & Gas, LLC; Pad ID: Brule; ABR-201110005.R2; Elkland Township, Sullivan County, PA; Consumptive Use of Up to 7.5000 mgd; Approval Date: October 17, 2021.
- 4. SWN Production Company, LLC; Pad ID: Zeffer Pad; ABR-201108029.R2; New Milford Township, Susquehanna County, PA; Consumptive Use of Up to 4.9990 mgd; Approval Date: October 17, 2021.
- 5. SWN Production Company, LLC; Pad ID: Scott Pad; ABR-201108030.R2; New Milford Township, Susquehanna County, PA; Consumptive Use of Up to 4.9990 mgd; Approval Date: October 17, 2021.
- 6. EQT ARO, LLC; Pad ID: Michael R Fulkerson Pad A; ABR-201008116.R2; Cogan House Township, Lycoming County, PA; Consumptive Use of Up to 4.0000 mgd; Approval Date: October 17, 2021.
- 7. Chief Oil & Gas, LLC; Pad ID: Squier B Drilling Pad # 1; ABR-201110007.R2; Springville Township, Susquehanna County, PA; Consumptive Use of Up to 2.0000 mgd; Approval Date: October 20, 2021.
- 8. Seneca Resources Company, LLC; Pad ID: GHC Pad A; ABR-201009012.R2; Lawrence Township, Clearfield County, PA; Consumptive Use of Up to 4.0000 mgd; Approval Date: October 20, 2021.
- 9. SWN Production Company, LLC; Pad ID: Roman Pad; ABR-201108021.R2; New Milford Township, Susquehanna County, PA; Consumptive Use of Up to 4.9990 mgd; Approval Date: October 20, 2021.
- 10. EQT ARO, LLC; Pad ID: Mac Pad A; ABR-201508001.R1; Cascade Township, Lycoming County, PA; Consumptive Use of Up to 4.0000 mgd; Approval Date: October 20, 2021.
- 11. SWN Production Company, LLC; Pad ID: Robinson Well Pad; ABR-201109009.R2; Liberty Township, Susquehanna County, PA; Consumptive Use of Up to 4.9990 mgd; Approval Date: October 20, 2021.
- 12. SWN Production Company, LLC; Pad ID: Carty-Wiseman Well Pad; ABR-201109006.R2; Liberty Township, Susquehanna County, PA; Consumptive Use of Up to 4.9990 mgd; Approval Date: October 20, 2021.

13. Seneca Resources Company, LLC; Pad ID: PHC 2H; ABR-201509002.R1; Lawrence Township, Clearfield County, PA; Consumptive Use of Up to 4.0000 mgd; Approval Date: October 22, 2021.

- 14. SWN Production Company, LLC; Pad ID: Grizzanti Pad; ABR-201108023.R2; New Milford Township, Susquehanna County; PA; Consumptive Use of Up to 4.9990 mgd; Approval Date: October 22, 2021.
- 15. SWN Production Company, LLC; Pad ID: Kass North Well Pad; ABR-201109007.R2; New Milford Township, Susquehanna County, PA; Consumptive Use of Up to 4.9990 mgd; Approval Date: October 22, 2021.
- 16. EQT ARO, LLC; Pad ID: COP Tract 731 Pad D; ABR-201109017.R2; Cummings Township, Lycoming County, PA; Consumptive Use of Up to 4.0000 mgd; Approval Date: October 22, 2021.
- 17. EQT ARO, LLC; Pad ID: COP Tract 685 Pad B; ABR-201109022.R2; Cummings Township, Lycoming County, PA; Consumptive Use of Up to 4.0000 mgd; Approval Date: October 22, 2021.
- 18. EXCO Resources (PA), LLC; Pad ID: Poor Shot East Unit Drilling Pad # 1; ABR-20091002.R2; Anthony Township, Lycoming County, PA; Consumptive Use of Up to 5.0000 mgd; Approval Date: October 22, 2021.
- 19. Cabot Oil & Gas Corporation; Pad ID: GuitonP P1; ABR-202110003; Middletown Township, Susquehanna County, PA; Consumptive Use of Up to 5.0000 mgd; Approval Date: October 25, 2021.
- 20. Pennsylvania General Energy Company, LLC; Pad ID: COP Tract 293 Pad G; ABR-201109005.R2; McHenry Township, Lycoming County, PA; Consumptive Use of Up to 3.5000 mgd; Approval Date: October 25, 2021.
- 21. Chesapeake Appalachia, LLC; Pad ID: Donovan; ABR-201110016.R2; Ulster Township, Bradford County, PA; Consumptive Use of Up to 7.5000 mgd; Approval Date: October 25, 2021.
- 22. Repsol Oil & Gas USA, LLC; Pad ID: DCNR 594 (02 203); ABR-201008042.R2; Liberty Township, Tioga County, PA; Consumptive Use of Up to 6.0000 mgd; Approval Date: October 25, 2021.
- 23. Seneca Resources Company, LLC; Pad ID: COP Pad P; ABR-201009038.R2; Lawrence Township, Clearfield County, PA; Consumptive Use of Up to 4.0000 mgd; Approval Date: October 25, 2021.
- 24. EQT ARO, LLC; Pad ID: COP Tr 289 Pad E; ABR-20109048.R2; McHenry Township, Lycoming County, PA; Consumptive Use of Up to 4.0000 mgd; Approval Date: October 25, 2021.
- 25. EQT ARO, LLC; Pad ID: Lycoming H&FC Pad A; ABR-201109023.R2; Cogan House Township, Lycoming County, PA; Consumptive Use of Up to 4.0000 mgd; Approval Date: October 25, 2021.
- 26. EQT ARO, LLC; Pad ID: COP Tr 290 Pad A; ABR-201009043.R2; McHenry Township, Lycoming County, PA; Consumptive Use of Up to 4.0000 mgd; Approval Date: October 25, 2021.
- 27. Seneca Resources Company, LLC; Pad ID: Soderberg 501; ABR-20091004.R2; Sullivan Township, Tioga County, PA; Consumptive Use of Up to 4.0000 mgd; Approval Date: October 26, 2021.

- 28. EQT ARO, LLC; Pad ID: Lycoming H&FC Pad C; ABR-201109003.R2; Cogan House Township, Lycoming County, PA; Consumptive Use of Up to 4.0000 mgd; Approval Date: October 26, 2021.
- 29. EQT ARO, LLC; Pad ID: COP 731 Pad E; ABR-201109021.R2; Cummings Township, Lycoming County, PA; Consumptive Use of Up to 4.0000 mgd; Approval Date: October 26, 2021.
- 30. EQT ARO, LLC; Pad ID: Lycoming H&FC Pad B; ABR-201009099.R2; Cogan House Township, Lycoming County, PA; Consumptive Use of Up to 4.0000 mgd; Approval Date: October 26, 2021.
- 31. JKLM Energy, LLC; Pad ID: Headwaters 143; ABR-201604002.R1; Ulysses Township, Potter County, PA; Consumptive Use of Up to 7.0000 mgd; Approval Date: October 28, 2021.
- 32. Chesapeake Appalachia, LLC; Pad ID: Gardner; ABR-201110020.R2; Albany Township, Bradford County, PA; Consumptive Use of Up to 7.5000 mgd; Approval Date: October 28, 2021.
- 33. Seneca Resources Company, LLC; Pad ID: Howe 257; ABR-20091008.R2; Jackson Township, Tioga County, PA; Consumptive Use of Up to 4.0000 mgd; Approval Date: October 28, 2021.
- 34. Cabot Oil & Gas Corporation; Pad ID: FrystakC P1; ABR-201109027.R2; Bridgewater Township, Susquehanna County, PA; Consumptive Use of Up to 5.0000 mgd; Approval Date: October 28, 2021.
- 35. BKV Operating, LLC; Pad ID: McConnell 1; ABR-201110003.R2; Tunkhannock Township, Wyoming County, PA; Consumptive Use of Up to 5.0000 mgd; Approval Date: October 28, 2021.
- 36. Blackhill Energy, LLC; Pad ID: FAY 1H ABR-201107019.R2; Ridgebury Township, Bradford County, PA; Consumptive Use of Up to 4.9900 mgd; Approval Date: October 28, 2021.
- 37. Seneca Resources Company, LLC; Pad ID: Bryan 406; ABR-20091011.R2; Jackson Township, Tioga County, PA; Consumptive Use of Up to 4.0000 mgd; Approval Date: October 28, 2021.
- 38. Repsol Oil & Gas USA, LLC; Pad ID: DCNR 587 (02 010); ABR-201108002.R2; Ward Township, Tioga County, PA; Consumptive Use of Up to 6.0000 mgd; Approval Date: October 29, 2021.
- 39. JKLM Energy, LLC; Pad ID: Headwaters 145; ABR-201608001.R1; Ulysses Township, Potter County, PA; Consumptive Use of Up to 3.1250 mgd; Approval Date: October 29, 2021.
- 40. ARD Operating, LLC; Pad ID: Lycoming H&FC Pad D; ABR-201109024.R2; Cogan House Township, Lycoming County, PA; Consumptive Use of Up to 4.0000 mgd; Approval Date: October 29, 2021.
- 41. Chesapeake Appalachia, LLC; Pad ID: Nicholson; ABR-201110022.R2; Nicholson Township, Wyoming County, PA; Consumptive Use of Up to 7.5000 mgd; Approval Date: October 29, 2021.

Dated: November 8, 2021

ANDREW D. DEHOFF, Executive Director

 $[Pa.B.\ Doc.\ No.\ 21\text{-}1949.\ Filed\ for\ public\ inspection\ November\ 19,\ 2021,\ 9:00\ a.m.]$

SUSQUEHANNA RIVER BASIN COMMISSION

Rescheduled Public Hearing

The Susquehanna River Basin Commission (Commission) will hold a rescheduled public hearing on December 2, 2021, at 6:30 p.m. Due to technical issues with the previously scheduled November 4, 2021, public hearing, the Commission rescheduled this public hearing. The Commission will hold this hearing both in-person and telephonically. This hearing will be conducted at Commission headquarters, with the option to participate by telephone conference. The conference call number is (888) 387-8686. The access code number is 917 968 6050. The public hearing will end at 9 p.m. or at the conclusion of public testimony, whichever is earlier. At this public hearing, the Commission will hear testimony on the projects listed in the Supplementary Information section of this notice. The Commission will also hear testimony on a proposed policy, Fee Incentives for the Withdrawal and Consumptive Use of AMD Impacted Waters & Treated Wastewater (formerly the draft Use of Lesser Quality Waters Policy), as well as proposals to amend its Regulatory Program Fee Schedule and a proposed Letter of Understanding (LOU) regarding program coordination between the Commission and the Department of Environ-mental Protection (Department). The projects and proposals are intended to be scheduled for Commission action at its next business meeting, tentatively scheduled for December 17, 2021, which will be noticed separately. The public should take note that this public hearing will be the only opportunity to offer oral comment to the Commission for the listed projects and proposals. The deadline for the submission of written comments has been extended to December 13, 2021.

For further information contact Jason Oyler, General Counsel and Secretary, (717) 238-0423, joyler@srbc.net.

Information concerning the applications for the projects is available at the Commission's Water Application and Approval Viewer at https://www.srbc.net/waav. Information concerning the proposals can be found at https://www.srbc.net/about/meetings-events/. Additional supporting documents are available to inspect and copy in accordance with the Commission's Access to Records Policy at www.srbc.net/regulatory/policies-guidance/docs/access-to-records-policy-2009-02.pdf.

Supplementary Information

The Commission is proposing a policy for Fee Incentives for the Withdrawal and Consumptive Use of AMD Impacted Waters & Treated Wastewater (formerly the draft Use of Lesser Quality Waters Policy, which was revised based on prior public comment). This policy would replace the current Policy No. 2009-01. The Commission is also proposing changes to its Regulatory Program Fee Schedule, which it typically does on an annual basis. The Commission is also seeking public comment on the LOU with the Department. The LOU would replace the current Memorandum of Understanding with the Department signed in 1999.

The public hearing will cover the following projects. Projects Scheduled for Action

1. Project Sponsor and Facility: Artesian Water Company, Inc., New Garden Township, Chester County, PA. Application for renewal of the transfer of water of up to

3.000 mgd (30-day average) from the Chester Water Authority (Docket No. 19961105).

- 2. Project Sponsor and Facility: Chesapeake Appalachia, LLC (Susquehanna River), Terry Township, Bradford County, PA. Application for renewal and modification of surface water withdrawal of up to 3.000 mgd (peak day) (Docket No. 20170904).
- 3. Project Sponsor and Facility: Clearfield Municipal Authority, Pike Township, Clearfield County, PA. Modification to extend the approval term of the groundwater withdrawal approval (Docket No. 19910704) to allow for project improvements.
- 4. Project Sponsor and Facility: Deep Woods Lake, LLC, Dennison Township, Luzerne County, PA. Applications for groundwater withdrawal of up to 0.200 mgd (30-day average) from Well SW-5 and consumptive use of up to 0.467 mgd (peak day).
- 5. Project Sponsor and Facility: Municipal Authority of the Township of East Hempfield, d/b/a Hempfield Water Authority, East Hempfield Township, Lancaster County, PA. Applications for renewal of groundwater withdrawals (30-day averages) of up to 0.353 mgd from Well 6, 0.145 mgd from Well 7, 1.447 mgd from Well 8 and 1.800 mgd from Well 11, and Commission-initiated modification to Docket No. 20120906, which approves withdrawals from Wells 1—5 and Spring S-1 (Docket Nos. 19870306, 19890503, 19930101 and 20120906).
- 6. Project Sponsor: Farmers Pride, Inc. Project Facility: Bell & Evans Plant 3, Bethel Township, Lebanon County, PA. Applications for groundwater withdrawals (30-day averages) of up to 0.108 mgd from Well PW-1, 0.139 mgd from Well PW-2 and 0.179 mgd from Well PW-4.
- 7. Project Sponsor: Glenn O. Hawbaker, Inc. Project Facility: Naginey Facility, Armagh Township, Mifflin County, PA. Applications for groundwater withdrawal of up to 0.300 mgd (30-day average) from the Quarry Pit Pond and consumptive use of up to 0.310 mgd (peak day).
- 8. Project Sponsor: Hydro Recovery-Antrim LP. Project Facility: Antrim Treatment Plant (Antrim No. 1 Mine Discharge and Backswitch Mine Discharge), Duncan Township, Tioga County, PA. Applications for renewal of surface water withdrawal of up to 1.872 mgd (peak day) and for consumptive use of up to 1.872 mgd (30-day average) (Docket No. 20090902).
- 9. Project Sponsor and Facility: Mifflin County Municipal Authority (formerly The Municipal Authority of the Borough of Lewistown), Armagh Township, Mifflin County, PA. Applications for groundwater withdrawals (30-day averages) of up to 0.770 mgd from McCoy Well 1, 1.152 mgd from McCoy Well 2 and 0.770 mgd from the Milroy Well.
- 10. Project Sponsor: Nature's Way Purewater Systems, Inc. Project Facility: USHydrations—Dupont Bottling Plant, Dupont Borough, Luzerne County, PA. Modification to increase consumptive use (peak day) by an additional 0.100 mgd, for a total consumptive use of up to 0.449 mgd (Docket No. 20110618).

11. Project Sponsor and Facility: Shippensburg Borough Authority, Southampton Township, Cumberland County, PA. Application for renewal of groundwater withdrawal of up to 2.000 mgd (30-day average) from Well 3 (Docket No. 20070305).

12. Project Sponsor and Facility: Walker Township Water Association, Inc., Walker Township, Centre County, PA. Applications for renewal of groundwater withdrawals (30-day averages) of up to 0.432 mgd from Zion Well 2 and 0.320 mgd from Hecla Well 1 (Docket Nos. 19910302 and 19950906).

Project Scheduled for Action Involving a Diversion

1. Project Sponsor and Facility: Chester Water Authority, New Garden Township, Chester County, PA. Applications for renewal of consumptive use and for an out-of-basin diversion of up to 3.000 mgd (30-day average) (Docket No. 19961104).

Commission-Initiated Project Approval Modification

1. Project Sponsor and Facility: Elkview Country Club, Greenfield and Fell Townships, Lackawanna County, PA. Conforming the grandfathering amount with the forthcoming determination for a surface water withdrawal up to 0.144 mgd (30-day average) from Crystal Lake (Docket No. 20021002).

Opportunity to Appear and Comment

Interested parties may attend or call into the hearing to offer comments to the Commission on any business previously listed required to be the subject of a public hearing. Given the telephonic option to the hearing, the Commission strongly encourages those members of the public wishing to provide oral comments to pre-register with the Commission by e-mailing Jason Oyler at joyler@srbc.net prior to the hearing date. The presiding officer reserves the right to limit oral statements in the interest of time and to otherwise control the course of the hearing. Access to the building and the hearing by means of telephone will begin at 6:15 p.m. Guidelines for the public hearing are posted on the Commission's web site at www.srbc.net, prior to the hearing for review. The presiding officer reserves the right to modify or supplement the guidelines at the hearing. Written comments on any business previously listed required to be the subject of a public hearing may also be mailed to Jason Oyler, Secretary, Susquehanna River Basin Commission, 4423 North Front Street, Harrisburg, PA. 17110-1788, or submitted electronically through https://www.srbc.net/ regulatory/public-comment/. Comments mailed or electronically submitted must be received by the Commission on or before December 13, 2021, to be considered.

Authority: Pub.L. No. 91-575, 84 Stat. 1509 et seq., 18 CFR Parts 806—808

Dated: November 5, 2021

ANDREW D. DEHOFF, Executive Director

[Pa.B. Doc. No. 21-1950. Filed for public inspection November 19, 2021, 9:00 a.m.]